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Abstract

Langerin is required for the biogenesis of Birbeck granules (BGs), the characteristic organelles of Langerhans cells. We
previously used a Langerin-YFP fusion protein having a C-terminal luminal YFP tag to dynamically decipher the molecular
and cellular processes which accompany the traffic of Langerin. In order to elucidate the interactions of Langerin with its
trafficking effectors and their structural impact on the biogenesis of BGs, we generated a YFP-Langerin chimera with an N-
terminal, cytosolic YFP tag. This latter fusion protein induced the formation of YFP-positive large puncta. Live cell imaging
coupled to a fluorescence recovery after photobleaching approach showed that this coalescence of proteins in newly
formed compartments was static. In contrast, the YFP-positive structures present in the pericentriolar region of cells
expressing Langerin-YFP chimera, displayed fluorescent recovery characteristics compatible with active membrane
exchanges. Using correlative light-electron microscopy we showed that the coalescent structures represented highly
organized stacks of membranes with a pentalaminar architecture typical of BGs. Continuities between these organelles and
the rough endoplasmic reticulum allowed us to identify the stacks of membranes as a form of ‘‘Organized Smooth
Endoplasmic Reticulum’’ (OSER), with distinct molecular and physiological properties. The involvement of homotypic
interactions between cytoplasmic YFP molecules was demonstrated using an A206K variant of YFP, which restored most of
the Langerin traffic and BG characteristics observed in Langerhans cells. Mutation of the carbohydrate recognition domain
also blocked the formation of OSER. Hence, a ‘‘double-lock’’ mechanism governs the behavior of YFP-Langerin, where
asymmetric homodimerization of the YFP tag and homotypic interactions between the lectin domains of Langerin
molecules participate in its retention and the subsequent formation of BG-like OSER. These observations confirm that BG-
like structures appear wherever Langerin accumulates and confirm that membrane trafficking effectors dictate their
physiology and, illustrate the importance of molecular interactions in the architecture of intracellular membranes.
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Introduction

The use of fluorescent proteins (FPs) has revolutionized cell

biology. Following the initial purification of Green Fluorescent

Protein (GFP) from the jellyfish Aequorea victoria [1], the cloning of

the GFP gene [2] has led to a continuously expanding list of

applications, through the development of a variety of improved

GFP variants. In particular, the use of genetically encoded optical

tags allows one to visualize the proteins of interest in live cells,

opening up fascinating possibilities. However, caution is required

when engineering a new FP fusion protein, in order to avoid

potentially misleading artifacts [3]. Among the classical sources of

such aberrant results, the tendency of many FPs [including

enhanced (E)GFP and yellow (Y)FP] to spontaneously oligomerize

is well known and can lead to undesirable interactions between FP

fusion proteins [4].

PLOS ONE | www.plosone.org 1 April 2013 | Volume 8 | Issue 4 | e60813



In cultured cells, the ER is a highly dynamic subcellular

compartment which forms an interconnected network of tubular

and laminar structures, either ribosome-covered (rough ER) or

ribosome-free (smooth ER). Changes in the architecture of the ER

can be induced by different signals, leading to the accumulation of

membranes in various highly ordered structures (e.g., stacked

cisternae called karmellae, concentric membrane whorls, packed

undulating sinusoidal ER, crystalloid ER) which have been

grouped under the term OSER [5]. OSER can be induced by

the over-expression of particular ER resident transmembrane

proteins such as cytochrome b5 [5], HMG-CoA reductase [6],

TMPO [7], calnexin [8], VAPB [9]. One may note that the fusion

of a GFP tag to the cytoplasmic domain of a resident ER protein

can be sufficient to trigger the formation of typical OSER [5]. The

formation of OSERs is largely dependent on the ability of ER

resident membrane proteins to form multimers via their cytoplas-

mic tail [10], so the ability of GFP tag to form dimers explains its

ability to induce OSER [4,5]. Topologically, OSER induced by

protein hyperexpression can be related to cubic membranes,

which are highly convoluted membrane organizations displaying

symmetries and 3-dimensional periodicities present in many

biological systems [11,12].

Langerin (CD207), a type II transmembrane cell surface

receptor with a C-type lectin-like domain, is expressed in

Langerhans cells, the resident immature dendritic cells of the

human epidermis [13]. This protein allows the capture and the

internalization of antigens or viruses and their subsequent

presentation by CD1a or histocompatibility class II molecules

[14,15].

Langerin is naturally present on the plasma membrane and is

constitutively internalized, thereby gaining access to the sorting

endosomes before being routed to the tubulo-vesicular network of

the endosomal recycling compartment. In these structures,

Langerin accumulates in specific subdomains, the so-called

‘‘Birbeck granules’’ (BGs) [16]. These subcellular organelles

appear as rod-shaped pentalamellar structures of different sizes,

with a distinctive central striated lamella [17]. Once a critical

molecular concentration has been reached, the carbohydrate-

recognition domain (CRD) of Langerin allows zipping of the

membranes through homotypic interactions, i.e., the formation of

BGs [18]. Finally, Langerin recycles to the plasma membrane

[16,19]. As a subcellular organelle, BGs thus constitute a paradigm

of dynamic cellular architecture and potentially illustrate the

ultrastructural consequences of the coordinated kinetics of

membrane traffic.

To study the dynamics of Langerin traffic, a Langerin-YFP

fusion protein (Lang-YFP, luminal or extracellular YFP tag) was

expressed in the M10 human melanoma cell line [19]. Fluorescent

live cell imaging allowed the observation and quantification of

numerous transient fluorescence concentration events in the

pericentriolar region of the cells, where BGs are known to

accumulate, and close to or at the plasma membrane. These

observations depicted dynamic processes involving the endocyto-

sis, sorting and exocytosis of Langerin-positive vesicles. The

relevant cellular transport steps were found to be strictly controlled

by the formation of a myosin Vb/Rab11A/Rab11-FIP2 platform,

firstly in endosomal recycling compartments, where Langerin-

positive vesicles are formed and sorted, and secondly at the very

late stage of docking/tethering and fusion of these vesicles with the

plasma membrane [20].

However, none of these previous studies permitted the direct

appreciation of an eventual relationship between the complex

dynamics and the ultrastructural characteristics of BGs in cells. In

this paper, we therefore investigated whether a cytoplasmic YFP-

Langerin fusion protein (YFP-Lang) could likewise be used to

model the impact of the cellular transport of a cargo protein on

organelle biogenesis and in particular the effect of Langerin on

BGs. Our observations extend beyond the framework of the

Langerin/BG context and also have technological implications, as

well as consequences for the ‘‘in and out’’ of transmembrane

proteins in cellular membranes.

Materials and Methods

Antibodies
The mouse anti-Langerin mAb DCGM4 was purchased from

Dendritics (Lyon, France), rabbit anti-calnexin (SPA865) Abs from

Stressgen and, rabbit anti-BiP (Ab32618) Abs from Abcam (Paris,

France). HRP-conjugated goat anti-GFP Abs were from Miltenyi

Biotec (Paris, France) and secondary Cy5-conjugated donkey anti-

rabbit Abs from Jackson ImmunoResearch (West Grove, PA).

Cell culture and transfection
The M10 human melanoma cell line [21] and its transfected

M10-22E [22] and M10-Lang-YFP [19] derivatives have been

previously described. To express a Langerin protein fused to YFP

at its N-terminal cytoplasmic end (YFP-Lang) in M10 cells, the

CD207 cDNA was cloned in the plasmid pEYFP-C3 (Clontech,

Ozyme, Paris, France). The monomerizing A206K mutation was

introduced into the YFP sequence by PCR (mYFP-Lang) and both

constructions were verified by DNA sequencing. The LangE293A

variant was obtained by PCR techniques.

Stable M10-YFP-Lang and M10-mYFP-Lang cell lines were

obtained by transfection of M10 cells using Fugene 6 reagent

(Roche Applied Science, Meylan, France) followed by selection of

the clones with 400 mg/mL G418 (Invitrogen Fischer Scientific,

Illkirch-Graffenstaden, France). All cells were grown in RPMI

1640 supplemented with 10% heat-inactivated fetal calf serum,

penicillin and streptomycin (Invitrogen Fischer Scientific).

Immunofluorescence confocal microscopy
Adherent cells were cultured overnight on a 12 mm diameter

glass coverslip. The cells werefixed in cold methanol and treated

with 0.1% Triton 6100 and according to standard procedures.

Preparations were mounted in Mowiol (Citifluor, Biovalley,

Marne-la-Vallée, France) and images were obtained with the

HCX PL APO lambda blue 63.061.40 objective of a Leica SP5-

AOBS confocal microscope (Leica Microsystems, Heidelberg,

Germany). For confocal microscopy, eYFP was excited with at

488 nm, emission was captured using a 515–560 nm AOBS filter.

Cy5 fluorophore was excited using at 633 nm, emission was

captured using a 650–730 nm AOBS filter.

Transmission electron microscopy (TEM), immunogold
electron microscopy, correlative light-electron
microscopy (CLEM) and focused ion beam/scanning
electron microscopy (FIB/SEM)

For TEM, cells were first fixed in 0.1 M sodium cacodylate

buffer containing 2.5% glutaraldehyde, postfixed in 1% osmium

tetroxide and en-bloc stained with 2% uranyl acetate. The samples

were then dehydrated in graded ethanol solutions and embedded

in Epon (Ladd Research Industries, Inland Europe, Conflans sur

Lanterne, France). Ultrathin sections (100 nm) were examined

under a Philips CM120 BioTwin (120 kV) electron microscope

(FEI Company, Eindhoven, The Netherlands).

For immunogold electron microscopy, cells were fixed with 2%

paraformaldehyde and 0.2% glutaraldehyde in 0.1 M phosphate

Langerin/GFP-Induced Endoplasmic Reticulum Stacks
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buffer. The cell pellets were then infiltrated in 2.3 M sucrose and

frozen in liquid nitrogen and the samples were cut into 70 nm-

thick cryosections. The sections were incubated with 10 mg/mL

polyclonal rabbit anti-GFP antibodies (Invitrogen) or mouse anti-

Langerin (DCGM4; Beckman-Coulter), anti-KDEL peptide

(10C3; Calbiochem) or anti-protein disulfide isomerase (1D3;

Enzo) mAbs. Rabbit anti-mouse IgGs were used as bridging Abs.

The sections were fixed, counterstained with protein A-conjugated

10 nm gold beads and viewed under a CM120 electron

microscope (80 kV).

For CLEM, adherent cells were first cultured on laser micro-

patterned AclarH supports [23]. Cells of interest were selected,

precisely located and imaged by fluorescence confocal microscopy

using a Leica TCS SP2-AOBS microscope. The samples were

then processed exactly as for TEM and ultrathin sections (50–

60 nm) were examined under a Philips CM12 electron microscope

(80 kV) equipped with an Orius 1000 ccd camera (Gatan, Roper

Scientific, Evry, France).

For FIB/SEM, cells were also processed as for TEM except that

a contrast-enhancing step, consisting of incubating the cells in

1.5% potassium ferrocyanide and 1% osmium tetroxide in 0.1 M

sodium cacodylate buffer, was added directly after the fixation

step. The blocks were mounted on SEM stubs, coated with

platinum/palladium and examined under a Helios NanoLab dual

beam microscope (FEI Company). Samples were milled at a

thickness of 20 nm per slice using the FIB (30 kV, 700 pA) and

imaged with a backscattered imaging mode (3 kV, 1 nA).

Tomograms and 3D models were computed using IMOD

software (http://bio3d.colorado.edu/imod/) [24].

Fluorescence recovery after photobleaching (FRAP)
In FRAP experiments, time series were acquired using a

spinning disk microscope (Roper Scientific) based on a CSU-X1

Yokogawa head mounted on the lateral port of an inverted Ti-

Eclipse Nikon microscope equipped with a 10061.4NA Plan-Apo

objective and a fibered 491 nm 50 mW DPSS laser (Roper

Scientific). Images were obtained with a Photometrics Coolsnap

HQ2 CCD camera (Photometrics, Tucson, AZ). Bleaching was

performed using a combined FRAP-4D module at the back

illumination port of the microscope, previously developed by some

of us and commercialized under the name of Ilas1 (Roper

Scientific). All the imaging modalities of this system were

controlled with Metamorph 7.1.7 software (MDS Analytical

Technologies, Sunnyvale, CA). Stacks of images (4 to 6 planes)

were taken approximately every 1.6 s. Following the first 5 to 12

images, a selected region of interest (ROI) was bleached at about

60 to 80% acousto-optic tunable filters-controlled laser power in

,75 ms. The recovery of the fluorescent signal within the ROI

and the total fluorescence intensity within whole single cell were

recorded over the next 120 to 200 s, depending on the

experimental sample. The fluorescence in the bleached ROI and

in the whole cell was quantified at every time point using ImageJ

software and the normalized intensity at time t was obtained using

the equation Ft = (T06Bt)+(Tt6B0), where Ft is the normalized

fluorescence in the ROI at time point t, T0 and Tt are the

fluorescence in the whole cell at time points 0 and t, and B0 and Bt

are the fluorescence in the bleached ROI at time points 0 and t,

respectively. Normalized intensity versus time plots were generated

using GraphPad Prism 5 software. The mobile (FM) and immobile

(FI) fractions of fluorescent Langerin molecules were estimated

with the following equations: FM = (IE-I0)+(II-I0) and FI = 1-FM ,

where II, IE and I0 represent the normalized fluorescence at the

immediate pre-bleaching time point, the first post-bleaching time

point and the plateau, respectively. Means and 95% confidence

intervals were calculated with Excel software.

Results

Expression of a cytoplasmic FP-tagged Langerin mutant
induces the apparition of stacks of Birbeck granule-like
structures in M10 cells

Previous observations have demonstrated that the late traffick-

ing steps of C-terminal-tagged Langerin (Lang-YFP) lie under the

strict control of a Rab11A membrane organizing platform

including myosin Vb and Rab11-FIP2 [19,20,25]. This control

was also shown to depend on the coordinated physical interactions

of the molecular constituents. To further investigate the charac-

teristics of these dynamic interactions, a new YFP-tagged chimeric

Langerin protein was generated, having the fluorescent tag in the

N-terminal cytosolic position (YFP-Lang) instead of the previous

C-terminal luminal/extracellular position (Lang-YFP). The cellu-

lar localizations in M10 cells of the two fluorescent fusion

molecules were compared to that of wild type Langerin by

confocal microscopy. While Lang-YFP and wild type Langerin

displayed an identical cellular distribution (Fig. 1A–B), YFP-Lang

molecules were found to coalesce in enlarged structures (Fig. 1C).

To precisely identify the nature of these structures, we employed

a CLEM strategy. Using a recently described sample preparation

method [23], cells of interest were precisely located on the support

by fluorescence and transmission light microscopy (Fig. 2A), and

then processed for electron microscopy. In this way, we could

accurately identify these accumulations of Langerin fluorescence

as highly organized stacks of membranes having a pentalaminar

structure reminiscent of BGs (Fig. 2B–D). Notably, the spaces

between the pentalaminar sheets within the stacks were narrow,

with a constant width of 8 to 9 nm. Similar structures were

observed in M10 cells transiently transfected to express a

cytoplasmic GFP-tagged Langerin [26] (Fig. S1). Altogether,

these results showed that the expression of a cytosolic, but not a

luminal, FP-tagged Langerin protein induces the formation of

thick stacks of BG-like membranes.

Ultrastructural studies identify the YFP-Lang-induced BG-
like structures as a particular type of OSER

Careful examination of ultrathin sections by electron microsco-

py with tilting revealed that the BG-like membranes were in

continuity with the rough ER, although ribosome-free (Fig. 3A).

These observations were confirmed using FIB/SEM studies

followed by 3D reconstructions. Once again, clear connections

between the rough ER and the ribosome-free BG-like stacks were

observed (Fig. 3B (blue segments), Video S1). Immunofluo-

rescence staining followed by confocal microscopy imaging

showed that these ER-associated structures contained BiP/

GRP78 and calnexin (Fig. S2A). Nevertheless, electron micros-

copy analysis of immunogold-labelled cryosections of M10 cells

expressing YFP-Lang showed that KDEL-tagged ER-localized

endogenous proteins and protein disulfide isomerase were located

in ER sacs but not in BG-like membrane stacks, demonstrating

that a number of ER resident molecules were excluded from these

structures. In contrast, anti-GFP, and -Langerin Abs stained these

latter structures (Fig. S2B).

To ascertain the retention of YFP-Lang molecules in the ER,

solubilized membrane protein extracts were treated with the

endoglycosidase PNGase F or endoglycosidase H (EndoH) and

analyzed by western blotting with an anti-GFP mAb. The majority

of the YFP-Lang molecules were EndoH-sensitive, indicating that

they had not egressed from the ER (Fig. S2C). Hence these highly

Langerin/GFP-Induced Endoplasmic Reticulum Stacks
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Figure 1. Impact of the position of the YFP tag on the distribution of Langerin. (A) Transfected M10 melanoma cells stably expressing wild
type Langerin (M10-22E cells) were fixed, immunolabeled with the anti-CD207 mAb DCGM4 and analyzed by confocal microscopy (left), or processed
for electron microscopy (right). (B) Transfected M10 cells stably expressing Lang-YFP were fixed and processed for confocal microscopy analysis of the
YFP distribution (left), or for ultrastructural analysis (right). (A and B) Arrows indicate the position of BGs. (C) Transfected M10 cells stably expressing
YFP-Lang were fixed and processed for confocal microscopy analysis of the YFP distribution (left). A higher magnification of a region of interest is
shown on the right. Scale bars, 50 mm.
doi:10.1371/journal.pone.0060813.g001

Langerin/GFP-Induced Endoplasmic Reticulum Stacks
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Figure 2. Correlative light-electron microscopy identifies the YFP+ puncta as stacks of BG-like membranes. M10-YFP-Lang cells were
grown on pre-patterned AclarH culture supports and the ultrastructure of the YFP+ puncta was determined by CLEM. (A) A cell of interest was located
by bright field microscopy (left panel) and readily retrieved under the electron microscope (right panel) with the help of the still apparent ‘‘7’’ mark. (B
and C) Higher magnifications of the same cell in bright field fluorescent microscopy (left panels) and electron microscopy (right panels), where the
fluorescent puncta (blue and red arrowheads) appear as stacks of BG-like membranes (better seen in (D) at a still higher magnification).
doi:10.1371/journal.pone.0060813.g002

Langerin/GFP-Induced Endoplasmic Reticulum Stacks
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Figure 3. Continuity of the BG-like structures with the rough ER. Transfected M10 cells stably expressing YFP-Lang were processed for
electron microscopy. M10 cells stably expressing YFP-Lang were processed for FIB/SEM. The surface of the block was ion-milled and serial images
were acquired. A 3D reconstruction was then obtained from the image stack after manual segmentation. (A) A stack of BG-like membranes and sacs
of the rough ER in the same plane with (B) manual segmentation of the different objects of interest. The BG-like structures appear in orange, yellow
and red and the ER in green. (C and D) A 3D reconstruction demonstrating that continuity (blue segments) exists between the BG-like membranes
and the ER (two different angles of view, see also Video S1). Scale bars: 500 nm.
doi:10.1371/journal.pone.0060813.g003

Figure 4. FRAP analysis of the mobilities of Langerin/YFP chimeras. (A) Selected regions of M10 cells stably expressing either Lang-YFP
(upper panels) or YFP-Lang (middle and lower panels) were bleached (arrows) and the fluorescence in single z-sections was recorded approximately
every 1.6 s. (B) The fluorescence in the bleached area was quantified and plotted against time after correction for the change in total fluorescence. At
least 10 cells were analyzed for each plot; error bars indicate the standard error of the mean. Fi and Fm designate the immobile and mobile fractions
of the Langerin/YFP chimeras, respectively.
doi:10.1371/journal.pone.0060813.g004

Langerin/GFP-Induced Endoplasmic Reticulum Stacks
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organized BG-like stacks of membranes represented Langerin-

enriched subcompartments, in continuity with the rough ER but

excluding the classical ER-associated chaperone molecules.

YFP-Lang molecules display a strongly reduced mobility
and absence of lateral membrane diffusion within the
BG-like OSER

Fluorescent live cell imaging revealed an overall reduced traffic

of the YFP-Lang chimera, as compared to the C-terminal-tagged

Lang-YFP fusion protein (Video S2, S3), consistent with YFP-

Lang being retained in the BG-like OSER. To assess the mobility

of Langerin molecules within these structures and the putative

membrane exchanges with other intracellular pools, FRAP

experiments were conducted.

Complete structures or a part of them, accumulating YFP-Lang

(Fig. 4A, middle and lower panels), were photobleached and the

fluorescence recovery was recorded. There was virtually no

fluorescence recovery of YFP-Lang in both cases, indicating not

only a relative absence of lateral diffusion of YFP-Lang molecules

within the enlarged structures, but also a lack of active molecular

exchanges with any other pools within the cells, including the

rough ER membranes. In similar experiments in M10-Lang-YFP

cells (Fig. 4A, upper panel), the bleached areas corresponded to

the pericentriolar regions, where fluorescent Langerin appeared to

rapidly re-accumulate. Thus, quantification of the mobile fraction

(Fm) of chimeric molecules showed that less than 1268% (95%

confidence interval) of the YFP-Lang signal could be recovered

within 4 min after photobleaching, whereas 69612% (95%

confidence interval) of Lang-YFP molecules rapidly repopulated

the pericentriolar region, stabilizing at a plateau level within 2 min

(Fig. 4B). Very likely, this apparent immobilization probably

reflects tight interactions between YFP-Lang fusion proteins. In

order to clarify the respective roles of the luminal lectin domains,

located within the BG-like OSER, and the cytoplasmic domains,

Figure 5. A monomerizing substitution in YFP impairs the formation of BG-like OSER and restores BG dynamics. (A) M10 cells stably
expressing mYFP-Lang were fixed and the YFP distribution was examined by confocal microscopy. Overlays of 5–10 z-sections from different
representative cells are depicted. Left and middle panels: images representative of the majority of cells, with a pericentriolar concentration of
fluorescence and small vesicles dispersed across the cytoplasm. Right panel: YFP+ puncta present only in a minority of cells. Scale bars: 25 mm. (B)
FRAP experiments were carried out as in Fig. 5B. Left panel: to study the fluorescence recovery in the pericentriolar region, 16 cells were analyzed for
each plot. Right panel: to study the fluorescence recovery in enlarged vesicles, 8 cells were analyzed for each plot. Error bars represent the standard
error of the mean. Fi and Fm indicate the immobile and mobile fractions of mYFP-Lang molecules, respectively. (C) Soluble membrane extracts (30 mg)
of M10 cells stably expressing transgenic Lang-YFP, YFP-Lang or mYFP-Lang were digested or not (NT) with PNGaseF (F) or endoglycosidase Hf (H)
and separated by 7.5% SDS-PAGE. Fusion proteins were revealed by western blotting with an anti-GFP antibody. R and S indicate endoglycosidase Hf-
resistant and sensitive species, respectively. Untransfected cells (WT) were used as a control.
doi:10.1371/journal.pone.0060813.g005

Langerin/GFP-Induced Endoplasmic Reticulum Stacks
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present in the spaces separating the stacks of adjacent membranes,

additional molecular information was required.

Homotypic interactions between cytoplasmic YFP tags
are strongly involved in the biogenesis of BG-like OSER

As already mentioned, the CRD of the Langerin luminal

domain is critical for the zipping process inducing the appearance

of BGs [18]. However, this does not by itself explain the

biophysical particularities observed here for YFP-Lang-induced

stacking. Since GFP has an intrinsic ability to dimerize, forming an

anti-parallel orientation [27], we hypothesized that this dimeriza-

tion was responsible for crosslinking of the cytoplasmic domains of

YFP-Lang molecules, thus contributing to the stacking of the BG-

like pentalaminar structures and to the ER retention of YFP-Lang

and its frozen dynamics in our model. To explore this hypothesis,

we introduced an A206K substitution into the YFP sequence [4]

and expressed a cytoplasmic monomeric (m)YFP-tagged Langerin

chimera (mYFP-Lang) in M10 cells.

In most of the stably transfected cells, the distribution of the

YFP fluorescence was very similar to that observed in M10-Lang-

YFP cells (Figs. 5A and S3b and b2), i.e., a pericentriolar

concentration of the fluorescence with small vesicles dispersed

across the cell. Although a few cells with larger vesicles were also

identified (less than 10%) (Figs. S3a and a2), all our attempts to

subclone cells with this peculiar phenotype remained unsuccessful.

Ultrastructural examination using CLEM revealed the presence of

‘‘classical’’ Birbeck granules, either in the pericentriolar region or

beneath the plasma membrane (Fig. S3b2). Consistently, BG-like

OSER was also observed in the rare cells still displaying

fluorescent puncta (Fig. S3a2). Fluorescent live cell imaging

revealed restoration of the traffic of mYFP-Lang molecules (Video
S4, Fig. S4). FRAP experiments confirmed that the mobility of

these YFP-Lang fusion proteins within the pericentriolar region

was partially restored, with a mobile fraction (Fm) of 43.765.1%

(confidence interval, 95%) (Fig. 5B, left panel). In contrast, this

mobility was still strongly impaired in the more rarely observed

enlarged vesicles, with an Fm of 2368.6% (confidence interval,

95%) (Fig. 5B, right panel).

Finally, the ability of mYFP-Lang molecules to egress from the

ER was compared to that of Lang-YFP and YFP-Lang molecules

by means of biochemical experiments. Endoglycosidase digestion

revealed that the monomerizing mutation of YFP partially

restored the ER egression capacity of the cytoplasmic-tagged

Langerin protein (Fig. 5C).

Altogether, these results showed that YFP-YFP dimerization

was directly involved in the stacking mechanism leading to the

formation of BG-like OSER.

An intact calcium binding site on Langerin molecules is
also required for the formation of OSERs

In order to better understand the role of Langerin CRD in the

formation of immobile BG-like OSERs, a site directed mutagen-

Figure 6. Mutation of the calcium binding domain does not
block OSER formation, but restores the dynamic transport of
YFP-Langerin mutant. (A) M10 cells stably expressing YFP-Lan-
gE293A were fixed, stained with anti-calnexin and anti-Bip antibodies
and analyzed by confocal microscopy. (B) EnodH resistance of YFP-
LangE293A molecules was analyzed as described in Fig. 5C.
doi:10.1371/journal.pone.0060813.g006

Figure 7. Schematic view of the proposed mechanism of
formation of BG-like OSER. The ER lumen (L) is depicted in pale
gray and the cytoplasm (C) in white. Homotypic interactions between
the CRD domains of Langerin (C-terminal, intra-luminal position, dark
gray stars) are responsible for the luminal zipping of Langerin-enriched
ER membranes, while homotypic interactions between YFP molecules
(N-terminal, cytoplasmic position, green circles) are involved in the
stacking of BG-like membranes. This ‘‘two-lock mechanism’’ could
plausibly explain the high rigidity and immobility of these structures.
doi:10.1371/journal.pone.0060813.g007
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esis experiment was performed. The CRD of Langerin is

structurally homologous to site CRD-4 in the macrophage

mannose receptor (MMR) [28]. This site has been well charac-

terized, four key amino acids allow the binding of calcium ions and

E733A mutation affects the binding of calcium and of mannose on

MMR [29]. The amino acids that coordinate calcium in MMR

CRD-4 are conserved in Langerin; in particular, E733 on MMR

corresponds to E293 on Langerin. Consequently, an EYFP-

Langerin E293A mutant was expressed in M10 cells. Immunoflu-

orescence confocal microscopy showed that this protein accumu-

lated under (near or at) the plasma membrane and, in addition, in

rather large structures that could be as large as 2–4 mm2 (Fig. 6A).

Interestingly, YFP-LangE293A positive compartments were not

stained by anti-calnexin Ab, while occasional and partial

colocalization with Bip was noticed (Fig. 6A). Most of YFP-

LangerinE293A molecules were EndoH-resistant and, appeared

more heavily glycosylated than the ER-retained YFP-Lang

molecules (Fig. 6B) and thus, had left the ER. Electron

microscopy analysis of sections of EponTM embedded cells (Fig.

S5) and, of immunolabeled cryosections (Fig. S6) revealed the

presence of large double membrane structures. They occasionally

appeared to extend over several mm, either as intracellular

membranes (Fig. S6b), or as contacts between two adjacent cells

(Fig. S6c). Most often, the double membranes looked like sections

of vesicles or invaginations, the diameter of which could exceed

500 nm (Fig. S5), even 1 mm (Fig. S6e). Of note, the enclosed

material appeared to be cytosolic, containing ribosomes (Fig. S5).

The central striation characteristic to BG could be occasionally

observed (Fig. S5f) but most often, was faint (Fig. S5a) or could

not be clearly ascertained (Fig. S5b, c, d, e). Due to these

properties of the central striation and, to facilitate the report and

the discussion, we propose to name these structures pseudo-BGs. A

first major difference between pseudo-BGs and usual BGs is the

large size of the pseudo-BGs. A second one is the apparent

‘‘concentric’’ arrangement of the membranes, as seen in Fig. S5a

and S6f, which after folding could generate a more complex

pattern (Fig. S6d). Immunogold labeling confirmed the presence of

membrane anchored YFP proteins in pseudo-BGs (Fig. S6).

Between them, pseudo-BGs could form close contacts that were

immunolabeled by anti-YFP Abs (Fig. S6d, f), indicating that

homodimerization of YFP molecules still occurred and could

mediate membrane apposition. Although the DCGM4 stained

LangE293A using immunofluorescence techniques (data not

shown), in immune-electron microscopy it was very poorly

efficient; occasionally, pseudo-BGs were stained by one or two

gold particles (data not shown).

Altogether, these observations show that the mutation of the

CRD allowed the formation of large double membrane structures,

with optional central striations, which did not belong to the ER

but could occasionally be in contact with another similar double

membrane structure.

Discussion

This paper illustrates the potency of correlative microscopy

using FIB/SEM analysis, which allowed to study large cellular

structures extending within a volume of several mm3 and, cannot

be obtained with the same accuracy and easiness using TEM

combined with tomography. The artificial induction of stacks of

BGs by an FP-tagged Langerin mutant described here is a good

illustration of the view that BGs are generated ‘‘wherever Langerin

accumulates’’. This can be also seen (i) in the early endosomal

recycling compartments in the steady state [16,22], (ii) in the

tubular networks emanating from the endosomal recycling

compartments when Langerin recycling is inhibited [16], (iii) on

the plasma membrane of cells treated with inhibitors of

endocytosis [30], or (iv) in the multivesicular compartments of

cells treated with inhibitors of lysosomal degradation [25].

Our observations are compatible with those of Verdijk et al,

who expressed an N-terminal cytoplasmic GFP-tagged Langerin

mutant in human fibroblastic cells [26]. Although fluorescent

puncta (corresponding to BG-like OSER) were not described by

these authors, stacks of BG-like membranes were nevertheless

present, as attested by electron microscopy (Fig. 2 of Verdijk’s

publication). We confirmed that transient expression of this fusion

protein in the M10 cell line also resulted in the appearance of BG-

like OSER (Fig. S1). In addition, careful re-examination of Fig. 2B

of Verdijk’s publication strongly suggests the existence of

continuity between a BG and a flattened cisterna of the rough

ER, as we observed in the case of YFP-Lang-induced BG-like

OSER.

The CRD of Langerin is crucial for the membrane zipping

process which occurs during BG biogenesis [18] and hence the

expression of YFP-Lang was expected to induce the formation of

BG-like pentalaminar structures. Surprisingly, while expression of

Lang-YFP induced the formation of bona fide BGs (11, 17), confocal

microscopy analyses revealed that the expression of YFP-Lang

resulted in the formation of large Bip+ or calnexin+ YFP+ puncta,

indicating that the chimera was retained in the ER. In agreement

with this conclusion, YFP-Lang molecules remained EndoH

sensitive. Nevertheless, the ER resident endogenous proteins,

protein disulfide isomerase and KDEL-tagged proteins were

excluded from these structures. Correlative electron microscopy

revealed they were stacks of BG-like membranes, which did not

belong to the endosomal network, but rather were in continuity

with the rough ER. These stacks were characterized by narrow

cytoplasmic spaces of an almost constant width of 8–9 nm,

compatible with, if not characteristic to, the existence of direct

interaction bridges between proteins in the apposed membranes.

Altogether, we concluded that the expression on YFP-Lang,

induces the formation of a particular form of OSER. One

distinctive property of YFP-Lang-induced OSER was their strong

immobility, in contrast to GFP-tagged cytochrome b5, an ER

resident protein, which appeared to diffuse rapidly in and out of

the OSER it induced [5]. Of note, these latter OSER were stained

by anti-protein disulfide isomerase, contrary to what we observed

in our system. A remarkable feature of the YFP-Lang-induced

OSER was topologic, as they appeared as stacks of membrane

sheets that clearly did not display the symmetry and the periodicity

of cubic membranes [12].

While the CRD of Langerin is responsible for the biogenesis of

BGs, the cytosolic YFP tag mediated the stacking of the BGs and

their ‘‘transformation’’ into OSER, similarly to what has been

already described [5]. This latter property has been attributed to

the anti-parallel homodimerization of these cytoplasmic fluores-

cent YFP/GFP tags, which can be avoided by using a monomeric

A206K substituted protein [5]. The use of this monomeric YFP

mutant indeed almost completely suppressed the formation of

YFP-Lang-induced OSER, strongly supporting the view that they

were largely dependent on a membrane tethering mediated by

YFP homodimerization, although it cannot be excluded that

interactions between YFP and Langerin cytoplasmic tail also

contribute to OSER formation. The importance of YFP tag in the

generation of BG stacks within the smooth ER is confirmed by the

work of Thepaut et al who showed that a 28 amino acid deletion of

Langerin cytoplasmic domain allowed the formation BG-like

structures within the rough ER, without displaying the striking

stacking reported here in the smooth ER. Induction of OSER by
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overexpressed ER-resident proteins, tagged or not, is occasionally

observed but well documented [5–8]. A specifi role of GFP tag has

been formally demonstrated in a few examples of tagged proteins,

Sec61b, Sec61c and a C-terminal peptide of P450 cytochrome [5].

OSER formation was found to depend on the ability of the (fused)

protein to oligomerize, which is also the case of Langerin, since it is

trimeric [28] and can form homotypic interactions between the

luminal domains facing one to the other on apposed membranes.

To better evaluate the role of these homotypic interactions, we

tested the E293A mutation, which is analogous to E733A mutation

in MMR. In the mannose receptor, E733A mutation affects the

binding of both calcium and mannose [29]. Electron microscopy

experiments revealed that YFP-LangE293A can still induce the

formation of intracellular double membrane structures. Such

structures could be noticed between membranes bridging two

adjacent cells (Fig. S6c), as observed when wild type Langerin is

expressed (unpublished observations). The large size of the

induced intracellular double membrane structures and the

optional presence of central striation prompt us to consider these

structures as pseudo-BGs. The effect of the mutation on the

central striation suggests that the affinity of calcium to LangE293A

and the ability of the mutated lectin to form homodimers are

dumped. These properties need to be investigated in details.

The inefficiency of LangE293A to form homodimers via their

CRD is indirectly supported by the biochemical and cellular

properties specific to YFP-LangE293A molecules. Firstly, contrary

to wild type YFP-Lang, at the steady state most of YFP-

LangE293A molecules were EndoH-resistant, which means that

they left the ER. Secondly, in agreement with this observation,

most of YFP-LangE293A molecules accumulate in membrane

compartments that were not labeled with anti-Bip and anti-

calnexin Abs. Thirdly, electron microscope analysis revealed that

these structures accumulated in large double membrane sheets.

Notably, sections showed that the membrane structures induced

delineated ribosome containing spaces, suggesting that they were

sections of invaginated large intracellular membranes. Local

membrane coupling could be observed (Fig. S6d, 6f), suggesting

that YFP was able to mediate the coupling between the cytosolic

faces of the double membranes. Hence, YFP-LangE293A mole-

cules accumulated in intracellular membranes that do not belong

to the ER network and, did not form OSER-like structures.

The BG-like OSER displays unique properties, which can

probably be explained by the synergy of two kinds of homotypic

interaction: (i) CRD-CRD interactions in the lumen of the OSER,

responsible for the BG-like pentalaminar appearance, and (ii)

YFP-YFP interactions in the cytoplasmic spaces separating the

apposed membranes, responsible for their stacking. Of note, the

trimeric structure of Langerin [28] may also contribute to the

immobility of the EYFP-Lang molecules in the OSERs. A

‘‘double-lock’’ mechanism would therefore be at the origin of this

particular type of OSER (Fig. 7). This model is reminiscent of the

OSER structures induced by J13Lp protein of African swine fever

virus; its cytoplasmic tail mediated the formation of OSER, while

inter-disulfide bonds between the luminal domains of the protein

induced the collapse of the ER cisternae. Together, the

interactions induced the formation of stacked and collapsed

OSER. However, when J13Lp protein was mutated in order to

block the formation of intermolecular di-sulfide bonds, ER

cisternae did not collapse anymore, although OSER still formed

[31]. In contrast, the E293A mutation resulted in the absence of

OSER formation but, in the generation of complex membrane

organizations unrelated to the ER. The inability of the YFP

cytoplasmic tag to induce OSER might be explained by the

presence of dominant cellular transport mechanisms particular to

Langerin and further investigations will be necessary to clarify this

feature. Overall, this work based on a simple model of a unique

molecule, underlies the importance of combined molecular

interactions in the modulation of the topology of intracellular

membranes and hence, biogenesis of membrane compartments.

Supporting Information

Figure S1 Stacks of BG-like membranes are also
induced by a GFP-Lang fusion protein. A GFP-Lang fusion

protein was transiently expressed in M10 cells. (A) A GFP+ cell

(yellow arrow) was located by fluorescence microscopy (left panel),

bright field microscopy (middle panel) and electron microscopy

(right panel). (B) GFP+ puncta (red, blue and orange arrowheads)

located by bright field microscopy (left panel, higher magnifica-

tion) were retrieved in ultrathin sections (corresponding to

different Z) by electron microscopy (middle and right panels). (C

and D) Higher magnifications of the fluorescence microscopy (left

panels) and electron microscopy (middle and right panels)

acquisitions identified these puncta as stacks of BG-like mem-

branes. Continuity with the rough ER is suggested (right panels,

arrowheads).

(TIF)

Figure S2 Characterization of the BG-like structures.
(A) The presence of the ER chaperones BiP and calnexin (CNX) in

YFP+ large puncta was studied in colocalization experiments.

M10-YFP-Lang cells were fixed, permeabilized and stained with

rabbit anti-BiP or anti-calnexin Abs or an isotype control (revealed

with Cy5-conjugated donkey anti-rabbit Abs, red). Colocalization

with YFP (green) is depicted in yellow. Arrows indicate exclusion

of the BiP immunostaining from large YFP+ structures. Scale bars:

25 mm. (B) M10 cells expressing YFP-Lang were processed for

cryoelectron microscopy and immunolabeled with antibodies

specific for GFP, Langerin, KDEL peptide (KDEL) or protein

disulfide isomerase (PDI). Pictures of anti-GFP and anti-Langerin

staining of BG-like membrane stacks (upper panels) and anti-

KDEL and anti-PDI labeling of BG-like membrane stacks (right)

and ER structures (left) are shown.(C) Solubilized membrane

protein extracts (10 mg) of M10-YFP-Lang or untransfected (WT)

cells were digested or not (NT) with PNGase F (F) or

endoglycosidase Hf (EndoH, H) and separated by 7.5% SDS-

PAGE. YFP-tagged molecules were revealed by western blotting

using an HRP-conjugated anti-GFP Ab. R and S indicate EndoH-

resistant and sensitive species, respectively.

(TIF)

Figure S3 CLEM analysis of cells expressing mYFP-
Lang. M10 cells expressing mYFP-Lang were processed for

CLEM as in Fig. 2. On the same AclarH culture support, two cells

with different phenotypes were observed: the first (a, a2, yellow

arrowhead) displayed small puncta which were identified ultra-

structurally as BG-like OSER; the second (b, b2, blue arrowhead)

displayed classical, pericentriolar rod-shaped BGs.

(TIF)

Figure S4 Restoration of the mobility of YFP-Lang with
the A206K monomerizing mutant of YFP. Maximum

intensity projections, generated from t-stacks of images acquired

during FRAP experiments, are depicted for M10-Lang-YFP (left

panel), M10-YFP-Lang (middle panel) and M10-mYFP-Lang

(right panel) cells. The mobility of the Langerin/YFP chimeras

can be roughly estimated from the presence of elongated, linear

structures corresponding to small vesicles in motion, particularly

visible in the immediate proximity of the plasma membrane or in

the pericentriolar region (arrows). These elongated structures are
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nearly absent in M10-YFP-Lang cells, but similarly present in

M10-Lang-YFP and M10-mYFP-Lang cells.

(TIF)

Figure S5 M10 transfected cells expressing YFP-Lan-
gE293A were fixed included in Epon. Sometimes, the central

striation characteristical to classical BGs were noticed (white

arrows).

(TIF)

Figure S6 M10 transfected cells expressing YFP-Lan-
gE293A were fixed with 0.2% gluteraldehyde 2% para-
formaldehyde, frozen in liquid N2, cryosections were
labeled with rabbit polyclonal anti-GFP Abs, revealed
with protein A conjugated 10 nM gold particles (PAG,
Utrecht) and analyzed on CM120 electronic microscope
(FEI).
(TIF)

Video S1 A 3D reconstruction of a stack of BG-like
membranes viewed with FIB/SEM, demonstrating con-
tinuity with the rough ER (same cell as in Fig. 4).
(AVI)

Videos S2 Images acquired during FRAP experiments
on transfected M10 cells expressing Lang-YFP cells.
Multiple fluorescent vesicles can be seen in motion.

(AVI)

Video S3 Images acquired during FRAP experiments on
transfected M10 cells expressing YFP-Lang cells. The

fluorescent structures are nearly motionless.

(AVI)

Video S4 Images acquired during FRAP experiments on
transfected M10 cells expressing mYFP-Lang. The

introduction of the A206K mutation restores the mobility of the

fluorescent vesicles.

(AVI)
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