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With the further development of the construction of “smart mine,” the establishment of three-dimensional (3D) point cloud models of
mines has become very common. However, the truck operation caused the 3D point cloud model of the mining area to contain dust
points, and the 3D point cloud model established by the Context Capture modeling software is a hollow structure. *e previous point
cloud denoising algorithms caused holes in the model. In view of the above problems, this paper proposes the point cloud denoising
method based on orthogonal total least squares fitting and two-layer extreme learning machine improved by genetic algorithm (GA-
TELM). *e steps are to separate dust points and ground points by orthogonal total least squares fitting and use GA-TELM to repair
holes. *e advantages of the proposed method are listed as follows. First, this method could denoise without generating holes, which
solves engineering problems. Second, GA-TELM has a better effect in repairing holes compared with the other methods considered in
this paper. Finally, this method starts from actual problems and could be used in mining areas with the same problems. Experimental
results demonstrate that it can remove dust spots in the flat area of the mine effectively and ensure the integrity of the model.

1. Introduction

*ree-dimensional (3D) point cloud has become an im-
portant and popular representation of objects in 3D space
[1–3]. Multiview stereo-matching techniques can recover 3D
models from images or videos, and their typical output
format is 3D point clouds [4]. In this paper, a drone is used
to photograph the target area, and Context Capture software
is used to model and output the 3D point cloud data of the
target area. However, it could produce noise points by using
the above methods to obtain 3D point cloud data, and the
reason is that the dust generated by the truck operation
happened to be captured by the drone in the mining area,
and the Context Capture software was used to model the
photos with dust and the resulting point cloud data con-
tained dust points. *erefore, it is necessary to remove the
dust points, which is the same as removing the noise points
from the point cloud data.

Rosman et al. [5] proposed a new framework for point
cloud denoising through patch cooperative spectrum
analysis, which could handle high-level noise gracefully
while clearly retaining the surface features of the model.
Also, the accuracy and robustness of the algorithm were
improved to a certain extent. Mattei and Castrodad [6]
proposed moving robust principal component analysis to
remove noise, which was effective in denoising point clouds
with and without sharp features and had certain advantages
compared with traditional denoising methods such as bi-
lateral filtering. Sun et al. [7] proposed an anisotropic point
cloud denoising method using L0 minimization. Zheng et al.
[8] proposed a point cloud denoising method that could deal
with point clouds with sharp features effectively, which
retains point cloud features better. *e moving least squares
(MLS) [9, 10] and local optimal projection (LOP) [11] are
two main methods of point cloud denoising. Guennebaud
and Gross [9] proposed a new point set surface definition
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method, which improves the projection stability to a certain
extent and can process point cloud data naturally. It is also
possible to reliably calculate the average curvature of the
surface without cost. Öztireli et al. [10] proposed a new
point-based surface definition method to solved some
problems of performing approximation in the sense of least
squares, which can handle sparse samples, can retain the fine
features of the samples, and shows the superiority to a
certain extent. Lipman et al. [11] used the LOP operator to
approximate the surface of the point cloud data, which
works well when the data are noisy. Buades et al. [12]
proposed a new algorithm, the nonlocal means (NL-means),
based on a nonlocal averaging of all pixels in the image.
Dabov et al. [13] proposed the BM3D algorithm to point
cloud denoising, which can also remove high noises while
ensuring the fine shape features of the sample. Wang et al.
[14] and Deschaud and Goulette [15] applied the nonlocal
mean denoising method to the point cloud data and used the
edge preservation method for point adaptive filtering. Sarkar
et al. [16] achieved the desired denoising effect by applying
smoothness on the patch dictionary and sparsity on the
coefficients and proved the feasibility and advantages
through experiments. Wang et al. [17] used k-means clus-
tering algorithm and bilateral filtering denoising algorithm
to solve the problem of how to reduce noise points in
modeling ancient buildings. *e results show that the sur-
face of the point cloud data model is smooth after pro-
cessing, and the boundary features are maintained well.
Zhao [18] aimed at the different scale noise and algorithm
time-consuming problems in the process of denoising and
smoothing 3D point cloud model data, and the denoising
algorithm based on classification idea of point cloud noise
was proposed. It divides the noise into two categories in-
cluding large-scale noise and small-scale noise. Compared
with the traditional bilateral filtering, the improved bilateral
filtering algorithm is used to smooth the point cloud model
data, which increases the calculation rate effectively. In view
of the difficulty of removing complex noise in the point
cloud data model of cultural relics, a denoising method for
point cloud with geometric feature preservation was pro-
posed by Liu et al. [19], which had good denoising effect on
cultural relic point cloud data.

For the hollow model whose point cloud is only con-
centrated on the surface of the object (Figure 1), the above
method applied to the hollow model would cause holes in the
model. *erefore, this paper proposes the point cloud
denoising method combining orthogonal total least squares
fitting and two-layer extreme learning machine improved by
the genetic algorithm (GA-TELM). *e main steps are to
separate the dust points and the ground points with the or-
thogonal total least squares fitting method and use GA-TELM
to repair the holes. *e results show that this method can
remove noise points without producing holes.*e innovations
of the paper include the following three points: (1) this method
can denoise without generating holes, which solves engineering
problems and has engineering significance; (2) compared with
other algorithms, GA-TELM has a better effect on repairing
holes; and (3) this method also has a better treatment effect for
other situations with similar problems.

2. Methods

2.1. Orthogonal Total Least Squares Fitting Method. *e
research area is the flat area of the mine whose point cloud
data have planar characteristics, and the point cloud data
denoising method based on plane fitting can be used. *e
plane fitting methods based on point cloud data mainly
include the least squares method, the eigenvalue method, the
total least squares method considering independent variable
and dependent variable error [20], and the orthogonal total
least squares fitting method [21]. In contrast, the orthogonal
total least squares fitting method has higher denoising ac-
curacy and feasibility.

*e orthogonal total least squares fitting method is based
on the minimum square sum of the orthogonal distances
from a point to a plane and takes into account the errors of
the dependent variable and the independent variable
compared with other plane fitting methods. *erefore, this
method can also be used to separate dust points and flat
points when the flat area of the mine is uneven. *e planar
model is as follows:

a(x − x) + b(y − y) + c(z − z) � 0, (1)

where a, b, and c are the parameters of the fitted plane to be
evaluated, x � (1/n) 􏽐

n
i�1 xi, y � (1/n) 􏽐

n
i�1 yi, z � (1/n)

􏽐
n
i�1 zi, and n is the total number of point clouds partici-

pating in the fitting plane.
*e matrix M is constructed, performs eigenvalue

decomposition on MTM, and takes the eigenvectors cor-
responding to the smallest eigenvalue as the value of the
parameters a, b, and c of the fitting plane. *e distance di

from each point in the target area to the fitting plane is
calculated. According to the ranging accuracy σ/50, this
paper calculates the threshold δ of the distance from the
point to the fitted plane and judges the relationship be-
tween di and δ. If the di < δ, the corresponding point is
classified as a ground point. Otherwise, it is classified as a
dust point.

M �

x1 − x y1 − y z1 − z

x2 − x y2 − y z2 − z

. . . . . . . . . . . . . . . . . .

xn − x yn − y zn − z

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n×3

, (2)

where (xn, yn, zn) represents the nth point.

Figure 1: Hollow structure of 3D point cloud model in mining
area.
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With the aforementioned method, the separation of dust
points and ground points is achieved.

2.2. GA-TELM

2.2.1. Extreme Learning Machine. Extreme learning ma-
chine (ELM) [22–24] is a learning algorithm for single
hidden layer feed-forward neural networks, and the only
parameter that needs to be set during the training process is
the number of nodes in the hidden layer of the network.
ELM has a fast learning speed and strong generalization
ability and has received wide attention from domestic and
international scholars.

N samples are (Xi, ti), and

Xi � xi1, xi2, . . . , xin􏼂 􏼃
T ∈ R

n
,

ti � ti1, ti2, . . . , tim􏼂 􏼃
T ∈ R

m
.

(3)

*ere is a single hidden layer neural network with L

hidden layer nodes, and its output can be expressed as

􏽘

L

i�1
βig Wi · Xj + bi􏼐 􏼑 � oj, j � 1, 2, . . . , N, (4)

where g(x) is the activation function,
Wi � [ωi1,ωi2, . . . ,ωin]T is the input weight, βi is the output
weight, bi denotes the bias of the ith node of the hidden layer,
and Wi · Xj denotes the inner product of Wi and Xj.

*e goal of single hidden layer neural network learning is
to make the output with minimum error, which can be
expressed as

􏽘

N

j�1
oj − tj

�����

����� � 0, j � 1, 2, . . . , N, (5)

and there are βi, bi, and Wi, to make equation (6) true:

􏽘

L

i�1
βig Wi · Xj + bi􏼐 􏼑 � tj, j � 1, 2, . . . , N. (6)

It can be expressed as a matrix:

Hβ � T, (7)

where H is the output of the hidden layer node, β is the
output weight, and T is the desired output.

*e purpose of network training is to get 􏽢Wi, 􏽢bi, and 􏽢βi to
make equation (8) true:

H 􏽢Wi,
􏽢bi􏼐 􏼑􏽢βi − T

�����

����� � min
W,b,β

H Wi, bi( 􏼁βi − T
����

����, i � 1, 2, . . . , L.

(8)

*is is equivalent to minimizing the following loss of
function:

E � 􏽘
N

j�1
􏽘

L

i�1
βig Wi · Xj + bi􏼐 􏼑 − ti

⎛⎝ ⎞⎠

2

. (9)

β can be expressed as follows:

􏽢β � H
+
T. (10)

Finally, the output of the ELM network is y � Hβ.

2.2.2. Two-Hidden-Layer Extreme Learning Machine. To
improve the accuracy of ELM, Qu et al. [25] added an
implicit layer to ELM and proposed a two-hidden-layer
extreme learning machine (TELM) [26, 27], which gave a
new method to calculate the parameters of the second
implicit layer. *e simulation experiments show that TELM
improves the classification and regression accuracy while the
number of nodes in the hidden layer is reduced compared
with ELM.

*e weights between the first hidden layer and the input
layer and the deviation vector of the neurons in the hidden
layer of ELM need to be taken randomly. Also, the number
of neurons in the hidden layer needs to be set manually.

W and B of the first hidden layer are set randomly; this
paper makes WIE � B W􏼂 􏼃 and XE � 1 X􏼂 􏼃

T, and the
output of the first hidden layer can be expressed as follows:

H � g WIEXE( 􏼁, (11)

and this paper uses H as the final hidden layer output; the
output weight β of the hidden layer is shown in the following
equation:

β � H
+
T. (12)

*en, the expected output H1∗ of the second hidden
layer is shown in the following equation:

H1∗ � Tβ+
. (13)

*e second hidden layer W1 and B1 can be calculated
from the following equation:

WHE � g
−1

H1∗( 􏼁H
+
E. (14)

*en, the second hidden layer prediction output H2 is
shown in the following equation:

H2 � g WHEHE( 􏼁. (15)

So, βnew � H+
2T. *e flowchart of TELM algorithm is

shown in Figure 2.

2.2.3. Two-Layer Extreme Learning Machine Improved by the
Genetic Algorithm. Because TELM needs to randomly ini-
tialize the input weight matrix and deviation vector of the
first hidden layer, some weights and deviations may be equal
to 0, which means that there will be some invalid nodes in
the network. It will reduce the effectiveness and accuracy of
the TELM prediction model.

Haber et al. [28] proposed the simple multiobjective
cross-entropy method, whose efficiency is corroborated in a
real case study represented by the two-objective optimiza-
tion of the microdrilling process. *e proposed strategy
performed better than the other methods with higher
hyperarea and shorter execution time. Guerra et al. [29]
proposed the digital twin-based optimization procedure.*e
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simulation study and the real-time experiments demonstrate
the suitability of the digital twin-based optimization pro-
cedure and lay the foundations for the implementation of the
proposed method at an industrial level. Jia et al. [30] pro-
posed the new optimized radial basis function (RBF) neural
network algorithm based on genetic algorithm (GA-RBF),
which uses genetic algorithm to optimize the weights and
structure; it chooses new ways of hybrid encoding and
optimizing simultaneously. Inthachot et al. [31] used arti-
ficial neural network (ANN) and genetic algorithm (GA) to
predict the trend of *ailand’s SET50 index. GA can find
better subsets of input variables for importing into ANN,
hence enabling more accurate prediction by its efficient
feature selection.

GA is the classic optimization algorithm, and scalability is
good. It is easy to combine with other algorithms and also the
basis for subsequent improvement of other optimization al-
gorithms. In this paper, the classic GA is used to optimize the
extreme learning machine to verify the feasibility of the op-
timization algorithm in such engineering problems.*is paper
uses GA to optimize the first hidden layer parameters of TELM.
*e prediction accuracy can be improved to a certain extent.

*e pseudocode for the optimization of the weights and
threshold parameters of the first implicit layer of the TELM
model is as follows :

In Algorithm 1:
X: new populations per generation;
P: training sample input;
T: training sample output;
Ptest: test sample input;
Ttest: test sample output;
In Algorithm 2:
hiddennum: number of neurons in the hidden layer;
NIND: number of individuals in the initial population;
MAXGEN: maximum number of genetic generations;
px: crossover probability;
pm: mutation probability;
inputnum: number of neurons in the input layer;
outputnum: number of neurons in the output layer;
w1num: number of weights from the input layer to the
first hidden layer;
w2num: number of weights from the second hidden
layer to the output layer;
w3num: number of connection weights between two
implicit layers;
N: number of variables to be optimized;

3. Experiment

3.1. SourceofDataset. LiDAR andUAV tilt photogrammetry
are the main methods to generate 3D point cloud models.
Both of these technologies are used in actual engineering. In
contrast, the cost of LiDAR is higher.

*is paper uses UAV tilt photogrammetry technology to
generate the 3D point cloud model. *e Cihai open-pit mine
in Xinjiang is selected as the experimental research area, and
the original image is taken by the DJI Phantom 4 RTK rotor
drone. It conducts aerial survey operations at a distance of
120m above the study area. *e flight mode adopts the five-
zone “well” flight, and the heading overlap rate and side
overlap rate are 80 percent and 70 percent, respectively. *e
resolution of the obtained image is 20 million pixels. At the
same time, the global navigation satellite system (GNSS)
receiver was used to collect the 3D coordinates of the control
points in the study area. In addition, we use the 3D re-
construction software Context Capture to perform the
feature extraction, feature point matching, aerial triangu-
lation, andmultiview image matching on the acquired image
data. *en, the 3D point cloud model in the study area is
generated, as shown in Figure 3. Finally, we use the control
point coordinates collected by GNSS to check the 3D point
cloud model and judge the accuracy of model construction.

3.2. Separation of Point Clouds by Using Orthogonal Total
Least Squares Fitting Method. First, this paper cuts a part of
Figure 3 as an experimental model. *e experimental model
is shown in Figure 4.*en, the orthogonal total least squares
fitting method is used to separate the dust point and the
plane point. *e results of the separation are shown in
Figures 5 and 6. Figure 5 shows a plane point, and Figure 6
shows a dust point. Figure 4 contains 350043 points. Figure 5
contains 290126 points. Figure 6 contains 59917 points.

3.3. Repair of Holes by Using GA-TELM. Ordinary algo-
rithms, such as interpolation, need to create new points by
interpolation in the hole. It is necessary to use the machine
learning algorithm to process it again to make the new point
smoothly connect with the boundary of the hole. *is paper
uses the dust point separated in the previous step, which can
be regarded as a new point generated by interpolation.
*erefore, this paper directly uses GA-TELM to complete
the repair of the hole.

For the genetic algorithm part of GA-TELM, the relevant
parameters set are as follows: NIND is 20, MAXGEN is 50,
PRECI is 10, GGAP is 0.95, px is 0.7, and pm is 0.01. *e
evolutionary process of GA-TELM is shown in Figure 7.

*e training set of the 3D point cloud hole repair model
based GA-TELM contains the ground points separated by
the orthogonal total least squares fitting method (Figure 5),
where the x, y coordinates of the ground points are regarded
as the input of the training set and the z coordinates of the
ground points are regarded as output of the training set. *e
test set contains the dust points separated by the orthogonal
total least squares fitting method (Figure 6), and the x, y
coordinates of the dust points are regarded as test set input.

B

β
f (x)

H2H
Wx

W1

B1

Figure 2: Flowchart of TELM.
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*e output of GA-TELM is used to replace the original z
coordinate of the dust point, and the result is shown in
Figure 8. Figure 8 is Figure 6 after changing the z coordinate.
*en, Figures 5 and 8 are combined to obtain Figure 9.
Figure 9 shows the effect of hole repair.

4. Discussion

*e computer hardware configuration used in the experi-
ment in this article is Intel Core i5-7500 3.40GHz processor,
1050Ti graphics card, and 16GB RAM. In terms of software,
the computer uses Windows10 64 bit system, and the
simulation environment is Matlab R2018b.

4.1. Comparison with Traditional Point Cloud Denoising
Methods. Other traditional point cloud denoising methods
are to remove noise points from the point cloud. It would
reduce the number of points and only apply to solid models.

Traditional methods used to solve the actual problems raised
in this paper would create holes. Figure 5 is the result of
using least squares plane fitting to denoise, and the tradi-
tional point cloud denoising method cannot solve the
problems in actual engineering.

(1) function F(X, P, T, hiddennum Ptest, Ttest);
(2) Normalize training set input and output, normalize test set input;
(3) w1num⟵ inputnum∗ hiddennum;
(4) IW⟵ x(1 to w1num);
(5) B⟵ x((w1num+ 1) to (w1num+hiddennum))
(6) Create a TELM network based on the initial weights and thresholds for each individual and simulate and test;
(7) *e result is inverse normalized to Tsim;
(8) result⟵ norm(Tsim − Ttest)

(9) return result
(10) end function

ALGORITHM 1: Calculation of the fitness value function.

Input: training set input P, output T, test set input Ptest, output Ttest
Output: optimized TELM first layer parameters

(1) threshold⟵minmax(P);
(2) inputnum⟵ size(P, 1);
(3) outputnum⟵ size(T, 1);
(4) w1num⟵ inputnum ∗ hiddennum;
(5) w2num⟵ outputnum ∗ hiddennum;
(6) w3num⟵ hiddennum ∗ hiddennum;
(7) N⟵w1num+ 2 ∗ hiddennum+w3num+w2num+outputnum
(8) Initialize Pop(0);
(9) t � 0;
(10) While t< � MAXGEN do
(11) for i � 1 to NIND do
(12) Evaluate fitness of Pop(t)
(13) for i � 1 to NIND do
(14) Select operation to Pop(t)
(15) for i � 1 to NIND/2 do
(16) Crossover operation to Pop(t)
(17) for i � 1 to NIND do
(18) Mutation operation to Pop(t)
(19) for i � 1 to NIND do
(20) Pop(t+1)� Pop(t)
(21) t � t + 1

ALGORITHM 2: GA-TELM.

Figure 3: Point cloud model of the mine area.
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4.2. Comparison with Different Improved ELM Algorithms.
*e dataset is regarded as the point cloud data in Figure 5.
*e dataset is divided into the following two parts: one part
is used for network training, accounting for 80 percent, and
the other part is used for testing the network, accounting for
20 percent. In this paper, TELM, GA-ELM, and ELM are
compared with GA-TELM, and the superiority of GA-TELM
is shownmore by comparing the time required for themodel
(Time), the mean square error (MSE), coefficient of deter-
mination (R2), and the test set error (Error).

According to Table 1, GA-TELM has the best MSE, R2,
and test set error among the four networks. R2 is improved
by 2.85 percent than ELM. Although it takes longer time
than the other networks, the other three most important
aspects have enough advantages. *erefore, this paper uses
GA-TELM to perform hole repair. *e repair results are
shown in Figure 9.

4.3. Test of Point Cloud Denoising Method Based on Or-
thogonal Total Least Squares Fitting and GA-TELM. *is
paper selected another point cloud model containing dust
points to prove that the denoising method proposed in this
paper is suitable for this kind of engineering problem, as
shown in Figure 10. First, the least squares plane fitting is
used to separate dust points and ground points. *en, GA-
TELM is used to repair the holes. *e results are shown in
Figures 11–13. It can be seen that the denoising algorithm
proposed in this paper can solve similar engineering
problems.

Figure 6: Mode separated by orthogonal total least squares fitting
method (dust point).
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Figure 7: Evolutionary process of GA-TELM.

Figure 4: Point cloud model of the experimental area.

Figure 5: Mode separated by orthogonal total least squares fitting
method (ground point).

Figure 8: GA-TELM is used to change the dust point of the z
coordinate.

Figure 9: GA-TELM is used to repair the hole in Figure 5.

Figure 10: Another flat area containing dust in the mine point
cloud model.

Table 1: Comparison with different improved ELM algorithms.

Method Time (s) MSE R2 Error
GA-TELM 3.978353 0.0010 0.8658 7.7232
TELM 3.674889 0.0011 0.8605 7.8734
GA-ELM 1.252139 0.0011 0.8627 7.8642
ELM 1.016865 0.0013 0.8373 8.5615
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5. Conclusion

*is paper proposes the point cloud denoising method based
on orthogonal total least squares fitting and GA-TELM,
which solves the problems of dust points in the hollow 3D
point cloud model. It also has a better treatment effect for
other situations with similar problems. *e engineering
significance of this method is listed as follows: (1) it is used to
monitor the engineering volume during the terrain resto-
ration process; (2) it is used for the safety detection of surface
settlement in the mining area; and (3) this method verifies
the safety of the construction method from semi-direct
backfill to complete direct backfill.
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