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of sex-dependent variability of the rat
intrinsic cardiac nervous system
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Navid Farahani,5 Corey Monteith,5 Jin Chen,1 Peter Hunter,4 Susan Tappan,3 Rajanikanth Vadigepalli,2,*

Zixi (Jack) Cheng,1,* and James S. Schwaber2,7,*
SUMMARY

We developed and analyzed a single cell scale anatomical map of the rat intrinsic
cardiac nervous system (ICNS) across four male and three female hearts. We find
the ICNS has a reliable structural organizational plan across individuals that provide
the foundation for further analyses of the ICNS in cardiac function and disease. The
distribution of the ICNS was evaluated by 3D visualization and data-driven clus-
tering. The pattern, distribution, and clustering of ICNS neurons across all male
and female rat hearts is highly conserved, demonstrating a coherent organizational
planwheredistinct clusters of neurons are consistently localized. Female hearts had
fewer neurons, lower packing density, and slightly reduced distribution, but with
identical localization. We registered the anatomical data from each heart to a geo-
metric scaffold, normalizing their 3D coordinates for standardization of common
anatomical planes and providing a path where multiple experimental results and
data types can be integrated and compared.
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INTRODUCTION

We recently published a comprehensive and cellular resolution 3D mapping of the rat intrinsic cardiac ner-

vous system (ICNS) (Achanta et al., 2020). The ICNS, regarded as the little brain at the heart, integrates mul-

tiple local sensory and autonomic efferent inputs and in turn regulates cardiac functions. We here extend

the methods of approach to assay the structural consistency and variability of the rat ICNS within and be-

tween sexes. One of the most useful properties of other nervous systems — i.e. the brain — is that there is,

to a first approximation, a regular and expected structural organizational plan across all brains of a species,

and even to a useful extent across species. This allows data to be accumulated and compared across indi-

viduals and treatments. More recently, digital brain atlases as quantitative data reference systems were

developed (Ding et al., 2016; Funka-Lea and Schwaber, 1994). To this end, we obtained detailed high-res-

olution maps of ICNS and explored the use of these maps for building a quantitative heart scaffold that

enables comparison of ICNS across animals.

The ICNS neurons utilize a variety of neurotransmitters and modulators and receive the inputs of both local

afferent and extrinsic autonomic (parasympathetic and sympathetic) nerves, performing very complicated

integration in controlling cardiac functions (Achanta et al., 2020; Ardell and Armour, 2016; Hanna et al.,

2021; Moss et al., 2021). We previously identified multiple clusters of ICNS neurons on the epicardium of

the superior surface of the heart and on the posterior left atrium (Achanta et al., 2020; Ai et al., 2007; Cheng

et al., 1999; Lin et al., 2008; Pauza et al., 2000; Richardson et al., 2003). While characterization of the ICNS

shows that topology as well as neurotransmission to and from the heart is significantly conserved among

species, little work has been done to examine the variability in the ICNS structure between individuals

(Hopkins and Armour, 1984; Janes et al., 1986; Kawashima, 2005; Kuntz, 1930; Mizeres, 1963; Randall

et al., 1972; Saccomanno, 1943). Additionally, while significant differences have been reported in the auto-

nomic control of the cardiovascular system between males and females on a clinic level, possible differ-

ences in anatomical organization are not well understood (Fu and Ogoh, 2019; Shufelt et al., 2018). Studies

thus far analyzed select sections and whole-mounts of cardiac tissues have tremendously advanced our un-

derstanding of ICNS distribution, as well as extrinsic and intrinsic nerve innervation.
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Recent advances in imaging techniques have significantly improved the capability of visualizing the ICNS

within its 3D anatomical framework. Exciting advances in the tissue clearing techniques have managed to

visualize the ICNS and the autonomic axons in the whole heart (Chung et al., 2013). Following tissue

clearing, immunohistochemistry and various microscopic techniques can be applied to map ICNS and

extrinsic and intrinsic cardiac nerves in the whole heart (Rajendran et al., 2019). ICNS and extrinsic and

intrinsic cardiac nerves may be imaged in high resolution with light sheet microscopy, as demonstrated

on the murine heart (Ding et al., 2018). However, the penetration of light-sheet microscopy is limited to

a few hundred micrometer thickness and not at a cellular resolution. To overcome these problems, we

recently established a technical workflow that uses knife-edge scanningmicroscope (KESM) in combination

with the Tissue Mapper software we enhanced for this purpose that allows for comprehensive high-reso-

lution quantification of ICNS neurons and their qualitative visualization in the 3D spatial context of whole

rat hearts (Achanta et al., 2020). Here, we built upon this proof-of-principle technique to explore the orga-

nization of the ICNS with respect to the anatomical features and uncovered the extent and distribution of

ICNS neurons to compare and contrast the organizational scheme across individuals and sexes.
RESULTS

Comprehensive 3D ICNS mapping to evaluate the variability of ICNS across individuals and

between sexes

The comprehensive mapping of single ICNS neurons and their distribution were qualitatively and

quantitatively analyzed for consistency and variability within and across the sexes. In this, we apply the

data acquisition pipeline developed in our recent paper (Achanta et al., 2020) that employs a KESM for

high-resolution image acquisition and 3D ICNS mapping with the Tissue Mapper software we developed

for this purpose; we were able to qualitatively and quantitatively visualize and examine the distribution of

ICNS neurons in 3D reconstructed hearts as demonstrated in our previous study (Achanta et al., 2020) (Fig-

ure 1A). We applied this recently developed approach to perform comprehensive mapping of single car-

diac neurons across four male and three female Fischer 344 (F344) rat hearts (Figure 1B, Video S1). From the

overall distribution of ICNS neurons, the partitioning around medoids (PAM) algorithm was used to assess

the clusters present based on packing density of neurons throughout the ICNS. This analysis also resulted

in the identification of neuronal clusters that were used as a guide to compare the anatomical organization

of neuronal clusters across individual hearts (Figure 1B, Videos S1 and S2). We further extended our

comparative analysis for two male ICNS by registering the 3D mapping data onto a mathematical repre-

sentation of the heart known as a scaffold, which normalizes the 3D coordinates into a standardized frame-

work of anatomical structures.
The neuron clusters and distribution follow similar spatial pattern with variable density

A broad visual inspection of the ICNS neurons alone show they are not each randomly and individually

distinct; they all form a limited number of clusters that are distributed three-dimensionally in a fundamen-

tally similar fashion. At the same time, there is variability between clusters in their shape, numbers, density,

and specific distribution, somewhat reminiscent of the variability, for example, in the human brain’s cortex

(Figure 2, Table S1). In the male rat hearts, large clusters of neurons were seen to be evenly distributed

throughout the ICNS (Achanta et al., 2020), although some variations were observed (Figures 2A and

S1A). Meanwhile, female ICNS consistently show a smaller number of large, distinct clusters of cardiac neu-

rons, with lower neuronal packing density and with a few neurons scattered in between (Figures 2B and

S1B). One male heart, M54-10, appears as an outlier due to having histological damage that lost part of

the pulmonary veins, which contain clusters in all the other hearts. On average, female rat hearts presented

with 1581 single ICNS neurons per heart, respectively (Figure 2C). This is a low estimate, as we have been

extremely conservative with our standards in mapping criteria. Without one of the male hearts (M54-10,

1722 mapped neurons; Figure 2C), the other three male rats were consistent with an average number of

2845 neurons, ranging from 2676 to 2973. Given that in these immature rats males are larger, the larger

size may be consistent with the greater number of neurons in males.
ICNS neurons distribute around the same cardiac anatomical regions in male and female rats

Across all male and female rat hearts, the exact shapes and locations of the ICNS neuron clusters are some-

what variable, but these clusters are not randomly distributed around the heart but rather restricted, in all

hearts, to the same cardiac anatomical Regions of Interest (ROI) on the base of the heart and the posterior

surface of the left atrium (Video S2). We define the base of the heart as its superior or rostral border,
2 iScience 24, 102795, July 23, 2021



Figure 1. Spatially tracked anatomical map of rat ICNS to enable comparison of variability within and across sexes

(A) Schematic representation of the workflow to acquire male and female rat ICNS maps, analysis of the data using cluster analysis of distinct groups of

neurons, and alignment of data sets onto a generic scaffold.

(B) Posterior whole heart views of four male and three female rat hearts. Yellow: males; Pink: females.
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Figure 2. Quantity and distribution of neurons within the rat ICNS across individuals and sexes

(A and B) The anatomical map of rat ICNS across four males (A) and three females (B). Each dot represents a single neuron. The anatomical orientation

corresponding to the whole heart is indicated. Blue: males; Purple: females.

(C) Quantitative analysis of the total number of neurons mapped and annotated within seven rat hearts.
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including the hilum where the major great vessels access the heart. No neuronal cell bodies were identified

in the ventricles. In order to more precisely compare and contrast the distribution of ICNS neurons between

hearts, we used a quantitative and unbiased algorithm to identify different neuronal clusters. The partition-

ing around medoids (PAM) algorithm identified clusters of neurons based on packing density where the

number of ICNS neuron clusters was determined both mathematically and with the aid of visual inspection

(Kaufman and Rousseeuw, 1987) (Figures 3A and S2). Identification of clusters in each heart allowed us to

more accurately identify and compare the distribution of neurons with respect to their surrounding specific

anatomical features. When applied toward further examination of the neuron distribution in male rat heart

M54-8, we observe clusters on the base of the heart and also a continuous band of cardiac neurons span-

ning the posterior or dorsal aspect of the left atrium that extends into a c-shaped ring that terminates at the

base of the left atrioventricular sulcus (Figures 3A and 3C). These left atrium-associated neurons are also

seen in histology of the ICNS (Figure 3B). In sum, multiple clusters were on the posterior left atrium and

also bordered the neighboring coronary sinus and right pulmonary artery (Figure 3B). Using Neurolucida

Explorer, we associated neuron clusters with these different anatomical features (Figure 3C). Five of the

twelve PAM-identified clusters are associated with the posterior left atrium and the respective ICNS neu-

rons have been highlighted to contrast to other clusters that were closer to other cardiac anatomy (Fig-

ure 3D). Through guided use of the PAM-identified clusters and by orienting the ICNS with respect to these

features of cardiac anatomy in the remaining male and female hearts, we consistently observed neurons to

follow the same patterns of distribution as denoted by the blue and purple colorations (Figures 3D–3J).

Data-driven cluster analysis of ICNS neurons on the base of the heart across male and female

rat hearts also shows preferential distribution of neurons around ROI

In addition to the left atrium, we further studied the regional distribution of the ICNS and the degree of

similarity between two male rat hearts, M54–5 and M54-8, using the PAM-identified neuronal clusters as
4 iScience 24, 102795, July 23, 2021



Figure 3. ICNS neurons are consistently localized around the left atrium

(A) Partitioning around medoids (PAM) clustering analysis in a male rat heart delimited 12 groups of ICNS neurons found at the base of the heart, visualized

here with each color representing a distinct cluster of cells.

(B) Histological sections throughout various levels of the image stack corresponding to the male rat heart shown in panel (A) were evaluated to identify which

clusters were distributed around the left atrium.
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Figure 3. Continued

(C) In addition to the histological context, clusters near the left atrium were visualized in their 3D spatial context using Neurolucida Explorer as an

independent analysis.

(D) The PAM-identified clusters were re-colorized as dark blue and gray to represent ICNS neurons proximal and distal to the left atrium, respectively.

(E–J) 3D spatial evaluation for the remaining male (E-G) and female (H-J) rat hearts identified the neurons that are proximal and distal to the left atrium. The

neurons proximal to the left atrium are re-colorized as dark blue (male) and purple (female), whereas the neurons distal to the left atrium are visualized in

gray. Scale bar: 250 mm.

ll
OPEN ACCESS

iScience
Article
a guide. We see similar regional distribution patterns at the hilum of the pulmonary veins entering the

left atrium, the root of the superior vena cava and right atrium junction, the left atrioventricular sulcus

(groove) as denoted by the coronary sinus, and the anterior interatrial sulcus of the left and right atria.

In both male hearts, there were consistently distinct groups of neurons observed to form the character-

istic c-shaped ring around the hilum of the pulmonary veins and left atrium (Figure 4A). Although fewer

in number, ICNS neurons were consistently seen to be sparsely distributed along the root of the superior

vena cava entry with the right atrium. These neuronal groups are also seen to wrap around the super-

omedial curvature of the right pulmonary artery (Figure 4B). Lastly, ICNS neurons were seen to cluster

along the left atrioventricular sulcus (groove) around the coronary sinus, however the quantity of neurons

present within that region was more variable between the two male hearts (Figure 4C). In addition to the

ICNS neurons commonly observed within those three anatomical regions, a large number of neurons

were also frequently seen to populate the anterior interatrial sulcus. Across both of the male rat hearts

M54-5 and M54-8, ICNS neurons at the base of the heart distributed along the epicardial surface of the

left and right atria as either one large group of cells or as multiple clusters (Figures 5A and 5B). By exam-

ining both hearts from a left superior angle of the posterior aspect, we can see that ICNS neurons within

this area are situated directly beneath the right pulmonary artery (Figures 5C and 5D). Furthermore, the

histological sections provide additional spatial context of these ICNS neurons in relation to other
Figure 4. Data-driven analysis of ICNS demonstrates preferential organization of ICNS neurons in select cardiac anatomical regions

(A–C) ICNS neurons from two male rat hearts that organize around the pulmonary veins (PV) (A), the root of the superior vena cava and right atrium (SVC-RA)

(B), and the atrioventricular sulcus (C). (A) ICNS neurons encircling the pulmonary veins highlighted in green. (B) ICNS neurons around the root of the superior

vena cava and right atrium (SVC-RA) are highlighted in yellow. (C) Clusters of ICNS neurons present at the left atrioventricular sulcus near the coronary sinus

are highlighted in pink. In (A-C), all neurons not emphasized as being associated with the particular region of interest are shown in gray.
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Figure 5. ICNS neurons are localized along the interatrial sulcus

(A–G) Partial projections and histology for M54-5 (A,C,E) andM54-8 (B,D,F). (A,B) A superior view of partial projections of a

selective thickness of heart tissue visualized as 3D image volumes for a pair of male rat hearts. Overlaying contours of the

left and right atria onto the ICNS highlights a large number of ICNS neurons distributed along the anterior interatrial

sulcus. (C,D) A left superior view of the posterior aspect of the partial projections illustrates the distribution of ICNS

neurons along the anterior interatrial sulcus that are obscured by the right pulmonary artery. (E,F) Cardiac histology shows

the location of specific clusters in relation to the left and right atria as well as the right pulmonary artery. Scale bar: 250 mm.

(G) Such a pattern of localization to these cardiac anatomical regions was observed across all the male and female rat

hearts. The colors green, yellow, and pink correspond to ICNS neurons around the PV, the root of the SVC-RA, and the left

atrioventricular sulcus, respectively (From Figure 4).
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anatomical features within this region (Figures 5E and 5F). Additional cluster analysis of ICNS neurons in

these four anatomical ROI additionally extending to male rat hearts M54-9 and M54-10 and to female rat

hearts F54-6, F54-11, and F54-14 all demonstrated similar distributions within those regions (Figure 5G).

While there is a fine grain variation between individuals and across sexes, our analysis indicates that in

the above ROI, on the posterior left atria and in specific locations on the base of the heart, there is con-

sistency in the principal organization structure guiding the regional distribution of ICNS neurons.

Integration of two datasets into a generic heart scaffold identifies regions of dense overlap

We continued the assessment of ICNS similarity between male rat hearts M54-5 and M54-8 by fitting the

3D tracing data and mapped ICNS onto individual heart scaffolds (Figure S4). A scaffold is a mathemat-

ical approach to represent the standard shape of an organ, in this case the heart, through a 3D material
iScience 24, 102795, July 23, 2021 7
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Figure 6. Mapping individual rat ICNS and cardiac anatomy onto a generalized 3D scaffold for comparison across animals

(A) Workflow for registering individual ICNS into a 3D scaffold, fitting the scaffold to the individual cardiac anatomical features, and projection of individual

cells on the scaffold to embed the ICNS in its elements.

(B) An overview of the fitting andmapping processes from the original 3D anatomical segmented data of one of themale rat hearts viewed from two different

angles. The original contour data, fitted scaffold and generic scaffold are shown.

(C) The heart is visualized from a left superior angle to appreciate how the neuron locations in the original data are projected onto the generic scaffold.

Yellow spheres represent positions of the original ICNS locations prior to transforming the data onto the fitted scaffold; orange spheres represent the new

ICNS locations embedded in the scaffold.

(D) Integration of two data sets onto one generic scaffold.

(E) Looking at the same regions of interest in Figures 4 and 5, varying colors of pink are used to indicate the proportion of neuronal overlap between the two

male datasets from panel (D). Additional scaffolds showing all four males mapped onto a generic male scaffold and all three females mapped onto a generic

female scaffold can be seen in Figure S6.
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coordinate system. Within this coordinate framework, many aspects of the heart can be represented

including the musculature, vasculature, and the spatial distribution of the ICNS. The advantage for fitting

the 3D mapping data into the scaffold is the ability to compensate for distortions to the image volume

and corresponding tracings by accurately and mathematically representing the native structure of the

heart while maintaining the structural anatomy and spatial position of the ICNS (Figures 6A and S4,

Video S3).

The 3D volumetric data of the base of M54-8 anatomically segmented heart with spatially recorded ICNS

neuron locations are aligned with a heart scaffold (Figure 6B). The scaffold is then deformed to minimize

errors and improve fitting accuracy to the 3D anatomically segmented data. Once the scaffold is in the

same coordinate space as the original data, ICNS neurons are mapped onto the scaffold as element ma-

terial coordinates (Figures 6B and S5). Looking more closely at the left superior aspect of the heart, we can

see how the positions of the neurons from the original 3D anatomical segmented data are projected onto

the nearest surface of the scaffold for an accurate fitting which can then be integrated into the generic scaf-

fold of the heart (Figures 6C and S5). By integrating the anatomical and mapped ICNS data from two male

rat hearts into one common coordinate space, we are able to visualize ROI at the base of the heart with a

high proportion of overlapping ICNS neurons (Figure 6D, Video S3). Furthermore, analysis of the overlap-

ping regions of the ICNS across animals suggests results consistent with the similarity of ICNS distribution

in the four ROI, around the left atrium, the left and right pulmonary veins, the superior vena cava, and the

interatrial sulcus (Figure 6E, Video S3). We have further expanded this analysis to include projection of all

four male ICNS and all three female ICNS onto the generic scaffold (Figure S6). Integration of these data

sets onto the scaffold allows for quantitative comparison between and across multiple species despite vari-

ation in the topographic organization of the ICNS.
Quantitative analysis of male and female ICNS demonstrate a similar organization between

individuals and across sexes

Although there is a difference in the number of neurons observed between male and female rat hearts,

the distribution pattern of ICNS neurons are present in the same ROI at the base of the heart and poste-

rior left atrium. To describe the similarities and differences in the organization of the ICNS between sexes

we compared the ICNS of male rat heart M54-8 with that of female rat heart F54-6. From the whole-heart

perspective of both the male and female rat hearts, we see once again that ICNS neurons are distributed

on the posterior left atrium (Figures 3, 7A, and 7B). By orienting the ICNS of both the male and female rat

hearts in a 2D packing density plot, aided with identification of high density clusters through PAM anal-

ysis, we see that the greatest difference presents in the relative numbers of neurons in various locations,

rather than their overall distribution (Figures 7C, 7D, and S1–S3). In the male rat heart, there is a uniform

packing density of ICNS neurons throughout the superior-inferior extent with no sharp peaks present in

any particular group of cells (Figure 7C). In contrast, the female rat heart exhibited a higher proportion of

ICNS neurons at the superior aspect of the heart (Figure 7D).

Examination of the histology at the hilum, interatrial sulcus, and atrioventricular sulcus shows correspond-

ing PAM-identified neuronal clusters within those ROI for both the male and female rat hearts, supporting

our observation that there is a preferential organization in the regional distribution of ICNS neurons (Fig-

ures 7E, 7F, S7, and S8, Videos S4 and S5). While the male and female rat hearts exhibit differences in the

packing densities of ICNS neurons, the localization pattern and extent of the neurons illustrates consistent

organization between individuals and across the sexes.
iScience 24, 102795, July 23, 2021 9



Figure 7. Comparison of male and female ICNS

(A and B) Whole heart posterior view of PAM clustered neurons of male (A) and female (B) ICNS.

(C and D) Flatmap projections derived from PCA plots are used to show the spatial data and packing density of the

neurons in male (C) and female (D) ICNS colored for PAM-identified clusters (Flatmaps for all hearts can be found in

Figure S1, albeit not colored by PAM cluster).

(E and F) Histological tissue sections containing PAM colored neurons in relation to the four regions of interest are shown

in a 2D context to support the 3D visual data for male (E) and female (F) ICNS. Scale bar: 250 mm.

ll
OPEN ACCESS

iScience
Article
DISCUSSION

In this study, we applied our recently established approach on the comprehensive mapping of the ICNS

that uses a KESM for high-resolution image acquisition, the TissueMapper software for single neuron map-

ping and cardiac annotation, and PAM algorithm for cluster identification and density packing. Together,

this workflow allowed us to qualitatively visualize and quantitatively determine the spatial distribution of

ICNS neurons within and between sexes in 3D digitally reconstructed whole hearts (Achanta et al.,

2020). We found that the pattern, distribution, and clustering of ICNS neurons are highly conserved in

both males and females, although variability in terms of the exact location, shape, and number of ICNS

neuron clusters is present. Compared to males, our present data strongly suggests that the female ICNS

comprises significantly fewer neurons, although the localization and distribution of ICNS neurons were

largely overlapping at the base of the heart at matching ROI in both males and females. To further develop
10 iScience 24, 102795, July 23, 2021
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our ICNS mapping approach, we have created generic heart scaffolds that are mathematical representa-

tions of the native organ and subsequently fitted the ICNS of two male rat hearts onto a single integrative

scaffold such that the distribution and variability of cardiac neurons can be compared in a common heart

model. Together, our data demonstrates a robust organizational plan of the ICNS that provides an anatom-

ical foundation for future comparative, integrative, and functional studies of brain-heart connectome, mo-

lecular phenotype, and chemical coding features of the ICNS.

While there was variability in the ICNS distribution between individuals and sexes, we found that neurons were

consistently organized around four distinct ROI: the hilum of the left atrium and the pulmonary veins, the root of

the right atrium and superior vena cava junction, the left atrioventricular groove, and the anterior interatrial sul-

cus. As observed in multiple species, such an organization suggests a connection between anatomical features

and their functional relationship. In large animals (rabbit, dog, pigs), functional studies showed the two large

ganglionic plexuses (GP) of the right atrial ganglionated plexus and the middle pulmonary vein and caudal

vena cavamay regulate sinoatrial (SA) and atrioventricular (AV) functions to someextent (Allen et al., 2018; Arora

et al., 2003; Cardinal et al., 2009; Hardwick et al., 2014; Nakamura et al., 2016; Pauza et al, 2000, 2014; Petraitiene

et al., 2014; Saburkina et al., 2014; Singh et al., 2013; Steele et al., 1994; Xi et al., 1991). In rats, two large clusters of

ICNShavebeen reportedat similar locations as in the rabbits andpigs, which also regulate the SAheart rate and

AV conduction (Ai et al., 2007; Cheng andPowley, 2000; Cheng et al, 1999, 2004; Hoard et al., 2008; Li et al, 2010,

2014; Pauza et al., 2000; Richardson et al., 2003; Rysevaite et al, 2011a, 2011b; Sampaio et al., 2003),. Our work,

mapping out all ICNS neurons, expands upon the concept of GP with dedicated functional targets by suggest-

ing that while the existence of these GPs may be consistent across individuals and species, the organization of

eachGPat the single neuron level is highly variable. This organization necessitates annotating the neurons in the

ICNS based on how they participate in control of the end organ, not based purely on their location and implies

that while the neurons may not be found in the exact same location in every individual, they will have a similar

relationship with the potential downstream end-organ targets.

It has been well known that there are significant differences in neuro-hormonal regulation of the cardiovas-

cular system in males and females (Dal Lin et al., 2018). Sex differences in baroreflex sensitivity and preva-

lence of cardiovascular disease in pre-menopausal women may be related to the ICNS differences we

observe. The choice of four weeks of age for the rats in the present study lays the foundation for future

comparative studies across ages and stages of sexual maturity. Our findings that there are some sex-

related differences at this stage may further inform later studies of the impact of these changes at an early

age and how they may manifest physiologically later in development. It will also be interesting to consider

future studies that examine the relationship between neurons and packing density of neurons with their

functionality in a diseased state. The pattern of ICNS distribution in the female rat hearts appeared

more variable than in the male hearts and were present in far fewer numbers and at a lower density. Despite

this, we consistently found ICNS neurons located in the four major ROI in both males and females, indi-

cating that neurons in the ICNS of both sexes congregate in similar anatomical regions. Although there

is variability in the density and distribution of the neurons in each of these regions, their presence suggests

that it is not control of the functionality of the ICNS that differs between males and females but rather the

strength of that control. The number of neurons necessary to participate in the baseline functional circuits

may differ between sexes, and difference in density may explain some of the sex differences observed at a

functional level, especially when moving away from the baseline healthy state to a state of injury or disease.

Even as we observed consistent results across animals, we would like to note that certain histological issues

can potentially affect the quality of the data and we have made extensive attempts to mitigate the impact.

In the case of one male heart (M54-10) a piece of the hilum and associated ICNS were cut off during

removal, and we incorporated the data from this heart at available comparable cardiac anatomical features

so as to maximize the utility of the collected images. Another factor that can impact data is variable staining

quality, which in some cases tends to obscure ICNS clusters for mapping. Only a very small proportion of

sections (<2%) were affected by this issue in our dataset. Hence, we rule out histological staining variability

as a major contributing factor to the observed lower number of neurons seen in the female ICNS. We have

now worked out staining methods that will resolve these minor issues in future studies. Improvement of tis-

sue preparation may lead to more similarity including locations, shapes, sizes, packing density and number

of neurons. For example, the atrial tissue and the major vessels are soft and thus the shape of the left and

right atria, as well as the major vessels were not identical in size and shape. Future normalization of atria

after fixation will reveal more similarity of ICNS distribution within and across sexes. However, given the
iScience 24, 102795, July 23, 2021 11
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variation of ICNS neuron distribution from the whole-mounts of many carefully preparedmale animals, vari-

ability between individuals is expected (Li et al., 2014; Rysevaite et al, 2011a, 2011b). Additionally, based on

learnings in the present application of PAM, we now are prepared for future studies to further adapt the

analysis to consider anatomical features surrounding neuronal clusters in order to partition them without

the aid of visual inspection.

From the integration of the ICNS of two male rat hearts into one integrated scaffold, we have demon-

strated a replicable and reusable framework for the incorporation of additional information on the func-

tional, molecular, and phenotypic aspects of the ICNS, which will provide the foundation for a brain-heart

connectome atlas. Projection of multiple data sets onto a generic scaffold allows for integration of pre-

established findings throughout the known literature to be integrated into a common coordinate frame-

work, providing a path to more efficiently build upon findings obtained in previous studies. Placing the

ROIs identified in our study into the scaffold as a standard reference system and further integrating

anatomical, electrophysiological, and more data types into a unified representation of the heart allows

all of the findings to be studied as a single system. Eventually, the integrative scaffold can present a com-

plete cardiac-brain atlas with all anatomical, physiological, and molecular information for cardiac control.

This integration of multiple relevant data types in a common framework provides a natural substrate to

enable modeling and simulation studies to be done in a more systematic structure, as is being done

through the O2S2PARC platform (Neufeld et al., 2020). Whether aging and diseases may remodel ICNS

differently is an important issue in development of targeted therapeutics. Through modeling and simu-

lation of the ICNS we can further dissect the variability in the organization of the ICNS across individuals

and between sexes and how it is remodeled in pathological conditions. These developments will inform

and accelerate the progress toward neuromodulation therapies and further enable the development of

treatments tailored to each individual.

Limitations of the study

� The anatomical annotations and representations may contain interobserver variability due to the

manual segmentation process. The outlines and borders of the anatomic structures depend on sub-

jective interpretation to some extent, which is unavoidable in a manual annotation process.

� Unbiased clustering of single neuron positions through PAM analysis was aimed at the whole heart

and not specific cardiac substructures. The PAM clusters were interpreted visually for proximity and

adjacency to cardiac anatomical features.

� Histological issues such as efficiency of staining can affect the quality of the data due to incomplete

mapping in a few sections (<2% per our exhaustive accounting). We attempted to mitigate such is-

sues by comparing across sequential sections to mark individual neurons.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Comparison of the Intrinsic Cardiac Nervous

System Across Male and Female Rat Hearts, a

dataset containing image stacks and XML

files for male and female hearts and the

integrative scaffold

Stimulating Peripheral Activity to

Relieve Conditions (SPARC) data

portal, sparc.science

https://doi.org/10.26275/nyah-5kq9

Mapping of ICN Neurons in a 3D

Reconstructed Rat Heart, a dataset containing

image stacks and XML files for a male rat heart

Stimulating Peripheral Activity to

Relieve Conditions (SPARC) data

portal, sparc.science

https://doi.org/10.26275/nyah-5kq9

Experimental Models: Organisms/Strains

Fischer 344 Rat Envigo RRID:RGD_1547866

Software and Algorithms

R version 3.6.3 (Holding the Windsock) The R Foundation for Statistical Computing https://www.r-project.org/; RRID:SCR_003388

ScaffoldMaker ABI https://github.com/ABI-Software/

scaffoldmaker/; (RRID:SCR_019003)

OpenCMISS-Zinc ABI http://opencmiss.org/

MAPClient package Musculoskeletal Atlas Project https://github.com/

MusculoskeletalAtlasProject/mapclient

Biolucida MicroBrightfield, Inc. RRID:SCR_018256

Tissue Mapper MicroBrightfield, Inc. RRID:SCR_017321

cluster R package Comprehensive R Archive Network (CRAN) https://cran.r-project.org/web/

packages/cluster/index.html
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, James S. Schwaber: james.schwaber@jefferson.edu.
Materials availability

This study did not generate new unique reagents.
Data and code availability

The authors declare that all the data supporting the findings of this study are available within the article

and its supplemental information files or from the corresponding author upon reasonable request.

All sample acquisition images and annotations pertaining to 3D spatial location are publicly available in

the sparc.science (RRID:SCR_017041) repository with the digital object identifiers https://doi.org/10.

26275/nyah-5kq9 and https://doi.org/10.26275/wcje-hxib.

PAM algorithm for clustering and analysis are available as part of the R software (RRID:SCR_003388) in

the package cluster.

ScaffoldMaker (RRID:SCR_019003) is an open-source Python library package developed in-house at the

ABI to mathematically represent the generic atrial topology of the heart and is available at: https://

github.com/ABI-Software/scaffoldmaker/.

Fitting of the scaffold with the 3D mapping data was performed with the OpenCMISS-Zinc platform

developed at the ABI and is available at: http://opencmiss.org/.
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Development of the workflow management system was achieved using the MAPClient package and is

available at: https://github.com/MusculoskeletalAtlasProject/mapclient.

Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Four male and three female Fischer 344 (F344) (RRID:RGD_1547866) rats four weeks of age were obtained

from Envigo. All treatments and sample processing were performed similarly for male and female rats. An-

imals were anesthetized using 5% isoflurane. Once the animal was non-responsive to a contralateral toe

pinch, the abdominal cavity was opened for subsequent perfusions and removal. For samples M54-5

and F54-6, the hearts were removed and fixed overnight in 4% paraformaldehyde before whole-mount

diffusion staining was performed with Cresyl-Echt Violet (0.05g in 50mL dH2O and 150mL glacial acetic

acid) for seven days to visualize intrinsic cardiac neurons. The protocol was updated and altered slightly

for the remaining samples. The animal was perfused with phosphate buffered saline until exsanguinated

via the ascending aorta at a pressure of 280 mmHg. Animal was then perfused at the same pressure with

200 mL 10% neutral buffered formalin. Hearts were dissected, further fixed overnight in 10% neutral buff-

ered formalin, and whole-mount diffusion staining was performed with Cresyl-Echt Violet (0.05g in 50mL

dH2O and 150mL glacial acetic acid) for fourteen days to visualize intrinsic cardiac neurons. The hearts

were processed in a Sakura Tissue Tek VIP 3000 tissue processor, and then embedded in paraffin. A syringe

was used to inject molten paraffin into chambers of the heart through great vessels in order to avoid air

bubbles within the chambers, which can cause problems in KESM imaging. All procedures were performed

in compliance with the National Institute of Health Guide for the Care and Use of Laboratory Animals.

METHOD DETAILS

A note on the gross anatomy and nomenclature describing the axis of the heart

The heart is enclosed within a thin transparent pericardium (sac) which is attached to the major arteries and

veins. The anatomical ‘‘base of the heart’’ can otherwise be referred to as the superior surface of the heart. It

is formed mainly by the left atrium, and to a small extent by the posterior portion of the right atrium. A dor-

sal view of the heart shows all major arteries and veins that encompass the base of the heart (i.e. aorta, pul-

monary trunk, superior and inferior vena cava as well as the great arteries and veins).

Knife Edge Scanning Microscope (KESM) image acquisition, post-processing, and ICNS

mapping in 3D reconstructed hearts with Tissue Mapper

The paraffin-embedded hearts were digitized with a Knife Edge Scanning Microscope (KESM) by

sectioning heart tissue at a 5 mm thickness for each z-slice. The paraffin-embedded hearts were mounted

onto a nano-precision XYZ stage that moved the sample along a diamond ultramicrotome knife coupled

with a fiber-optic cable. The fiber-optic coupled microtome knife illuminated the edge of the knife where

the tissue sample was sectioned. A custom-built objective with a 5mm field of view and a tube lens with

magnification equivalent to 10x was focused on the beveled edged of the diamond knife. The tube lens

was connected to a CMOS TDI line scan color sensor with a 16K pixel resolution RGB output with a 5mm

x 5mm pixel size.

For each sample, themounted paraffin-embedded hearts weremoved by the robotic XYZ stage against the

5mm diamond knife to section the heart. As the heart was sectioned along the Y directionality, one contin-

uous line or strip of image data at the X dimension was captured by the line scanning camera and gener-

ated a single image tile of 10,000 pixels where each pixel represented 0.5mm. After one strip of image data

was captured, the stage then moved to an adjacent region of the heart and the process was repeated until

the sample at that specific z-level was digitized. This whole process was repeated until the entire heart was

sectioned. In order to ensure that the sectioning plane of the heart did not influence the identification of the

ICNS neurons and the subsequent analysis we chose to section the hearts across different planes

(Table S1).

The collected image data was post-processed with KESM software to denoise and normalize the back-

ground. The KESM generated image tiles from each XY location at every Z-level. The tiles were automat-

ically aligned and stitched into 2D image planes, which represented one section of the heart. The pixels

that did not contain the heart were cropped to remove excess image data. Each individual 2D image plane
16 iScience 24, 102795, July 23, 2021
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was then assembled into a 3D image volume with a 40:1 JPEG2000 compression (Biolucida Converter, MBF

Bioscience, Williston, RRID:SCR_018256, MicroBrightfield, Inc., RRID:SCR_004314). The image volumes

contained a range of 1380-2580 sections per image volume that was dependent on the sectioning plane.

The image volumes were then annotated (TissueMapper, RRID:SCR_017321) to quantify andmark the loca-

tion of intrinsic cardiac neurons and to annotate cardiac anatomy in the 3D image volumes. The annotation

of cardiac anatomy was selected from a few structures that represented the chambers andmajor blood ves-

sels found consistently in all hearts to simplify the comparative distribution of neurons between individuals.

On sections where the major features were present (left and right atria, auricles, ventricles, aorta, pulmo-

nary trunk and arteries, left, middle, and right pulmonary veins, superior vena cava, inferior vena cava, cor-

onary sinus, and coronary arteries), the anatomy was traced with different colors for each representative

feature in intervals across all the sections in which they were present. The surfaces contoured for the cardiac

chambers and blood vessels were the endocardium and the tunica intima, respectively. The epicardium

was contoured for the left and right auricles. The traced anatomy were visualized as 3D wireframe recon-

structions in the Tissue Mapper 3D to compare the ICNS between individuals and across sexes. Detailed

protocols can be found online at protocols.io as https://doi.org/10.17504/protocols.io.bdz5i786.

Intrinsic cardiac neuron mapping and quantification

ICNS neurons were mapped based on whether neurons were well-stained, if the eccentric nucleus was

visible, if the cell body was unobscured by artifacts, and the cell size. ICNS neurons were identified by Nissl

staining, morphology, and localization around specific cardiac anatomy and were mapped in intervals of

four sections to prevent double counting. If the nucleus was not visible in the fourth interval section of map-

ping, then the section above and below was examined for a neuron with a visible nucleus that occupied the

same position in the interval section of counting. Lastly, neuron somata were measured for a short and long

axis dimension of at least 13 mm x 23 mm as the size criteria for cell mapping (Cheng et al., 1997; Pauza et al.,

2002). All ICNS neurons were mapped and quantified by following the histological criteria for identifying

neurons and the results are summarized in Table S1. Protocols can be found online at protocols.io as

https://doi.org/10.17504/protocols.io.bdz5i786.

Cluster analysis using partitioning around medoids (PAM)

PAM analysis was performed using the ‘‘cluster’’ package in R (v2.1.1), using Euclidean as the distance

metric (https://cran.r-project.org/web/packages/cluster/index.html). The PAM algorithm is similar to the

k-means algorithm that works to break the dataset into groups and attempts to minimize the distance

from each point to its designated group (Kaufman and Rousseeuw, 1987). Unlike k-means, k-medoids or

PAM chooses a data point as a center. It minimizes a sum of pairwise dissimilarities instead of a sum of

squared Euclidean distances. It makes the locally optimal choice at each stage with the intent of finding

a global optimum point. In layman’s terms, the centers, or medoids of the clusters are chosen so as to mini-

mize the distance between that center and surrounding points, essentially these centers will be in the most

dense areas. Each point is then assigned to the medoid ‘‘group’’ by finding the minimum distance between

that point and each medoid. Therefore, each point is assigned to the medoid that it is closest to.

The optimal number of clusters was determined through comparison of silhouette widths of real data to

randomized data. In short, the data was subjected to PAM clustering for a given number of clusters. Ran-

domized data was subjected to the same clustering 10 different times. Silhouette widths of the randomized

tests were compared to that of the data and the optimal cluster number was determined as the number of

clusters with the highest silhouette coefficient and widest range between experimental values and random-

ized controls with the aid of visual inspection to ensure optimal separation between clusters (Figures S2 and

S3). The silhouette width is a coefficient describing how well the clustering algorithm fits the data, with

higher coefficients indicating a better fit.

Computational scaffold registration and integration

The 3D mapping data of the ICNS in the male and female F344 rats were curated by the SPARC data

curation team (SPARC Project, RRID:SCR_017041). The curated data was then sent to the Auckland Bioen-

gineering Institute (ABI) MAP-CORE branch for registering the 3Dmapping data onto individual heart scaf-

folds. The registered data for two of the male F344 rat hearts standardize the 3D coordinates of the map-

ping data and to visualize the degree of similarity between ICNS distributions in common anatomical

planes.
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An anatomical scaffold mathematically defines the shape of an organ using a 3D material coordinate sys-

tem. Within this coordinate framework many different aspects of tissue structure can be assembled

including muscle fibre orientation, neural pathways, and the spatial distribution of ICNS data. Note that

the term ‘material’ is used because these coordinates effectively identify the position of any material (tis-

sue) particle, independent of its particular location in 3D space or how distorted it is. This material embed-

ding provides a powerful reference frame to analyze and compare the pattern of individual ICNS

distribution on one integrated scaffold.

The generic topology of the atria scaffold was algorithmically generated from a set of anatomical andmath-

ematical parameters using an open-source Python library called ScaffoldMaker (RRID:SCR_019003). The

customized generic atria scaffold was fitted to each subject’s image contours using a least squares optimi-

zation. Specifically, the sum of the weighted distances between each segmentation data point on the con-

tour and its projection onto the nearest element was minimized during the fitting process. This distance is a

function of the scaffold parameters. The fitted scaffold is able to capture the spatial location and distribu-

tion of ICNS neurons and embed them locally into the elements as material coordinates. This material

embedding of ICNS neurons stores a unique one-to-one mapping that can be used to transform them

onto the corresponding generic scaffold elements.
QUANTIFICATION AND STATISTICAL ANALYSIS

All of the quantification details of experiments can be found in the Method Details subsections and accom-

panying figure legends. We did not perform a statistical significance analysis in this study.
18 iScience 24, 102795, July 23, 2021


	3D single cell scale anatomical map of sex-dependent variability of the rat intrinsic cardiac nervous system
	Introduction
	Results
	Comprehensive 3D ICNS mapping to evaluate the variability of ICNS across individuals and between sexes
	The neuron clusters and distribution follow similar spatial pattern with variable density
	ICNS neurons distribute around the same cardiac anatomical regions in male and female rats
	Data-driven cluster analysis of ICNS neurons on the base of the heart across male and female rat hearts also shows preferen ...
	Integration of two datasets into a generic heart scaffold identifies regions of dense overlap
	Quantitative analysis of male and female ICNS demonstrate a similar organization between individuals and across sexes

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Method details
	A note on the gross anatomy and nomenclature describing the axis of the heart
	Knife Edge Scanning Microscope (KESM) image acquisition, post-processing, and ICNS mapping in 3D reconstructed hearts with  ...
	Intrinsic cardiac neuron mapping and quantification
	Cluster analysis using partitioning around medoids (PAM)
	Computational scaffold registration and integration

	Quantification and statistical analysis





