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Abstract
Overactivation of Wnt signaling is a hallmark of colorectal cancer (CRC). The
Wnt pathway is a key regulator of both the early and the later, more invasive,
stages of CRC development. In the normal intestine and colon, Wnt signaling
controls the homeostasis of intestinal stem cells (ISCs) that fuel, via
proliferation, upward movement of progeny cells from the crypt bottom toward
the villus and differentiation into all cell types that constitute the intestine.
Studies in recent years suggested that cancer stem cells (CSCs), similar to
ISCs of the crypts, consist of a small subpopulation of the tumor and are
responsible for the initiation and progression of the disease. Although various
ISC signature genes were also identified as CRC markers and some of these
genes were even demonstrated to have a direct functional role in CRC
development, the origin of CSCs and their contribution to cancer progression is
still debated. Here, we describe studies supporting a relationship between
Wnt-regulated CSCs and the progression of CRC.
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Introduction
Wnt signaling has emerged during evolution as a highly con-
served signaling pathway that regulates tissue morphogenesis and 
regeneration (via stem cells) in various tissues of multicellular 
organisms1. Hyperactivation of β-catenin-T cell factor (TCF)/
lymphoid enhancer factor (LEF)-regulated gene transcription (the 
end point of Wnt signaling) is a hallmark of colorectal cancer 
(CRC) development. β-catenin is also a key regulator of cell-cell 
adhesion, by linking the E-cadherin transmembrane adhesion 
receptor that binds neighboring epithelial cells to each other, to the 
actin-cytoskeleton2. Therefore, activation of the Wnt pathway in 
CRC provides an attractive model for studying the links between 
tissue morphogenesis and cell adhesion and the disregulation of 
these processes during cancer progression.

The canonical Wnt pathway is also known as the Wnt-β-catenin 
pathway since β-catenin is a key transducer of the Wnt signal from 
the cytoplasm to the nucleus. In unstimulated cells, the free pool 
of β-catenin (the one not engaged in cadherin-mediated cell-cell 
adhesion) is phosphorylated by a complex of proteins that includes 
the scaffold molecule Axin and adenomatous polyposis coli (APC) 
and the kinases glycogen synthase kinase 3β (GSK3β) and casein 
kinase 1 (CK1)1,2. After phosphorylation, β-catenin is targeted 
for proteolytic degradation by the proteasome. Wnt is secreted 
from cells as a lipid-modified molecule that acts in short-range 
signaling3,4 and stimulates signaling by binding of the Wnt lig-
ands to the Frizzled transmembrane receptors and to the Lrp5/6 
co-receptors. The cytoplasmic tail of Lrp becomes phosphor-
ylated, inhibits GSK3β, and associates with Axin. Wnt signaling 
is positively regulated by the secreted R-spondins that act to stabi-
lize the Frizzled receptors against degradation by the Rnf43/Znrf3 
ubiquitin ligases5,6. Activation of the Wnt pathway results in the 
disruption of the CK1-GSK3β-Axin-APC-β-catenin complex, 
inhibition of GSK3β activity, and the stabilization of β-catenin 
against degradation in the cytoplasm by the ubiquitin-proteasome 
pathway. The accumulation of β-catenin in the cytoplasm results 
in its nuclear translocation. In the nucleus, β-catenin binds to 
members of the TCF/LEF family of transcription factors and plays 
a role as a co-activator of target gene transcription7. In CRC, aber-
rant activation of the Wnt signaling pathway is a central oncogenic 
driver in 90% of patients, mostly resulting from mutations in the 
APC gene8. Expression of genes by the aberrant transcriptional 
activity of the β-catenin-TCF complex contributes to both the ini-
tial stages of the disease and the later stages involving invasion and 
metastasis9. Here, we describe recent findings on the involvement 
of Wnt signaling in CRC progression and its relationship to the 
emerging role of cancer stem cells (CSCs) in CRC.

Wnt signaling in intestinal stem cell homeostasis
Intestinal epithelial cells display the highest turnover rate, and the 
entire intestinal epithelial lining in humans is replaced every 5 to 
7 days10. This rapid regeneration is fueled by the proliferation of 
stem cells at the base of the intestinal crypts of Lieberkühn and 
the upward migration and differentiation of stem cells that ena-
bles normal tissue homeostasis. The morphological separation of 
the stem cell compartment (the crypt where the cells proliferate) 
and the differentiated compartment (villus in the intestine, and the 
surface epithelium in the colon, where the cells interact with the gut 

environment) depends on a gradient of Wnt signaling. The strong-
est Wnt signaling is detected at the crypt base (where some cells 
display nuclear β-catenin localization) and gradually weakens 
toward the luminal side of the vertical crypt-villus axis11. Wnt 
signaling is necessary for the initial potentiation of intestinal stem 
cells (ISCs) as evident from studies in neonatal transgenic mice 
that lost TCF4 and thus fail to develop normal proliferative crypts12. 
Both crypt homeostasis and stem cell maintenance require active 
Wnt signaling since conditional activation of Wnt antagonists in 
transgenic mice leads to the progressive loss of intestinal crypts13–15. 
Similarly, conditional abrogation of Wnt signaling in cells at the 
crypt base, by deletion of either β-catenin16 or TCF417, leads to the 
loss of proliferative crypts.

The intestinal crypt has long been recognized as the niche for pro-
liferative, multipotent precursor cells of the intestine and colon, 
and the Wnt target gene Lgr5, a receptor for the Wnt agonist 
R-spondin that enhances Wnt signaling, was identified as a marker 
for columnar crypt base stem cells18. Lineage-tracing experiments 
in transgenic mice revealed that Lgr5+ cells found in the crypt base 
are multipotent and capable of clonally repopulating the entire 
epithelial lining of the intestine and colon18. Gene expression and 
proteomic signature studies of Lgr5+ cells revealed several addi-
tional ISC markers, including Ascl2 and Sox919. The basic 
helix-loop-helix (bHLH) transcription factor Ascl2 is a major 
transcriptional regulator of genes associated with stemness in 
crypt cells and is a key ISC marker20. Similarly, the transcription 
factor Sox9 is also expressed by stem cells in the intestinal and 
colonic crypt base and is necessary for the maintenance of ISCs21,22. 
Like Lgr5, Ascl2 and Sox9 are also Wnt target genes in ISCs. This 
points to the requirement for high Wnt signaling in the maintenance 
of the stem cell niche23.

Experiments tracking cell proliferation and migration in the 
intestine identified as putative stem cells, cells at position +4 
(4 cells up from the crypt base) in the intestine. These cells display 
proliferative regeneration in intestinal epithelia upon cytotoxic 
damage and are highly sensitive to radiation-induced apoptosis24,25. 
The cells at position +4 within the intestinal crypt undergo continu-
ous proliferation while retaining 3H-labeled DNA (hence, the cells 
are named label-retaining cells, or LRCs) and support the notion 
that “+4” LRCs function as stem cells26. Bmi1, a chromatin silenc-
ing component, was identified as a marker for LRCs, and lineage-
tracing experiments revealed that Bmi1+ LRCs are undifferentiated 
stem-like cells. Bmi1+ LRCs may either self-renew or clonally 
expand and differentiate into all cell types of the intestinal mucosa, 
including Lgr5+ columnar crypt base cells27,28. Unlike the turnover 
rate of Lgr5+ crypt base stem cells, that of Bmi1+ LRCs (situated 
just above the crypt base) is much slower, indicating that they are 
probably not the major stem cell type that functions in intestinal 
homeostasis27 and are proposed to function as reserve stem cells in 
response to tissue damage29. In addition to Bmi1, Hopx, Tert and 
Lrig1 are also markers of LRCs30–32. Although Lgr5 and Bmi1 are 
apparently markers of two distinct subpopulations of stem cells, 
there is an overlap between these markers with Bmi1 being strongly 
expressed by a subset of Lgr5+ ISCs19. Apart from LRCs, commit-
ted Dll1+ secretory progenitor cells located even further upwards 
from the crypt bottom also retain the ability to re-acquire stem cell 
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functions and regenerate the stem cell compartment in response to 
tissue damage33. Although strong Wnt signaling and the paracrine 
context at the crypt base are essential components that regulate 
the maintenance of the ISC pool, more differentiated cells retain 
sufficient plasticity that allows them to revert to a stem cell-like 
behavior under stressful conditions29,30,34. Since genotoxic stress 
and other carcinogenic perturbations may affect the stem cell pool, 
they may also play a key role in the development of CRC34.

Cancer stem cells and Wnt signaling in colorectal 
cancer
CSCs are hypothesized to constitute a small fraction of the tumor 
tissue. In a role similar to that of ISCs in normal tissue, CSCs are 
suggested to give rise to progenitors that populate the majority of 
the tumor35. Two models describing the histogenesis of CRC have 
been proposed: the ‘‘top-down’’ and the “bottom-up” morphogen-
esis. The “top-down” model suggests that the more differentiated 
(luminal) cells re-acquire stem cell-like properties and produce 
aberrant crypt foci where tumors develop36. The ‘‘bottom-up’’ 
histogenesis suggests that stem cells residing at the crypt base 
expand and migrate upwards and constitute the tumor-initiating 
cells37. In both models, Wnt signaling is considered an important 
regulator. According to the “top-down” theory, hyperactivation 
of β-catenin-TCF signaling drives differentiated epithelial cells 
into regaining pluripotency, thereby forming new, disregulated 
crypt-like structures that later turn into adenomas38. The increased 
frequency at which very early adenomatous polyps are observed 
at the top of colonic crypts (far removed from the stem cell com-
partment) has led researchers to suggest that neoplastic transforma-
tion in CRC is initiated from differentiated cells39. Other studies 
in transgenic mouse models for intestinal cancer have shown that 
differentiated epithelial cells can re-acquire stem cell-like proper-
ties upon the combined activation of Wnt and nuclear factor-κB 
(NF-κB) signaling, conferring tumor-initiating cell properties38. 
On the other hand, immunohistochemical studies of early spo-
radic colorectal adenomas have shown adenomatous lesions near 
the crypt base37. These lesions have increased proliferative activ-
ity with nuclear β-catenin localization while their correspond-
ing surface epithelial cells maintain β-catenin in sub-membrane 
adherens junctions (not in the nucleus)37. Moreover, the condi-
tional loss of APC in Lgr5+ colonic crypt base stem cells induced 
their rapid transformation into micro-adenomas, indicating that 
increased Wnt activity in the Lgr5+ stem cell compartment may 
trigger a tumor-initiating process40. Similarly, conditional acti-
vation of β-catenin in Bmi1+ LRCs led to an immediate genera-
tion of adenomas in the duodenum27. These studies support the 
“bottom up” histogenesis of CRC suggesting that excessive Wnt 
activation in the stem cell compartment is an essential step in 
neoplastic transformation. Chronic inflammation and other condi-
tions that increase NF-κB signaling support the notion that a dedif-
ferentiation step can occur in intestinal epithelia, supporting CRC 
development by a “top down” histogenesis. Conversely, if stem 
cells at the crypt bottom acquire mutations that lead to activation of 
Wnt signaling, CRC may arise by the “bottom up” model.

One way or the other, the overriding importance of Wnt signaling 
in CRC development, as compared with other driving oncogenes 
in CRC, such as Kras and p53, was recently demonstrated by an 
effective, conditional suppression of APC by using small hairpin 

RNA (shRNA) in transgenic mice41. The suppression of APC by 
this method resulted in intestinal and colon cancer development in 
mice. Restoration of APC expression in these tumors resulted in the 
reversal of tumorigenic lesions and the complete reconstitution of a 
normal stem cell compartment, even in mice harboring oncogenic 
Kras and p5341.

In CRC tissue, Wnt signaling (as gauged by nuclear β-catenin 
localization) is not homogenous, even though all CRC cells 
harbor an activating mutation in the Wnt pathway42. This observa-
tion, called “the β-catenin paradox”, was first observed by immu-
nohistochemical analyses of CRC tissue. Well-differentiated cells, 
located in the more central areas of the tumor, display mostly 
β-catenin associated with E-cadherin under the membrane, as in 
the normal intestinal epithelium, whereas tumor cells localized 
at the invasive front of the same tumor exhibit strong nuclear 
β-catenin staining43. These invasive edge-localized cells were shown 
to preferentially express Wnt target genes that confer invasive- 
metastatic capacity when expressed in human CRC cells44–46. 
Vermeulen et al.47 investigated the role of Wnt signaling in the 
homeostasis of CSCs in human CRC: CSCs isolated from patients 
and cultured as spheroids displayed a heterogeneous level of Wnt 
signaling over a 100-fold change. The Wnthigh cells formed more 
tumors in mice with fewer injected cells compared with Wntlow 
cells. This heterogeneity in Wnt signaling was maintained in the 
tumors formed in mice that also expressed several ISC markers, 
including Lgr5 and Ascl247. The importance of Wnt signaling in 
the maintenance of the CSC pool and in driving CRC progression 
is also highlighted in a study in which conditional activation of the 
Wnt antagonist HoxA5 suppressed tumor growth and metastatic 
progression by repressing stemness properties15.

Lgr5 as a Wnt-induced cancer stem cell marker
Lgr5, a target gene of Wnt signaling, is a well-established ISC 
marker18. Studies involving mouse models of intestinal cancer have 
provided the initial evidence that Lgr5+ cells act as tumor-initiating 
cells, since activation of Wnt signaling (by conditional deletions of 
APC) in the Lgr5+ subpopulation of intestinal cells led to adenoma 
formation40,48. Recent studies attempting to define an ISC gene 
signature in CRC tissue repeatedly detected Lgr5 as a key compo-
nent in such signatures49–52. The presence of Lgr5 on the surface 
of cells is sufficient for successful isolation of the CSC fraction 
from CRC tissue, and similar to its role in the normal intestine, 
Lgr5 defines the undifferentiated stem cell state in CSCs. CRC 
cells with high Lgr5 expression had enhanced ability to clonally 
expand and give rise to colonies in vitro, whereas suppression of 
Lgr5 expression results in the loss of their ability to form colonies51. 
An ISC gene signature derived from EphB2high columnar crypt 
base cells was suggested as a powerful predicting tool of human 
CRC progression and disease relapse50. The EphB2high ISC signa-
ture had a significant overlap with a previously described Lgr5-ISC 
signature19. Tumors with high levels of Lgr5-ISC signature genes 
were more aggressive and metastatic and also displayed an increased 
tendency to relapse in patients with CRC50. In an evaluation of 
19 putative stem cell markers, Lgr5 was prevalently expressed in 
74% of human CRC samples. Lgr5 and Ascl2 were significantly 
co-expressed with each other and with other genes from the list, 
supporting the hypothesis that adenocarcinomas are derived from 
Lgr5+/Ascl2+ crypt stem cells53. However, other studies have defined 
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a non-Wnt-induced CSC gene list that does not include Lgr5 or 
other well-established Wnt-target genes. In a study on disease 
recurrence in CRC patients who went through curative surgery, a 
reverse correlation between Wnt-target genes (Lgr5, Ascl2, Axin2, 
Dkk1, and Apcdd1) levels and disease recurrence was found, sug-
gesting that elevated expression of Wnt-target genes is associated 
with good prognosis54. Based on studies with CRC cell lines, these 
Wnt-target genes were silenced by CpG island methylation, and once 
methylation was inhibited, these cells lost their ability to generate 
colonies in vitro. These studies suggest that methylation of Wnt- 
target genes in CSCs is a strong predictor of CRC recurrence54.

The involvement of Wnt-induced cancer stem cells in 
colorectal cancer metastasis
According to the “β-catenin paradox”, only cells at the invasive 
front of the tumor tissue display strong nuclear β-catenin locali-
zation. These cells apparently go through an epithelial-to- 
mesenchymal transition (EMT), thus making them more motile 
and invasive, implying a role for the Wnt-induced CSCs in the 
propagation of metastasis. EMT has been suggested for some time 
as a key mechanism governing the generation of CSCs, especially 
as revealed by studies using breast cancer cell lines55. In CRC, the 
EMT program influences a variety of malignant phenotypes asso-
ciated with metastasis, including the generation of CSCs, tumor 
budding, circulating tumor cells, and drug resistance56. The role of 
EMT in epithelial cancer, however, is still incompletely understood. 
Recent reports on lung and pancreatic cancer found that although 
EMT affects chemoresistance, it is not required for metastasis57,58. 
Since CSCs can both self-renew and differentiate, such cells 
can better adjust to the changes involved in the various stages of 
cancer metastasis59. The involvement of CSCs derived by activa-
tion of Wnt signaling in the later stages of cancer progression was 
suggested in a study showing that Lgr5 expression correlated with 
the malignant potential of CRC tumors and cell lines49. Tumors 
displaying increased levels of Lgr5 were of higher stage and were 
more invasive and formed more lymph node metastases49. With the 
increasing number of studies suggesting the involvement of CSCs 
in the propagation of metastasis, the hypothesis of “migrating 
cancer stem cells” (MCSCs) was put forward as the driving force 
leading to metastasis59,60. According to this model, the inher-
ent plasticity of CSCs is employed during the advanced stages 
of cancer progression that require the acquisition of invasive 
properties and migration through the blood and lymph vessels to 
distant organs. Newly formed metastatic tumors were shown 
to have a high genomic and proteomic similarity to the primary 
tumors from which they were derived, suggesting that after 
colonization MCSCs revert to their initial phenotype61. A study 
comparing gene expression from primary CRC tissue and liver 
metastatic foci of the same patients found that the expression of 
Ascl2 (an ISC marker and Wnt target gene) is upregulated in the 
metastatic tumors together with several other Wnt-induced ISC 
markers, including Lgr5, EphB3, Ets2, and Sox961. Other ISC sig-
nature markers, such as Smoc219, were also found to play a role in 
the promotion of metastasis in human CRC cells62. Smoc2 expres-
sion was preferentially increased at the invasive edge of CRC 
tumors, and Smoc2 exclusively localized at the bottom of colonic 
crypts in the normal colonic epithelium63. Moreover, L1-induced  
metastatic CRC cell lines lost their metastatic potential when 
Smoc2 was silenced62.

Crosstalk between Wnt signaling and other pathways 
in “stemness” and colorectal cancer metastasis
Although Wnt/β-catenin-TCF activation can directly influence the 
expression of “stemness” signature genes in CRC cells, such as 
Lgr5 and Ascl2, Wnt signaling often interacts with other pathways 
in triggering the acquisition of a stem cell-like behavior in CRC 
cells. Inflammation-related signaling has long been implied as a 
key regulator in Wnt-β-catenin-driven cancers, including CRC63. 
NF-κB signaling that regulates the pro-inflammatory cytokine 
response emerged as a key pathway in regulating the develop-
ment of various cancers by being a potent driver of oncogenic 
signaling64. In view of the important role of Wnt signaling in the 
maintenance of the stem niche in intestinal tissue and its dereg-
ulation in CRC, it was of interest to determine whether Wnt and 
NF-κB signaling interact in promoting CRC progression. This was 
recently addressed in the context of the cell adhesion receptor L1 
(or L1CAM), a β-catenin-TCF target gene in CRC cells45. L1 that 
is exclusively expressed in cells at the invasive edge of CRC tissue 
displaying nuclear β-catenin was found to activate NF-κB signaling 
by a mechanism involving the cytoskeletal protein ezrin65. L1 and 
ezrin, together with IκB, form a complex that induces a more rapid 
degradation of IκB, followed by nuclear translocation and activa-
tion of NF-κB target genes66. By blocking this L1-ezrin-NF-κB 
signaling, the acquisition of increased motility and liver metastasis 
by CRC cells was inhibited65. L1-induced NF-κB activation leads 
to the expression of several ISC markers, including IGFBP266 and 
Smoc262. In another study, the loss of APC in CRC was shown to 
trigger the expression of a Rac1 GTPase, a member of the RACGEF 
family, via β-catenin-TCF-induced expression of the oncogenic 
transcription factor c-Myc67,68. As in the case of L166, the activa-
tion of Rac1 leads to enhanced NF-κB signaling, resulting in the 
expansion of the Lgr5+ CRC stem cell compartment in an APC-
deficient milieu68. Thus, activation of NF-κB signaling in a Wnthigh 
context may potentiate tumor cells to acquire a stem cell-like 
phenotype68. In addition, a constitutive activation of β-catenin sig-
naling in differentiated intestinal epithelial cells of transgenic mice 
was shown to trigger the expansion of intestinal crypt cells and 
requires the activation of NF-κB signaling38. NF-κB was shown to 
directly bind to β-catenin and modulate its transcriptional activity, 
thereby affecting the expression of ISC signature genes38. Lastly, 
the inflammatory microenvironment displaying highly active 
NF-κB signaling was shown to lead to the acquisition of a stem 
cell-like behavior and neoplastic transformation69,70.

Bone morphogenetic protein (BMP) signaling, through the tran-
scriptional co-activator SMAD4, also plays an important role in 
CRC tumorigenesis71. Mutations in the BMP receptor BMPR1A, 
or in SMAD4, underlie the juvenile polyposis syndrome, a rare 
autosomal dominant trait with increased risk for CRC71. SMAD4 
mutations were shown to account for the shift in CRC tumor phe-
notype from the large adenoma to the adenocarcinoma stage72,73. 
Wnt-β-catenin signaling was reported to be required for BMP4 
expression in CRC tumors74,75, and the transcription factor GATA6 
affects both BMP and Wnt signaling in CRC stem cells76. This is 
achieved by abrogating Wnt-triggered BMP4 expression in stem 
cells derived from colorectal adenoma that is apparently required 
for stem cell self-renewal in colon adenoma76. Thus, the modu-
lation (by the Wnt pathway) of the strength of NF-κB signaling, 
or of BMP and additional signaling pathways, is an important 
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determinant of CRC progression. The strength of BMP signaling 
and its downstream messengers, including SMAD4, and additional 
driver mutations of CRC, such as p53, may affect the outcome of 
Wnt signaling in CRC development77.

In addition to interacting with NF-κB and BMP signaling, the 
Wnt pathway affects other signaling molecules that are required 
for the acquisition and maintenance of the stem-like state in CRC 
cells. The β-catenin-TCF complex was shown to regulate the 
energy metabolism in CRC stem cells and to fuel the growth of 
CRC tumors by inducing the expression of the transcription factor 
PROX178,79. The cell adhesion receptor L1 (see above) induces the 
expression of the ISC marker Clusterin in CRC cells via STAT1 
activation that is known to be stimulated by pro-inflammatory 
cytokines80. The increased expression of the ISC marker Msi181, 
an RNA-binding protein and a β-catenin-TCF target gene, was 
linked to the elevated metastatic potential and poorer prognosis 
of CRC82,83. Msi1 can trigger the activation of Wnt and Notch sig-
naling by a positive feedback regulation in ISCs, a regulatory loop 
recapitulated during CRC development84. The Msi1 homolog, Msi2 
(also a β-catenin-TCF target gene), displays an increased expres-
sion in intestinal cancer and drives the proliferation of stem-like 
cells through inhibition of PTEN and by inducing the mTORC1 
pathway85. Thus, together, these results suggest that the increase 
in Wnt signaling, even in more differentiated CRC cells, promotes 
the acquisition of a phenotype resembling that of ISCs by reconsti-
tuting a signaling environment that supports dedifferentiation.

Conclusions
A microenvironment enabling high Wnt signaling supports stem 
cell renewal at the base of the intestinal crypts of Lieberkühn and 
apparently leads to the acquisition of stem cell-like properties in 
cells at the invasive edge of CRC tissue. Although a link between 
“stemness” properties and metastasis was suggested by numer-
ous studies, the existence of CSCs has been difficult to identify in 
clinical tumor samples35,86. A common concept in cancer develop-
ment suggests that tumors arise from proliferation and survival of 
a clonal subpopulation of stem cells within the tumor. However, 
studies with CRC indicate that tumors may arise from several 
different parent cells, each contributing a distinct lesion and 
thus generating polyclonal tumors87. A polyclonal adenoma was 
described in an XO/XY individual with familial adenomatous 
polyposis (FAP)88. Polyclonal adenomas were also observed in 
mice with a chimeric loss in APC in the intestinal epithelium89. 
Conditional deletion of APC in stem cells labeled with a fluores-
cence reporter for Lgr5 triggered the development of adenomas 
from different cell clones within the intestinal tract48. Given the 
high plasticity of the intestinal and colonic crypt cells and their 
ability to readily revert to “stemness” upon stress, it is possible 

that the CSCs in CRC tissue originate from different lineages of 
parent cells. Although a stem cell hierarchy is supposed to exist 
in the CRC tissue, the high plasticity also means that the expres-
sion of ISC signature genes may be heterogeneous and thus cancer 
cells not originating from ISCs may also express ISC signature 
genes to some extent. Thus, CRC cells may express various stem 
cell markers without re-acquiring a full “stemness” potential. The 
contradictory reports regarding the association of Lgr5 with vari-
ous stages of CRC progression49,50,53,54,90–92 could be explained by 
the heterogeneity among the cells of the CRC tissue, as related to 
the expression of stem cell markers. Our current understanding of 
stem markers comes from studies on Wnt target genes or of mark-
ers of the Bmi1+ LRCs that were identified as putative cells of the 
stem cell compartment. Given that some stem cell markers are not 
dependent on Wnt signaling, further studies are required to deter-
mine the functional relevance of the many genes identified as stem 
cell signature genes in both normal and CRC tissue. Determining 
their roles in CRC not only will provide a better understanding 
of their function in intestinal homeostasis but will provide novel 
markers for targeting CRC. Using expression profiles for multiple 
stem cell markers in tandem increases the successful prediction 
of prognosis and outcome in CRC50. Further studies of the stem 
cell niche and the molecules controlling self-renewal will pro-
vide a better definition of markers for the stem cell compartment. 
Current paradigms propose that treatments against cancer that fail 
to eradicate the CSC population will have little success in prevent-
ing future relapses of the disease. If correct, this hypothesis calls for 
additional research aiming to identify and understand the role of the 
subpopulations of CSCs in cancer development and for their more 
effective targeting.
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