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Abstract: A series of pyrimidine derivatives bearing one, two or three triphenylamine/9-ethylcarbazole
substituents has been synthesized by Suzuki cross-coupling reaction. All compounds showed
absorption bands in the UV region and the emission of violet-blue light upon irradiation. Protonation
led to quenching of the fluorescence, although some derivatives remained luminescent with the
appearance of a new red-shifted band in the spectra. Accurate control of the amount of acid enabled
white photoluminescence to be obtained both in solution and in solid state.
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1. Introduction

The pyrimidine (1,3-diazine) core is a π-deficient six-membered heterocycle with two nitrogen
atoms. Consequently, the pyrimidin-4-yl and the pyrimidin-2-yl fragments act as relatively
strong electron-withdrawing groups [1]. With regard to pyridyl analogues, the presence of an
appropriately positioned second nitrogen atom significantly enhances their electron-attracting
character [2]. The pyrimidine ring has therefore been extensively used as an acceptor unit in push-pull
structures in which significant intramolecular charge transfer (ICT) occurs [1,3,4]. In this respect,
4,6-di(arylvinyl)pyrimidines are now well established two-photon absorption chromophores for
biological imaging [5–8], 3D lithographic microfabrication [9], and 3D data storage [10]. Appropriately
substituted 2,4,6-triarylpyrimidines have also been developed as efficient emitters for OLEDs due
to their thermally activated delayed fluorescence (TADF) properties [11–15]. Pyrimidine push-pull
chromophores have also been developed as second order nonlinear optic (NLO) materials [16,17] and
as dyes for photovoltaic applications [18,19].

When compared to their arylvinyl- and arylethynyl- analogues, arylpyrimidines generally exhibit
a blue-shifted emission with a higher emission quantum yield [1,20]. Arylpyrimidines can be easily
obtained by Suzuki cross-coupling reaction from halogenopyrimidines [21–24]. The electron-withdrawing
character of the pyrimidinyl fragments allows this reaction to be performed from chloro-derivatives [25].

The emission properties of pyrimidine fluorophores are highly sensitive to the environment. As
a consequence, a strong emission solvatochromism, which is typical of ICT chromophores [26–29], is
observed: a polarity increase provides a significant bathochromic shift of the emission band [30–33]. On the
other hand, protonation of the pyrimidine ring (pKa1 = 1.1) significantly enhances its electron-withdrawing
character and leads to a red-shift of both absorption and emission bands. These shifts are generally
accompanied by emission quenching, but in some cases, particularly with weak electron-donating groups
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such as methoxy fragments, red-shifted emission with increased intensity is observed [32,34,35]. White
photoluminescence can be obtained both in solution and in doped polystyrene films when the neutral and
protonated forms are present in the appropriate ratio [34,35].

Triphenylamine and 9-ethylcarbazole have been extensively used as electron-donating units
in push-pull structures [36–39]. Although these units are weaker electron-donors than N,N-
dialkylanilines [40], derivatives that incorporate these moieties generally have stronger luminescence
properties [41–43]. Nevertheless, only a few pyrimidine derivatives bearing triphenylamine or
9-ethylcarbazole fragments have been described in the literature [9,19,44,45].

We report here the synthesis of a series of pyrimidine chromophores with one, two or three
triphenylamine/9-ethylcarbazole substituents. The photophysical properties of the new materials were
carefully studied and the luminescence behaviour in the presence of acid was evaluated. In some cases,
the protonated pyrimidines remained emissive, which enabled white luminescence to be obtained by
accurate control of the amount of acid.

2. Results and Discussion

2.1. Synthesis

Compounds 1 and 2 were obtained in moderate to good yield by Suzuki cross-coupling reaction
from the corresponding chloropyrimidines and boronic acids according to a known methodology
for similar pyrimidine structures (Scheme 1) [21–24]. All compounds were identified by 1H and
13C-NMR, and all previously unknown molecules were also characterized by high resolution mass
spectroscopy (HRMS).
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2.2. Photophysical Properties in Solution

The UV-Vis and photoluminescence (PL) spectroscopic data for compounds 1 and 2 in
dichloromethane are presented in Table 1. The analyses were carried out using low concentration
solutions (1.0–2.0 × 10−5 M). Self-absorption effects were not observed under the conditions employed.
As representative examples, the spectra of compounds 1a–c are shown in Figure 1 (see Figure S1 in the
Supporting Information for spectra of compounds 2a–c).

Table 1. UV-Vis and photoluminescence (PL) data for compounds 1 and 2 in CH2Cl2 solution.

Compd λabs (nm) ε (mM−1 cm−1) λem (nm) ΦF
Stokes Shift

(cm−1)

1a 356, 301 21.7, 13.3 456 0.83 6160
1b 388, 301 52.0, 26.4 486 0.86 5200
1c 376, 299, 293 76.6, 36.7, 36.9 475 0.52 5540
2a 323, 284, 276 (sh) 22.6, 51.6, 33.8 382 0.32 4780
2b 360, 348, 284 43.2, 48.2, 50.1 407 0.77 3210
2c 367 (sh) 339, 299, 282 (sh) 20.4, 69.2, 84.2, 64.1 398 0.35 2120
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Compounds 1, which contain triphenylamine substituents, exhibited red-shifted absorption
and emission bands with respect to their 9-ethylcarbazole analogues 2. This finding indicates that
the 9-ethyl-9H-carbazol-3-yl fragment is a weaker electron-donating group than triphenylamine.
Triphenylamine derivatives 1 also displayed higher fluorescence quantum yields (up to 0.86 for
1b). The 4,6-disubstituted pyrimidines 1b and 2b showed a red-shifted emission and an enhanced
fluorescence quantum yield in comparison with their C2-monosubstituted analogues 1a and 2a.
In contrast, the addition of a third substituent (2,4,6-triarylpyrimidines) led to a slight blue shift in the
emission and a decrease in the quantum yield. A similar phenomenon has previously been observed
in tristyrylpyrimidines and was attributed to a decrease in the electron-withdrawing character of the
pyrimidine central core due to the C2 electron-donating substituent, which decreases the ICT along the
C4 and C6 arms [32].

In an effort to gain further insights into the photophysical properties of these push-pull molecules,
in particular to evaluate the ICT upon excitation, the emission behaviour of compounds 1 and 2
was studied in a variety of different aprotic solvents. The data obtained are summarized in Table 2.
The position of the longest wavelength absorption maximum was not affected significantly but an
increase in the solvent polarity, estimated by the Dimroth–Reichardt polarity parameters [46,47],
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resulted in a red-shifted emission (see Figure 2 for compound 1b and Figures S2–S6 in the Supporting
Information for compounds 1a, 1c, and 2a–c). This bathochromic shift in the emission band is consistent
with stabilization of the highly polar emitting excited state by polar solvents. The solvatochromic shift
of the emission band can be used to evaluate the ICT upon excitation. For all compounds, the emission
maxima were plotted versus the Dimroth–Reichardt polarity parameter, and in all cases good linearity
was found (see Figure S7 in the Supporting Information). The slopes of the corresponding regression
lines indicate a stronger ICT for triphenylamine derivatives 1 with respect to their 9-ethylcarbazole
analogues 2. In the triphenylamine series, the slope increased in the order 1a < 1c < 1b, thus indicating
that the strongest ICT was obtained for the 4,6-disubstituted pyrimidine 1b. In a similar way, the slope
increased in the order 2a < 2c < 2b for the 9-ethylcarbazole derivatives.

Table 2. Emission solvatochromism of compounds 1 and 2 in various aprotic solvents.

Compd n-Heptane
30.9 a Toluene 33.9 a 1,4-Dioxane

36.0 a THF 37.4 a CHCl3
39.1 a

CH2Cl2
40.7 a

Acetone
42.2 a

MeCN
45.6 a

1a 406 420 429 449 450 456 462 477
1b 418 437 444 464 478 486 498 518
1c 413 432 438 466 466 475 492 508
2a 354/373 361/378 362/379 379 383 382 382 389
2b 371 383 384 395 406 407 413 424
2c 379 384 386 385 398 398 407 415

a ET(30) Dimroth–Reichardt polarity parameter in kcal mol−1.
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Photophysical measurements were also performed on a 10−2 M solution of camphorsulfonic acid
(CSA) in dichloromethane. The results are summarized in Table 3. As one would expect, a bathochromic
shift of the charge transfer absorption band was observed for all compounds due to the protonation
of the pyrimidine ring [45,48]. This was associated with a dramatic quenching of the fluorescence
for the triphenylamine derivatives. As a consequence, emission bands could not be identified for
compounds 1a and 1c, whereas for 1b a low intensity emission in the red region was detected (λmax =

651 nm, ΦF < 0.01). It is worth noting that the protonated form of 1b was more emissive in chloroform
solution (λabs = 493 nm, λem = 625 nm, ΦF = 0.11). In contrast, the 9-ethylcarbazole derivatives 2b
and 2c remained fluorescent and they emitted green-yellow light with high emission quantum yields
(ΦF = 0.63 and 0.45, respectively). The decay lifetimes (τ) were determined to be 3.6 ns and 4.2 ns (τ
values for the neutral molecules were 1.8 ns and 1.7 ns, respectively). Surprisingly, 2a was not emissive
in acidified dichloromethane. The effect of protonation was studied in a more detailed way by titration
of solutions of compounds 1b, 2b and 2c with CSA. The changes observed in the UV-vis and emission
spectra for 2b are illustrated in Figures 3 and 4, respectively (see the Supporting Information for data
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for compounds 1b and 2c). The absorption spectra showed the progressive disappearance of the charge
transfer absorption band of the neutral form, whereas a red-shifted charge transfer absorption band for
the protonated form progressively appeared. The presence of an isosbestic point is evident and this is
characteristic of an equilibrium between two species (Figure 3). The same trend was observed in the
emission spectra: the addition of CSA led to the progressive disappearance of the emission band of the
neutral form and this was associated with the enhancement of a new red-shifted band corresponding
to the emission of the protonated form with an isoemissive point (Figure 4).

Table 3. UV/Vis and PL data for compounds 1 and 2 in acid solution (10−2 M CSA in CH2Cl2).

Compd λabs (nm) ε (mM−1 cm−1) λem (nm) ΦF
Stokes Shift

(cm−1)

1a 424, 373 (sh), 268 17.2, 9.3, 30.5 - - -
1b 488 48.3 651 <0.01 5130
1c 486, 375, 274 68.2, 30.4, 88.5 - - -
2a 396 27.3 - - -
2b 444, 390, 285 63.9, 28.0, 64.3 519 0.63 3250
2c 443, 330 41.9, 29.0 552 0.45 4460
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The coexistence of both neutral and protonated species with complementary emitting colors in the
solution enabled white light emission to be achieved under UV-irradiation. Thus, compound 2c emitted
violet light at λmax = 398 nm and this turned to green-yellow at λmax = 552 nm upon protonation.
Excitation at 370 nm led to the observation of white light after the addition of 45 equivalents of CSA to
a 1.25 × 10−5 M solution of 2c in dichloromethane (Figure 5). The same phenomenon was also observed
for compounds 1b and 2b (Figures S11 and S12 of the Supporting Information, respectively). For 1b
and 2c, the calculated CIE chromaticity coordinates (Table 4) were close to those of pure white light
(0.33, 0.33).
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Table 4. CIE coordinates for compounds 1 and 2 in solution.

Compd
Chromaticity Coordinates (x, y)

Neutral Form Protonated Form Mixture of Neutral and
Protonated Forms

1a a (0.15, 0.15) - -
1b b (0.18, 0.33) (0.62, 0.37) (0.32, 0.34) c

1c a (0.16, 0.25) - -
2a a (0.18, 0.04) - -
2b a (0.16, 0.03) (0.29, 0.59) (0.24, 0.39) d

2c a (0.17, 0.04) (0.42, 0.56) (0.30, 0.34) e

a In dichloromethane solution (c = 1.0–2.0 × 10−5 M). b In chloroform solution (c = 9.76 × 10−6 M). c 50 equivalents of
CSA, λexc = 400 nm. d 2 equivalents of CSA, λexc = 370 nm. e 45 equivalents of CSA, λexc = 370 nm.

2.3. Photophysical Properties in Solid State

Filter paper pieces covered with 2b and 2c in the absence and presence of different amounts of
CSA were prepared by immersion of the filter paper into a dichloromethane solution of the appropriate
compound (1 wt% doped on polystyrene). The samples were dried in air. The fluorescence spectra of
the samples were acquired and emission maxima in the violet region at λmax = 405 nm and 406 nm,
respectively, were determined in the absence of acid. The intensities of these bands gradually decreased
on increasing the amount of CSA, whereas a distinctly novel enhanced emission appeared in the
green-yellow region (λmax = 544 nm for 2b and λmax = 554 nm for 2c). After careful tuning of the
number of equivalents of CSA, white light was observed due to the simultaneous emission from both
the neutral and protonated compounds. These significant emission changes were easily followed by
the naked eye under UV irradiation (Figure 6 and Figure S13 in the Supporting Information). Energy
transfer between neutral and protonated molecules has been suggested for related systems [49].
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3. Materials and Methods

3.1. General Information

All solvents were reagent grade for synthesis and spectroscopic grade for photophysical
measurements. The starting materials were purchased from Sigma-Aldrich (St Louis, MO, USA) or Alfa
Aesar (Haverhill, MA, USA) and were used without further purification. For air- and moisture-sensitive
reactions, all glassware was flame-dried and cooled under nitrogen. NMR spectra were recorded
in CDCl3 on a Bruker Avance 300 spectrometer (1H at 300 MHz and 13C at 75 MHz, Billerica, MA,
USA). The chemical shifts δ are reported in ppm and are referenced to the residual protons of the
deuterated solvent or carbon nuclei (1H, δ = 7.27 ppm; 13C, δ = 77.0 ppm). The coupling constants
J are given in Hz. In the 1H-NMR spectra, the following abbreviations are used to describe the
peak patterns: s (singlet), d (doublet), dd (doublet of doublets), t (triplet), m (multiplet). In the
13C-NMR spectra, the nature of the carbons (C, CH, CH2 or CH3) was determined by performing a
JMOD experiment. Melting points (◦C) were measured on a Kofler hot-stage with a precision of 2
degrees (±2 ◦C). High-resolution mass analyses were performed at the ‘Centre Régional de Mesures
Physiques de l’Ouest’ (CRMPO, Université de Rennes 1, Rennes, France) using a Bruker MicroTOF-Q
II apparatus. Analytical thin layer chromatography (TLC) was performed on 60 F254 silica gel plates
(Merck, Darmstadt, Germany), and compounds were visualized by irradiation with UV light at 254
and 365 nm. Flash chromatography was performed using silica SI 60 (60–200 mesh ASTM, Acros,
Waltham, MA, USA). UV-visible and fluorescence spectroscopy studies were conducted on a Spex
Fluoromax-3 spectrophotometer (Jobin-Yvon Horiba, Kyoto, Japan). Compounds were excited at
their absorption maxima (band of lowest energy) to record the emission spectra. All solutions were
measured with optical densities below 0.1. Fluorescence quantum yields (±10%) were determined
relative to 9,10-bis(phenylethynyl)anthracene in cyclohexane (ΦF = 1.00). Stokes shifts were calculated
considering the lowest energetic absorption band.

3.2. General Procedure for Suzuki Cross-coupling Reactions

A stirred mixture of the chloropyrimidine derivative (1 mmol), arylboronic acid (1.2 mmol per
chlorine atom), Pd(PPh3)4 (0.05 mmol per chlorine atom), 1 M aqueous sodium carbonate (1.2 mmol,
1.2 mL per chlorine atom), and ethanol (1.5 mL) in degassed toluene (15 mL) was heated at reflux
under nitrogen for 15 h in a Schlenk tube. The reaction mixture was cooled, filtered, and dissolved
with a mixture of AcOEt and water 1:1 (50 mL) and the organic layer was separated. The aqueous
layer was extracted with AcOEt (2 × 25 mL). The combined organic extracts were dried with MgSO4

and the solvents were evaporated.
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2-(4-Diphenylaminophenyl)pyrimidine (1a). The title compound was obtained according to the general
procedure and purified by column chromatography (SiO2, AcOEt/petroleum ether, 3:7). Beige solid.
Yield: 75% (241 mg). Mp: 173–174 ◦C (lit.: 168–169 ◦C) [50]. 1H-NMR (300 MHz, CDCl3): δ 7.17–7.05
(m, 9H), 7.31–7.27 (m, 4H), 8.28 (d, 2H, J = 9.0 Hz), 8.74 (d, 2H, J = 4.8 Hz). 13C-NMR (75 MHz, CDCl3):
δ 118.2, 122.1, 123.6, 125.2, 129.2, 129.4, 130.9, 147.3, 150.3, 157.1, 164.5.

4,6-bis(4-Diphenylaminophenyl)pyrimidine (1b). The title compound was obtained according to the
general procedure and purified by column chromatography (SiO2, AcOEt/petroleum ether, 3:7). Yellow
solid. Yield: 87% (492 mg). Mp: 230–231 ◦C. 1H-NMR (300 MHz, CDCl3): δ 7.17–7.07 (m, 16H),
7.33–7.27 (m, 8H), 7.93 (d, 1H, J = 1.2 Hz), 7.99 (d, 4H, J = 9.0 Hz), 9.17 (d, 1H, J = 1.2 Hz). 13C-NMR
(75 MHz, CDCl3): δ 110.9, 122.0, 123.9, 125.3, 128.1, 129.5, 129.9, 147.1, 150.4, 159.0, 163.7. HRMS
(ESI/ASAP), m/z calculated for C40H31N4 [M + H]+ 567.2543, found 567.2546.

2,4,6-tris(4-Diphenylaminophenyl)pyrimidine (1c). The title compound was obtained according to the
general procedure and purified by column chromatography (SiO2, AcOEt/petroleum ether, 3:7). Yellow
solid. Yield: 65% (526 mg). Mp: >260 ◦C. 1H-NMR (300 MHz, CDCl3): δ 7.11–7.06 (m, 6H), 7.18–7.15
(m, 18H), 7.32–7.27 (m, 12H), 7.78 (s, 1H), 8.11 (d, 4H, J = 8.7 Hz), 8.51 (d, 2H, J = 8.7 Hz). 13C-NMR
(75 MHz, CDCl3): δ 107.9, 122.2, 122.4, 123.3, 123.7, 124.9, 125.2, 128.1, 129.3, 129.4, 130.8, 132.1, 147.2,
147.4, 149.9, 150.2, 163.7, 164.0 HRMS (ESI/ASAP), m/z calculated for C58H44N5 [M + H]+ 810.3591,
found 810.3591.

2-(9-Ethyl-9H-carbazol-3-yl)pyrimidine (2a). The title compound was obtained according to the general
procedure and purified by column chromatography (SiO2, AcOEt/petroleum ether, 3:7). Beige solid.
Yield: 87% (238 mg). Mp: 136–137 ◦C. 1H-NMR (300 MHz, CDCl3): δ 1.47 (t, 3H, J = 7.2 Hz), 4.41 (q,
6H, J = 7.2 Hz), 7.14 (t, 1H, J = 4.8 Hz), 7.30–7.27 (m, 1H), 7.52–7.42 (m, 3H), 8.22 (d, 1H, J = 7.8 Hz),
8.61 (d, 1H, J = 7.8 Hz), 8.82 (d, 2H, J = 5.1 Hz), 9.22 (s, 2H). 13C-NMR (75 MHz, CDCl3): δ 13.9, 37.7,
108.4, 108.7, 118.1, 119.5, 120.8, 121.0, 123.3, 123.5, 126.0, 126.2, 128.6, 140.6, 141.8, 157.2, 165.6. HRMS
(ESI/ASAP), m/z calculated for C18H16N3 [M + H]+ 274.1338, found 274.1343.

4,6-bis(9-Ethyl-9H-carbazol-3-yl)pyrimidine (2b). The title compound was obtained according to the
general procedure and purified by column chromatography (SiO2, AcOEt/petroleum ether, 1:1). Pale
yellow solid. Yield: 76% (352 mg). Mp: 170–171 ◦C (lit.: 176–177 ◦C) [45]. 1H-NMR (300 MHz, CDCl3):
δ 1.45 (t, 6H, J = 6.9 Hz), 4.33 (q, 4H, J = 6.9 Hz), 7.53–7.30 (m, 8H), 8.32–8.24 (m, 5H), 8.99 (s, 2H), 9.36
(s, 1H). 13C-NMR (75 MHz, CDCl3): δ 13.8, 37.7, 108.6, 108.8, 111.5, 119.6, 119.7, 120.8, 123.2, 123.5,
124.9, 126.2, 127.9, 140.6, 141.6, 159.0, 164.8.

2,4,6-tris(9-Ethyl-9H-carbazol-3-yl)pyrimidine (2c). The title compound was obtained according to
the general procedure and purified by column chromatography (SiO2, AcOEt/petroleum ether, 3:7)
followed by recrystallization from CH2Cl2/n-heptane. Pale yellow solid. Yield: 51% (330 mg). Mp:
176–177 ◦C. 1H-NMR (300 MHz, CDCl3): δ 1.52 (t, 9H, J = 6.3 Hz), 4.46 (q, 6H, J = 7.2 Hz), 7.37–7.33 (m,
3H), 7.62–7.47 (m, 9H), 8.22 (d, 1H, J = 2.4 Hz), 8.38–8.33 (m, 3H), 8.59 (2H, d, J = 8.7 Hz), 9.04 (1H, dd,
J1 = 8.7 Hz, J2 = 1.2 Hz), 9.14 (s, 2H), 9.59 (s, 1H). 13C-NMR (75 MHz, CDCl3): δ 13.9, 37.8, 108.2, 108.7,
108.8, 119.2, 119.4, 119.8, 120.8, 120.9, 121.2, 123.2, 123.4, 123.5, 123.8, 125.4, 125.7, 126.1, 126.8, 129.1,
130.0, 140.6, 141.6. HRMS (ESI/ASAP), m/z calculated for C46H38N5 [M + H]+ 660.3122, found 660.3122.

4. Conclusions

Push-pull pyrimidines substituted with a different number of either triphenylamine or
9-ethylcarbazole groups were prepared by Suzuki cross-coupling reaction from the corresponding
chloropyrimidines and boronic acids. The molecules presented absorption wavelengths in the UV
region and emitted violet-blue light in dichloromethane solution with a higher fluorescence quantum
yield and a stronger ICT observed for the triphenylamine derivatives. The addition of acid was
accompanied by a dramatic quenching of the fluorescence except for the 9-ethylcarbazole derivatives
2b and 2c (and partially for 1b). In these cases, protonation led to the progressive disappearance of the
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emission band and the appearance of a new red-shifted complementary emitting band. Thus, white
photoluminescence could be obtained by controlled protonation. White emission was also achieved in
solid state.

Supplementary Materials: The following material is available online: Figure S1: absorption and emission spectra
of compounds 2a–c in dichloromethane solution; Figures S2–S6: emission spectra of 1a, 1c, and 2a–c in different
aprotic solvents; Figure S7: emission maxima as a function of the Dimroth–Reichardt polarity parameter ET(30)
for compounds 1 and 2; Figures S8–S10: changes in the absorption and emission spectra of a solution of 1b and 2b
upon addition of CSA; Figures S11 and S12: changes in the color of a solution of 1b and 2b after the addition
of CSA; Figure S13: fluorescence spectra and changes in the color of 2b in solid state after the addition of CSA;
Figures S14–S23: 1H, 13C-NMR and HRMS spectra of compounds 1 and 2.
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Růžičková, Z.; Bureš, F. Photophysical properties of acid-responsive triphenylamine derivatives bearing
pyridine fragments: towards white light emission. Dyes Pigm. 2017, 146, 467–478. [CrossRef]

42. Parthasarathy, V.; Fery-Forgues, S.; Campioli, E.; Recher, G.; Terenziani, F.; Blanchard-Desce, M. Dipolar
versus octupolar triphenylamine-based fluorescent organic nanoparticles as brillant one- and two-photon
emitters for (bio)imaging. Small 2011, 7, 3219–3229. [CrossRef] [PubMed]

43. Zhu, H.; Huang, J.; Kong, L.; Tian, Y.; Yang, J. Branched triphenylamine luminophores: aggregation-induced
fluorescence emission, and tunable near-infrared solid-state fluorescence characteristics via external
mechanical stimuli. Dyes Pigm. 2018, 151, 140–149. [CrossRef]

44. Weng, J.; Mei, Q.; Fan, Q.; Ling, Q.; Tong, B.; Huang, W. Bipolar luminescent materials containing pyrimidine
terminals: synthesis, photophysical properties and a theoretical study. RSC Adv. 2013, 3, 21877–21887. [CrossRef]

45. Kato, S.-I.; Yamada, Y.; Hiyoshi, H.; Umezu, K.; Nakamura, Y. Series of carbazole-pyrimidine conjugates:
syntheses and electronic, photophysical, and electrochemical properties. J. Org. Chem. 2015, 80, 9076–9090.
[CrossRef] [PubMed]

46. Reichardt, C. Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 1994, 94, 2319–2358. [CrossRef]
47. Cerón-Carrasco, J.P.; Jacquemin, D.; Laurence, C.; Planchat, A.; Reichardt, C.; Sraïdi, K. Solvent polarity scales:

determination of new Et(30) values for 84 organic solvents. J. Phys. Org. Chem. 2014, 27, 512–518. [CrossRef]
48. Achelle, S.; Nouira, I.; Pfaffinger, B.; Ramondenc, Y.; Plé, N.; Rodríguez-López, J. V-shaped 4,6-bis(arylvinyl)

pyrimidine oligomers: synthesis and optical properties. J. Org. Chem. 2009, 74, 3711–3717. [CrossRef]
49. Liu, D.; Zhang, Z.; Zhang, H.; Wang, Y. A novel approach towards white photoluminescence and electrolum

inescence by controlled protonation of a blue fluorophore. Chem. Commun. 2013, 49, 10001–10003. [CrossRef]
50. Liu, C.; Wu, Y.; Qiu, J. Efficient synthesis of 4-heteroaryl-substituted triphenylamine derivatives via a

ligand-free Suzuki reaction. Appl. Organomet. Chem. 2011, 25, 862–866. [CrossRef]

Sample Availability: Samples of the compounds 1 and 2 are available from the authors.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1021/acs.joc.8b01653
http://www.ncbi.nlm.nih.gov/pubmed/30178669
http://dx.doi.org/10.1111/php.12982
http://www.ncbi.nlm.nih.gov/pubmed/29984405
http://dx.doi.org/10.1021/acs.jpcc.6b08401
http://dx.doi.org/10.1039/C5RA21514E
http://dx.doi.org/10.1016/j.dyepig.2015.07.017
http://dx.doi.org/10.1039/C5TC01293G
http://dx.doi.org/10.1002/asia.201300735
http://dx.doi.org/10.1021/ja404422z
http://dx.doi.org/10.1021/jp054334s
http://dx.doi.org/10.1016/j.dyepig.2017.07.043
http://dx.doi.org/10.1002/smll.201100726
http://www.ncbi.nlm.nih.gov/pubmed/21972222
http://dx.doi.org/10.1016/j.dyepig.2017.12.053
http://dx.doi.org/10.1039/c3ra43631d
http://dx.doi.org/10.1021/acs.joc.5b01409
http://www.ncbi.nlm.nih.gov/pubmed/26301629
http://dx.doi.org/10.1021/cr00032a005
http://dx.doi.org/10.1002/poc.3293
http://dx.doi.org/10.1021/jo900107u
http://dx.doi.org/10.1039/c3cc45991h
http://dx.doi.org/10.1002/aoc.1851
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results and Discussion 
	Synthesis 
	Photophysical Properties in Solution 
	Photophysical Properties in Solid State 

	Materials and Methods 
	General Information 
	General Procedure for Suzuki Cross-coupling Reactions 

	Conclusions 
	References

