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Abstract

The human brain is intrinsically organized into resting-state networks (RSNs). Currently,

several human brain functional atlases are used to define the spatial constituents of these

RSNs. However, there are significant concerns about interatlas variability. In response,

we undertook a quantitative comparison of the five major RSNs (default mode [DMN],

salience, central executive, sensorimotor, and visual networks) across currently available

brain functional atlases (n = 6) in which we demonstrated that (a) similarity between

atlases was modest and positively linked to the size of the sample used to construct

them; (b) across atlases, spatial overlap among major RSNs ranged between 17 and 76%

(mean = 39%), which resulted in variability in their functional connectivity; (c) lower order

RSNs were generally spatially conserved across atlases; (d) among higher order RSNs, the

DMN was the most conserved across atlases; and (e) voxel-wise flexibility (i.e., the likeli-

hood of a voxel to change network assignment across atlases) was high for subcortical

regions and low for the sensory, motor and medial prefrontal cortices, and the precuneus.

In order to facilitate RSN reproducibility in future studies, we provide a new freely avail-

able Consensual Atlas of REsting-state Networks, based on the most reliable atlases.
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1 | INTRODUCTION

Resting-state functional magnetic resonance imaging (rs-fMRI) has

emerged as the main neuroimaging modality for the examination of

the spontaneous functional architecture of the human brain. A sub-

stantial body of literature has established that spontaneous brain

activity is organized into resting-state networks (RSNs) defined by

their spatiotemporal configuration and functional roles (Damoiseaux

et al., 2006; Doucet et al., 2011; Fox et al., 2005; Smith et al., 2009).

The spatiotemporal configuration of RSNs is based on their functional

connectivity (FC) which represents the temporal correlation of the

blood oxygen level-dependent signals between their constituent brain

regions (Biswal, Yetkin, Haughton, & Hyde, 1995). Functionally, RSNs

can be divided into those involved in internally guided, higher order

mental functions (default-mode [DMN], central executive [CEN], and

salience [SAL] networks) and those supporting externally driven, spe-

cialized sensory and motor processing (visual [VIS] and sensorimotor

[SMN] networks) (Damoiseaux et al., 2006; Doucet et al., 2011; Smith

et al., 2009). Examination of RSNs in healthy populations has been

instrumental in identifying processes involved in brain development

(Gu et al., 2015) and aging (Ferreira et al., 2016; Shaw, Schultz,

Sperling, & Hedden, 2015; Siman-Tov et al., 2016) while investigation

of RSNs in clinical samples has yielded new insights in disease mecha-

nisms (Dong, Wang, Chang, Luo, & Yao, 2018; Doucet, Moser, Luber,

Leibu, & Frangou, 2018; Lee, Doucet, Leibu, & Frangou, 2018;

Repovs, Csernansky, & Barch, 2011).
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Despite progress, reproducibility remains one of the major con-

cerns in neuroimaging (Poldrack et al., 2017; Turner, Paul, Miller, &

Barbey, 2018). With regard to RSNs, their reproducibility can be

influenced by parameters used to acquire the rs-fMRI data (Gordon

et al., 2016), as well as interindividual variability (Braga & Buckner,

2017; Gordon et al., 2017). Here, we focus on a source of interstudy

variability that concerns the method used to identify RSNs. Initially,

RSNs were defined as components derived from independent compo-

nent analyses (ICAs) of the rs-fMRI data series. However, variations in

implementing ICA influence the number and spatial distribution of the

RSNs extracted (Beckmann & Smith, 2004; Damoiseaux et al., 2006;

Kiviniemi et al., 2009; Smith et al., 2009). Alternate algorithms for par-

titioning the rs-fMRI data series have also resulted in variability in the

interstudy spatial composition of RSNs (Franco, Mannell, Calhoun, &

Mayer, 2013). It has also been suggested that the spatial variability of

high-order networks may reflect inherent functional overlap between

at least some of their constituent regions (Yeo, Krienen, Chee, &

Buckner, 2014). Finally, the attribution of the same label to RSNs that

differ in their spatial composition represents an additional challenge.

For example, the DMN defined by Shirer, Ryali, Rykhlevskaia, Menon,

and Greicius (2012) includes clusters located in the medial prefrontal

cortex/ventral anterior cingulate cortex (ACC), precuneus/posterior

cingulate cortex, angular gyri, and medial thalamus while the DMN

defined by Yeo et al. (2011) does not include any thalamic regions but

instead extensively covers middle temporal and inferior frontal areas.

In response, researchers have begun to use brain functional atlases

to identify normative RSNs, as this approach has the potential to har-

monize RSN definition across studies. In principle, the use of a single

“gold standard” functional brain atlas would greatly increase the repro-

ducibility of results across studies, as RSNs would be defined using a

standardized approach and would be independent of study sample.

However, such an atlas is not currently available. Instead, multiple

atlases are available which differ in the number and spatial constitution

of the RSNs they define. For example, the atlas provided by Yeo et al.

(2011) was based on 1,000 participants and used a clustering approach

to extract seven RSNs, while the atlas provided by Shirer et al. (2012) is

based on 15 individuals and defined 14 RSNs using an ICA. Critically,

differences between currently available atlases have yet to be system-

atically investigated since variations in RSN composition are likely to

influence inferences made about the functional properties of these net-

works and about their role in health and disease.

In this context, we undertook the present study which aims to:

(a) conduct a quantitative comparison of the spatial overlap of currently

used functional brain atlases and the major RSNs they define;

(b) compute the regional flexibility coefficient for each anatomical

region, which quantifies the number of times a particular region

changes network allegiance across atlases (Bassett et al., 2011);

(c) demonstrate that variation in the anatomical constitution of RSNs

defined by different atlases results in variation in their FC, in terms of

within- and between-network features; and (d) generate a new consen-

sual atlas based on the most reliable atlases, for use in future studies.

2 | METHODS

2.1 | Selection of brain functional atlases

We chose to focus on functional atlases that are freely available, are

embedded in the Montreal Neurological Institute (MNI152), and are

easy to use as they are provided as volumetric 3D maps. Conse-

quently, we did not consider atlases that only provide the coordinates

of the nodes of each RSN (e.g., Power et al., 2011) or surface-based

atlases that require conversion to a volumetric MNI space (Glasser

et al., 2016; Ji et al., 2019).

Based on these considerations, we examined six peer-reviewed

resting-state functional atlases. In detail, the atlases by Smith et al.

(2009) (hereafter referred to as the Smith-Atlas), by Yeo et al. (2011)

(hereafter referred to as the Yeo-Atlas), and by Shirer et al. (2012)

(hereafter referred to as the Shirer-Atlas) were chosen because they

have each been cited more than 500 times by January 31, 2019

according to the Altmetric information available on each article's

website. The atlas by Gordon et al. (2016) (hereafter referred to as the

Gordon-Atlas) was chosen because it is used in the Adolescent Brain

Cognitive Development Study (https://abcdstudy.org/) which aims to

provide national normative standards for brain FC (Casey et al., 2018).

We included the atlases by Doucet et al. (2011) and Doucet, Rasgon,

McEwen, Micali, and Frangou (2018) (hereafter referred to as

Doucet2011-Atlas and Doucet2018-Atlas) that were constructed by

our group using resting-state fMRI data from two independent large

samples of healthy participants (Doucet et al., 2011; Doucet, Rasgon,

et al., 2018). Details of the size of the sample used in the construction

of each atlas, the method of RSN extraction and the RSNs defined are

provided in Table 1, Figure 1 and Table S1, Supporting Information.

Prior to any analyses, each RSN from each functional atlas was

created as a binary mask and resliced in a standardized fashion (mask

dimension = 91 × 109 × 91; voxel resolution = 2 × 2 × 2 mm3).

2.1.1 | Interatlas similarity in overall network spatial
overlap

We used the function multislice_pair_labeling.m from the Network Com-

munity Toolbox (http://commdetect.weebly.com), to assign a number

to each RSN and ensured that networks with the highest spatial overlap

across atlases were assigned the same numeric label. Then, we used

the function zrand.m to compute the Rand coefficient for each pair of

atlases. The Rand coefficient is an index of the overall similarity

between two atlases and corresponds to the fraction of voxels that are

assigned to the same network in both atlases (Traud, Kelsic, Mucha, &

Porter, 2011). The Rand coefficient ranges between 0 and 1 but can be

easily skewed toward 1 (Traud et al., 2011). Therefore, we used the z-

score of the Rand coefficient for each voxel i, following the formula:

z−scoreof Randi =
Rand Coefficienti−mean Rand coefficientð Þ

SD Rand coefficientð Þ

where SD refers to standard deviation across all voxels.
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Further, for each pair of atlases, we undertook Spearman correla-

tion analyses between the z-scores of the Rand coefficient and the sum

of size of the samples used in the two atlases considered, the interatlas

difference in number of RSNs and the interatlas difference in the total

number of voxels. We report significant correlations at a statistical sig-

nificance of p < .05 after applying a Bonferroni correction.

TABLE 1 Description of the brain functional atlases considered

Reference
Abbreviated atlas
name in the manuscript

Sample
size (N)

Sample
age (min–max)

Sample mean
age

Number of
networks in
the atlas

Analytical approach used to
construct the atlas

Smith et al. (2009) Smith-Atlas 36 20–35 28.5 10 ICA

Yeo et al. (2011) Yeo-Atlas 1,000 18–35 21.3 7 Surface vertex-based clusteringa

Doucet et al. (2011) Doucet2011-Atlas 180 18–57 26 23 ICA

Shirer et al. (2012) Shirer-Atlas 15 18–30 Not provided 14 ICA

Gordon et al. (2016) Gordon-Atlas 108 18–33 21 12 Surface vertex-based clusteringa

Doucet, Rasgon, et al. (2018) Doucet2018-Atlas 496 22–37 29 13 Region-based clustering

Note. All studies used data from healthy participants only. Age in years.

Abbreviation: ICA, Independent component analysis.
aWhile the atlas is based on a surface-based approach, we used its volumetric version provided by the original authors. More details are in Supporting

Information.

F IGURE 1 Spatial definition of the six
brain functional atlases. Each color
represents one network. Description of
each atlas and each network are provided
in Table 1 and Table S1, Supporting
Information
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2.1.2 | Interatlas similarity in the spatial composition
of the major RSNs

For these analyses, we examined the DMN, the CEN, the SAL, the SMN,

and the VIS as these are considered as the major RSNs (Figure S1,

Supporting Information). We note that in some atlases, RSNs that com-

prise identical anatomical regions are described using different terms.

Specifically, the SAL is referred to as the ventral attention network in the

Yeo-Atlas and as the executive central network in the Smith-Atlas

despite including the same anatomical regions in both these atlases. This

partially reflects the historical evolution of the labeling of RSNs as the

SAL network had not been fully established as separate from the execu-

tive central network when the Smith-Atlas was published. In this study,

the term SAL is used to refer to the network that includes the insula and

the dorsal ACC as defined by the authors that established its presence

and its function (Menon & Uddin, 2010; Seeley et al., 2007). Other labels

seem to reflect authors' preferences that vary between naming a net-

work based on its anatomical composition or based on its presumed

functionality. Consequently, the CEN is referred to as the lateral

frontoparietal network in the Doucet2011-Atlas, in the Gordon-Atlas, in

the Smith-Atlas and in the Yeo-Atlas. Moreover, some atlases provide

separate maps for subdivisions of the same RSN (e.g., separate maps for

the left and right-sided subdivisions of the CEN as in the Shirer-, the

Doucet2011-, and the Smith-Atlases). Such subnetworks were combined

to obtain a single map for the entire RSN (Table S1, Supporting Informa-

tion). We were thus able to construct a map for each of the five major

RSNs per atlas (Figure S1, Supporting Information).

We used the Dice's coefficient (D) (Dice, 1945) to quantify the

pairwise spatial similarity of RSNs between atlases. For each pair of

atlases i and j, the D coefficient for two same-labeled RSNs, Xi and Xj,

was computed as:

D=
2 Xi

T
Xj

�� ��

Xi +Xj
×100,

where Xi and Xj denote the number of voxels in each network. Xi
T

Xj

denote the intersection of the voxels of the two same-labeled net-

works from the different atlases. For each pair of atlases, a Dice's

coefficient of 100% indicates perfect overlap between the two same-

labeled RSNs and a coefficient of 0% denotes no overlap.

2.2 | Voxel-wise variability between the RSNs across
atlases

We used the flexibility function of the Network Community Toolbox

(http://commdetect.weebly.com) to compute a flexibility coefficient

of each voxel (Bassett et al., 2011) as the ratio of the number of times

a particular voxel changed network allegiance across atlases to the

total number of possible changes (i.e., number of atlases-1). To

account for variation in the degree of total brain coverage in each

atlas (Figure S2a and Table S2, Supporting Information), the flexibility

coefficient of each voxel was weighted by the number of atlases that

included that voxel. Low flexibility coefficients indicate that a specific

voxel is likely to retain its network allegiance across atlases, while high

flexibility coefficients indicate that a specific voxel is likely to change

network allegiance across atlases.

We estimated the flexibility coefficient of each voxel based (a) on

the RSNs as originally reported in each atlas and (b) for the five major

RSNs as defined in the previous section.

2.3 | Quantification of atlas-dependent variation in
RSN FC

We hypothesized that within- and between-network FC (WNC and

BNC, respectively) would vary as a function of the variable anatomical

constitution of the RSNs in the different atlases. To demonstrate this

we used publicly available rs-fMRI datasets from a sample of

100 unrelated healthy participants (58 women) of the Human

Connectome Project (HCP; http://www.humanconnectomeproject.

org) (Glasser et al., 2013). The mean and SD of the age of this sample

was 29.1 (3.5) years. The acquisition parameters and preprocessing

procedures are detailed in the Supporting Information. For each HCP

participant, we computed the WNC and BNC for the DMN, CEN,

SAL, SMN, and VIS in each of the six atlases. The WNC was estimated

by averaging all possible pairwise Pearson's correlations between the

time series of the network's voxels. The BNC was estimated by aver-

aging the voxel-wise correlations between each network's time series

and the time series of the other networks. All correlation coefficients

were transformed into Fisher's z-score prior to further analyses.

For each pair of atlases i and j, the functional similarity coefficient

of the WNC of two RSNs, Xi and Xj, was computed as:

SC–WNC Xi,Xj

� �
=
cov WNCXi,WNCXj

� �

σXiσXj
,

where cov is the covariance, WNCXi and WNCXj represent the WNC

for networks Xi and Xj, and σXi and σXj are the corresponding SD. The

similarity coefficient of the WNC can range between −1 and 1, respec-

tively, indicating that the WNC of network Xi and Xj may show total

inverse or total positive covariation while a value of 0 would indicate

no covariation. After substituting WNC for BNC, we applied the same

equation to calculate the functional similarity coefficient for the BNC

of each pair Xi and Xj networks.

We used Spearman's correlation coefficient to test the association

between the Dice coefficient and the SC coefficients for WNC and

BNC of each pair of the major RSNs across the six atlases.

2.4 | Generation of a consensual atlas
of resting-state networks

The Consensual Atlas of REsting-state Network (CAREN) was based

on the original parcellations provided by the Yeo-Atlas, the Gordon-

Atlas, the Doucet2011-Atlas, and the Doucet2018-Atlas. We selected

these atlases on the basis on their substantial overlap as discussed

further below and considered only voxels (N = 39,261) included in all

four atlases (Figure S2b, Supporting Information).
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For each pair of voxels, we computed their binary probability of

belonging to the same network in each of the original four atlases. We

then averaged these probabilities across atlases to generate a

39,261 × 39,261 P-matrix. We then applied a hierarchical clustering

to iteratively link pairs of voxels with the highest probability of

belonging to the same network, forming progressively larger clusters

in a hierarchical tree.

The optimal clustering solution, which formed the consensual

networks in CAREN, was based on two considerations. First, using

the P-matrix, we conservatively identified clusters for which the aver-

age within-cluster probability was at least 20 times greater than the

average between-cluster probability (Drysdale et al., 2017) (Figure S5,

Supporting Information). Second, in accordance with Yeo et al. (2011),

we computed a voxel-wise confidence value to quantify the similarity

between the CAREN networks (i.e., the networks that emerged through

hierarchical clustering) and the same-labeled networks in the four origi-

nal atlases. This voxel-wise index ranged from 0 (the network assign-

ment of a voxel in CAREN differed from its network assignment in all

four atlases) to 100% (the network assignment of a voxel in CAREN

was identical to its network assignment in all four atlases). In the main

manuscript, we present the optimal partition while details of plausible

partitions at lower hierarchical levels are provided in Supporting Infor-

mation (Section 4.3, Figure S7, Supporting Information).

The networks from CAREN and from the other atlases were visu-

alized using the BrainNet Viewer v1.61 software (http://www.nitrc.

org/projects/bnv/) (Xia, Wang, & He, 2013).

3 | RESULTS

3.1 | Interatlas similarity in overall network spatial
overlap

The similarity between atlases in overall network spatial overlap, as

inferred by the z-score of the Rand coefficient, showed no significant

association with the interatlas difference in the number of networks

or total number of voxels (p > .05) but was positively associated with

the size of the samples used in their construction (ρ = 0.72,

p = 3 × 10−4). Accordingly, the Doucet2018-Atlas and the Yeo-Atlas,

which are based on the largest samples, showed the highest interatlas

overlap while the Shirer-Atlas and the Smith-Atlas which are based on

the smallest sample sizes showed the lowest overlap (Figure 2). The

degree of similarity between atlases could not be attributed to

the method of network extraction employed in each original atlas;

the Yeo-Atlas and the Doucet2018-Atlas, respectively, used surface-

and volume-based approaches yet they were very similar. By contrast,

the Shirer-Atlas and the Smith-Atlas that were the least similar atlases

were both volumetric, based on ICA.

3.2 | Interatlas similarity in the spatial composition of
the major RSNs

Among all major RSNs, the interatlas pairwise comparisons revealed

an average spatial overlap of 39% (SD: 15%), ranging from 17 to 76%

between pairs of same-labeled networks (Table S3 and Figure S3,

Supporting Information). Only 16 interatlas same-labeled networks

(i.e., 21% of all possibilities) showed a spatial overlap of at least 50%

in their spatial constituents. Figure 3 displays the spatial overlap of

each major RSN across all atlases. Overall, the common overlap across

the majority of the atlases (i.e., four or more) was relatively limited,

ranging from 13% (for the SAL network, % of voxels assigned to the

SAL network in at least four atlases) to 35% (for the VIS network).

3.2.1 | VIS network

Among the major RSNs, the VIS networks had the highest spatial simi-

larity in all pairwise comparisons across the six atlases (D range:

17–76%, mean [SD]: 50% [20%]) (Table S3, Supporting Information).

The largest overlap was noted between the VIS networks defined in

the Doucet2018-Atlas and the Yeo-Atlas, while the lowest overlap

was observed in VIS networks defined by the Shirer- and Smith-

Atlases (Figure S3a, Supporting Information). The regions showing the

greatest constancy in being allocated to the VIS network across four

F IGURE 2 Interatlas
similarity in overall network
spatial overlap. Higher scores
indicate higher similarity
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or more atlases were located in the medial (calcarine, lingual gyrus)

and lateral (inferior/middle) occipital lobe (Figure 3a).

3.2.2 | Sensorimotor network

The SMN showed moderate similarity in all pairwise comparisons across

the six atlases (D range: 19–71%, mean [SD]: 41% [17%], Table S3,

Supporting Information). The largest overlap was noted between the

SMN defined by the Doucet2018- and the Doucet2011-Atlases,

while the lowest overlap was observed between the SMN defined by

the Shirer- and Smith-Atlases (Figure S3b, Supporting Information). The

regions showing the greatest constancy in being allocated to the

SMN in four or more atlases were located in the ventral part of

the pre/postcentral gyri and superior temporal gyri (Figure 3b).

3.2.3 | Default-mode network

The networks defined as DMN across all atlases also showed moder-

ate similarity in their spatial overlap (D range: 22–62%, mean [SD]:

38% [10%]) (Table S3, Supporting Information). The DMN as defined

by the Doucet2011-Atlas and the Shirer-Atlas showed the largest

overlap, while the DMN as defined in the Doucet2018-Atlas and

Smith-Atlas showed the smallest overlap (Figure S3c, Supporting

Information). The regions showing the greatest constancy in being

allocated to the DMN in four or more atlases were located in the pos-

terior cingulate cortex/precuneus, the ventral ACC/medial prefrontal

cortex, and in the angular gyri (Figure 3c).

3.2.4 | Salience network

The SAL network also showed substantial pairwise similarity across

atlases (D range: 19–46%, mean [SD]: 32% [7%], Table S3, Supporting

Information). The SAL networks defined by the Yeo- and the Gordon-

Atlases were the most similar, while the SAL networks defined by the

Shirer- and Smith-Atlases were the least similar (Figure S3d,

Supporting Information). The regions showing the greatest constancy

in being allocated to the SAL in four or more atlases were located in

the anterior insula, the dorsal ACC, and in the middle frontal cortex

and supramarginal gyri (Figure 3d).

3.2.5 | Central executive network

The spatial similarity of the networks defined as CEN across atlases

was the weakest among all the major RSNs (D range: 19–50%, mean

(SD): 32% (7%), Table S3, Supporting Information). The CENs defined

by the Yeo- and the Gordon-Atlases were the most similar, while the

CENs defined by the Shirer- and Smith-Atlases were the least similar

(Figure S3e, Supporting Information). The regions showing the

greatest constancy in being allocated to the CEN in four or more

atlases were located in the middle frontal, inferior parietal, and poste-

rior middle temporal cortices (Figure 3e).

3.3 | Voxel-wise variability between the RSNs across
atlases

Voxel-wise variability between the RSNs across atlases was assessed

using voxel-wise flexibility coefficient, as shown in Figure 4. Lower

flexibility coefficients (i.e., high consistency in RSN assignment across

atlases) were noted in the medial prefrontal regions, precuneus, dorsal

ACC, precentral and postcentral gyri, and the medial occipital cortex.

Higher flexibility coefficients in ventral regions reflect their inconsis-

tent assignment to the same RSN across the six atlases, while the high

flexibility coefficients in subcortical regions were attributable to the

low coverage of these regions across the six atlases (as shown in

F IGURE 3 Spatial overlap of
the five major RSNs across the
six atlases. To create this map,
each voxel was assigned a value
ranging from 1 to 6 reflecting the
degree of constancy in the
allocation of this voxel to the
same RSN across atlases; a value
of 1 signifies that a voxel was
assigned to a network in 1 atlas
only while a value of 6 signifies
that a voxel was assigned to the
same network in all six atlases.
CEN, central executive network;
DMN, default mode network;
RSN, resting-state networks;
SAL, salience network; SMN,
sensorimotor network; VIS, visual
network

4582 DOUCET ET AL.



Figure 2a, Supporting Information). We obtained the same results

when the analyses conducted above were restricted to the five major

RSNs (Figure S4, Supporting Information).

3.4 | Quantification of atlas-dependent variation in
RSN FC

Across atlases, higher spatial overlap between the major RSNs was

associated with higher similarity in their FC properties (WNC:

ρ = 0.39, p = 5.2 × 10−4; BNC: ρ = 0.40, p = 3.9 × 10−4).

3.5 | Consensual Atlas of REsting-state Networks

The optimal hierarchical clustering solution (based on the probability

that any two voxels across any pair of atlases were reliably part of the

same network) comprised five networks that we labeled DMN, CEN,

SAL, VIS, and SMN in accordance with their spatial distribution as

shown in Figure 5 and as detailed in Table S4, Supporting Information.

The outline of the CAREN networks over each atlas considered is

shown in Figure S6, Supporting Information. Figure 5c shows the con-

fidence value for each voxel with respect to the probability of being

assigned to the same-labeled RSN in CAREN and in each of the origi-

nal four atlases. The majority of voxels (87%) had confidence values

over 75%. Less than 1% of the voxels had a confidence value of 25%.

The mean voxel-wise confidence value per RSN ranged between 94%

for the VIS network and 71% for the CEN.

In CAREN, the SAL emerged as the most reproducible network

(orange network in Figure 5b); the average probability that voxels

assigned to this network were identified across all four atlases was

66%. As defined in CAREN, the SAL comprises the anterior insula

bilaterally, the dorsal ACC and posterior regions in the supramarginal

gyri and anterior precuneus. The SMN and VIS networks were also

reproducible; the average probability that voxels assigned to the SMN

and VIS networks were identified across all four atlases was 47 and

63%, respectively (Figure S4, Supporting Information). In CAREN, the

VIS network was comprised exclusively of occipital regions while the

SMN comprised the sensory and motor regions (precentral and post-

central gyrus and supplementary motor area) and the primary auditory

cortex (superior temporal cortex). Of note, at a lower hierarchical level

(i.e., six-network partition), the SMN is the first network to split into

two with one subdivision mostly including the primary sensorimotor

regions and the other comprising the auditory cortex (see more detail

in Figure S6, Supporting Information). For the DMN, the average

probability that voxels assigned to this network were identified across

all four atlases was 48%. In CAREN, the DMN emerged as a single

network comprising the medial prefrontal cortex/ventral ACC, the

precuneus/PCC, the inferior frontal cortex, the angular gyri, the mid-

dle temporal cortex, and the parahippocampal gyri. The CEN emerged

as the least reproducible network; the average probability that voxels

assigned to the CEN were identified across all four atlases was 44%.

In CAREN, the CEN comprises the dorsolateral prefrontal cortex, the

superior parietal cortex, and the posterior inferior temporal cortex.

4 | DISCUSSION

We conducted a systematic comparison of six functional brain atlases

derived from independent samples of healthy individuals. We demon-

strated spatial variability between RSNs defined by these atlases and

the FC properties of the RSNs defined by the different atlases were

influenced by their interatlas similarity. In order to promote RSN

reproducibility in future studies, we constructed a CAREN, based on

the most reliable atlases.

A substantial body of literature has identified a set of RSNs,

namely the DMN, SAL, CEN, SMN, and VIS networks, that are reliably

F IGURE 4 Spatial distribution of the
voxel-wise flexibility coefficient. Voxel-
wise flexibility coefficient quantified the
constancy with which a voxel is allocated
to the same resting-state network across
atlases; lower values indicate higher
degree of constancy. It is defined as the
ratio of the number of times a particular
voxel changed network allegiance across
atlases to the total number of possible
changes (i.e., number of atlases-1)
weighted by the number of atlases that
included that voxel
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identified across studies and are associated with diverse mental oper-

ations (Doucet et al., 2011; Kiviniemi et al., 2009; Smith et al., 2009;

Yeo et al., 2011). However, the spatial composition of these networks

shows interstudy variation which also extends to the currently avail-

able functional atlases. This interstudy variation is likely related to

multiple factors that include a mixture of interindividual variability

F IGURE 5 CAREN. (a) Result of the hierarchical clustering. Left panel: dendrogram highlighting a five-network partition and right panel:
intervoxel matrix showing the average probability of belonging to the same network. (b) The spatial distribution of the RSNs defined in CAREN.
DMN (dark blue), CEN (red), SAL (orange), SMN (cyan), and VIS network (green). Their constituent regions are described in Table S4, Supporting
Information. (c) The spatial distribution of the voxel-wise confidence value in CAREN. This measure quantifies the probability that a voxel in a
CAREN network is assigned to the same-label RSN in each of the original atlases. Black lines outline the boundaries of the CAREN networks;
colors reflect the voxel-wise confidence values (blue, low; green and orange, intermediate; red, high). CAREN, Consensual Atlas of REsting-state
Networks; CEN, central executive network; DMN, default mode network; RSN, resting-state networks; SAL, salience network; SMN,
sensorimotor network; VIS, visual network
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(Braga & Buckner, 2017; Gordon et al., 2017), differences in parame-

ters and processing of the rs-fMRI data (Franco et al., 2013) and

parcellation approaches (Gordon et al., 2016). It has also been

suggested that brain networks, in particular the high-order networks,

may share regions which lead to their increased spatial variability (Yeo

et al., 2014). When assessing the interstudy similarity of six widely

used atlases, we found that the method used for the RSN extraction

or the parcellation size did not seem to influence the interatlas similar-

ity. By contrast, the most significant correlate of interatlas similarity

was the number of participants contributing to the atlas construction.

Therefore, this study joins recent calls advocating the importance of

large sample sizes for reproducible results in the neuroimaging field

(Poldrack et al., 2017; Turner et al., 2018). Our results suggest that

atlases derived from samples of at least 100 individuals are conducive

to greater reproducibility of atlas-based RSN studies.

Across atlases, same-labeled RSNs differed in their spatial distribu-

tion and consequently in their WNC and BNC. The interatlas spatial

similarity in RSNs was unimpressive and averaged 39% for any of the

major RSNs examined. The SMN and VIS showed the highest similar-

ity between the six different atlases. This was not surprising as these

networks are comprising mostly of sensory and motor regions, which

are known to have low interindividual variability in anatomical mor-

phology (White et al., 1997) and in resting-state FC (Franco et al.,

2013; Li et al., 2017; Mueller et al., 2013) and tend to preferentially

participate in single networks (Yeo et al., 2014).

The interatlas similarity of the higher order RSNs, namely the

DMN, CEN, and SAL, was generally low. This was unexpected in the

case of the DMN is arguably the best characterized RSN and the only

RSN that is more active at rest (Mazoyer et al., 2001; Raichle et al.,

2001). However, this is in line with a recent study by Braga &

Buckner (2017) who showed that these networks showed a relatively

high intraindividual variability in terms of spatial definition. In the cur-

rent study, the DMN showed the most substantial interatlas spatial

overlap among the three networks, with an average of 38%. This is in

the same range as that described by Jann et al. (2015) when compar-

ing the spatial composition of the DMN as identified using either

resting-state fMRI or arterial spin labeling.

The interatlas variability in the spatial composition of higher order

RSNs is thought to reflect an inherent feature of associative regions

as these tend to participate in multiple networks (Yeo et al., 2014).

However, among the associative regions, we found evidence of a

medial–lateral dissociation; voxels in the medial prefrontal cortex and

precuneus were highly likely to retain their network assignment

across the six atlases, while the opposite was the case for voxels in

the lateral frontal regions. These results are aligned with reviews

(Eriksson, Vogel, Lansner, Bergstrom, & Nyberg, 2015; Nyberg &

Eriksson, 2015) which have confirmed that the lateral aspects of the

cortex show high interindividual variability, since these regions are

crucial in implementing cognitive control (Moser et al., 2018; Niendam

et al., 2012) and their variability is thought to underpin interindividual

differences in executive functions (Gordon et al., 2016; Li et al., 2017;

Mueller et al., 2013).

Networks labeled as CEN and SAL showed equally low interatlas

overlap. The major source of interatlas difference for the CEN was

variability in the assignment of lateral prefrontal cortical regions, and

for the SAL variability in the assignment of the supramarginal gyrus.

The inclusion of this region to the SAL is based on recent studies

(Prillwitz et al., 2018; Shirer et al., 2012) that have extended the defi-

nition of this network that was initially anchored in the anterior insula

and dorsal ACC (Menon & Uddin, 2010; Seeley et al., 2007). The inclu-

sion of this posterior region in the SAL network was also confirmed

during the construction of CAREN.

In the case of the DMN, the lateral/inferior frontal and temporal

cortex showed the greatest variability in terms of their assignment to

the DMN across the six atlases despite their recognized contribution

of DMN-related functions. Buckner, Andrews-Hanna, and Schacter

(2008) have stressed the importance of the lateral temporal cortex as

a core constituent of the DMN and commented that it is poorly char-

acterized in humans (Buckner et al., 2008). The inferior frontal region

showed the lowest reproducibility across atlases with half of the

atlases including it as a DMN region. It is particularly interesting since

it has been more often associated with language processing (Vigneau

et al., 2006) but may be important for spontaneous cognition when it

occurs in the form of inner speech (Christoff, Gordon, Smallwood,

Smith, & Schooler, 2009; Doucet et al., 2012).

Moving forward, we propose that the CAREN we constructed has

the following advantages over existing alternatives: CAREN (a) is

based on reliable atlases derived from more than 100 healthy partici-

pants each; (b) is independent of variation in neuroimaging parameters

(site, acquisition sequence and analytical methods); and (c) is indepen-

dent of sample composition. CAREN is composed of five networks

that have high spatial similarity with RSNs defined across the main

available functional atlases that were considered here. While CAREN

offers a realistic option for standardizing the definition of RSNs, we

acknowledge its limitations. First, CAREN was based on data from

voxels that were common in all four atlases used in its construction;

this led to the exclusion of cerebellar and subcortical voxels as these

were not covered by all the atlases. Second, in constructing CAREN,

we did not model differences in the coverage of cortical regions

across the contributing original atlases. The cortical regions that were

excluded from CAREN because they were not part of all contributing

atlases were located in the most ventral parts of the brain. Ventral

brain regions are often problematic because they are subject to arti-

facts associated with signal loss or inhomogeneity (Yeo et al., 2014).

Therefore, we do not consider that the inclusion of a larger number of

voxels from these ventral cortical regions would have improved or

have influenced the parcellation leading to CAREN. Third, two of the

atlases that contributed to CAREN were volumetric (Doucet2011-

and Doucet2018-) and two used surface-based RSN extraction (Yeo-

and Gordon-). It is unlikely that this difference influenced the

parcellation leading to CAREN as we used the volumetric versions of

the surface-based atlases and because our results indicate that inter-

atlas similarly is mainly associated with sample size and not the

method of RSN extraction. As more atlases using a surface-based

approach become available (e.g., Glasser et al., 2016; Ji et al., 2019) it
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will be possible to examine this issue further in future studies. Fourth,

CAREN inherently assumes that a voxel can only be part of a single

RSN which mirrors the single-network allocation of the voxels in the

atlases used to create CAREN. Although some study designs may

focus on finer or dynamic partitions of the rs-fMRI data, the purpose

of CAREN is to provide a reproducible template of the major RSNs for

general use.

5 | CONCLUSION

We presented a systematic and quantitative comparison of the spatial

composition and FC of the major RSNs based on their definition in six

widely used functional atlases. We demonstrated a large spatial varia-

tion in RSN definition between atlases, which directly influences

network-based FC measures. The findings of this study will enable

researchers to make informed decisions about their choice of func-

tional brain atlases as templates. Furthermore, in order to bolster

reproducibility of the major RSNs in future studies, we propose

CAREN, a consensual atlas of RSNs that is publicly available

(Supporting Information, https://www.researchgate.net/publication/

334042115_Consensual_Atlas_of_REsting-state_Networks_CAREN or

upon request).
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