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a b s t r a c t

The human gut hosts a complex community of microorganisms that directly influences gastrointestinal
physiology, playing a central role in human health. Because of its importance, the metabolic interplay
between the gut microbiome and host metabolism has gained special interest. While there has been great
progress in the field driven by metagenomics and experimental studies, the mechanisms underpinning
microbial composition and interactions in the microbiome remain poorly understood. Genome-scale
metabolic models are mathematical structures capable of describing the metabolic potential of microbial
cells. They are thus suitable tools for probing the metabolic properties of microbial communities. In this
review, we discuss the most recent and relevant genome-scale metabolic modelling tools for inferring the
composition, interactions, and ultimately, biological function of the constituent species of a microbial
community with special emphasis in the gut microbiota. Particular attention is given to constraint-
based metabolic modelling methods as well as hybrid agent-based methods for capturing the interactions
and behavior of the community in time and space. Finally, we discuss the challenges hindering compre-
hensive modelling of complex microbial communities and its application for the in-silico design of micro-
bial consortia with therapeutic functions.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3897
2. From genome-scale network reconstructions to stoichiometric models of metabolism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3898
2.1. Genome-scale network reconstructions for microbial community modelling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3898
2.2. Genome-scale metabolic models and constrained-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3899
3. Metabolic properties of microbial communities inferred from genome-scale metabolic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3899

3.1. Prediction of composition in microbial communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3899
3.2. Probing metabolic interactions within microbial communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3900
3.3. Inferring biological functions under different environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3902
4. Challenges and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3902
CRediT authorship contribution statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3903
Declaration of Competing Interest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3903
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3903
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3903
1. Introduction

Microbiomes could be understood as the collection of microor-
ganisms, their genomes and their surrounding habitat [1]. The
human gut hosts a complex and dynamic community of microor-
ganisms that directly modulates gastrointestinal physiology, also
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Fig. 1. Illustrative applications and construction of GSMM from GENREs. A From an
annotated genome, Gene-Protein-Reactions (GPR) relations are defined which link
genes, enzymes and reactions. The set of all GPRs defines the metabolic network
reconstruction. B A GSMM is then constructed using the stoichiometric matrix
encoding all the reactions stoichiometries and imposing the steady-state condition
among other suitable constraints. C The GSMM can be then employed for predicting
the effect of gene knockouts on growth or simulating the impact of individual
intracellular fluxes on the production of a given metabolite, among other uses.
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playing important roles beyond the digestive system [2]. The gut
microbiome is characterized by a large diversity of microbial spe-
cies belonging to the phyla Firmicutes and Bacteroidetes [3]. Con-
stituent species of these phyla are responsible for the fermentation
of dietary substrates into important metabolites including Short
Chain Fatty Acids (SCFAs) [4], which serve as energy for the epithe-
lium and modulate important physiological responses [2].
Although gut microbiome profiles are remarkably unique and
stable in time for each individual, there are clear transitions in
its composition associated with age, diet, antibiotics, or diseases
that result in specific signatures [3].

Microbial communities can be studied by the diversity and
abundance of their constitutive species, as well as the interactions
between them and their environment, e.g., the human host. For
instance, composition changes of the intestinal microbiota drive
ecological interactions among microbial populations and the host
[5], which in the face of external factors or interventions such as
diet, drugs, or antibiotics, defines the biological function of the
community and its impact on human health [6]. Thus, metabolic
interactions between gut microbes and with their host are essen-
tial yet they remain largely unknown. Mathematical models of
these interactions could help unravel the impact on the micro-
biome composition upon external interventions, which can be then
employed to design microbiome consortia with desired therapeu-
tic functions [7,8].

Experimental elucidation of microbial interactions is challeng-
ing as the number of possible relations grows exponentially with
the number of species in the community, thereby hindering imple-
mentation of conventional experimental designs. On the other
hand, computational methods can readily simulate and propose
plausible biological interactions within the gut community, which
can be later verified experimentally [9]. Depending on the type of
computational framework employed, different aspects of the com-
munity can be probed. There are four general approaches used for
studying microbial communities [10]: modelling accounting for
phenotypic traits [11–13], modelling based on sequence abun-
dance [14–16], agent-based modelling [17–19], and constraint-
based methods (CBMs) using metabolic reconstructions from
annotated genomes [19–22]. The first category, usually applied to
small communities, employs non-structured Ordinary Differential
Equations (ODEs) models to describe the time-course profile of
biomass and metabolite concentration changes in the community,
resulting from growth activation/inhibition type interactions. The
second group applies statistical methods to infer patterns of co-
occurrence and co-exclusion, or to estimate physiological traits
(e.g., growth rate) based on metagenomic analyses. Agent-based
modelling describes different elements of an autonomous system
(e.g., populations, metabolites, or environment), interacting with
each other and reacting to perturbations based on defined rules.
The last group employs genome-scale stoichiometric models and
optimization methods to determine the feasible phenotypic space
for a metabolic network, or networks in the case of a community.
In particular, CBMs for metabolic modelling have emerged as a
popular framework for mechanistically describing the behavior of
microbial communities in different contexts and for enabling sys-
tematic integration of disparate omics data [10,19,23]. Further-
more, the continuous development of novel methods and tools
has prompted CBMs as the framework of choice for studying
microbial communities.

In this review, we review the most relevant metabolic mod-
elling tools for inferring the composition, interactions, and ulti-
mately, the biological function of the constituent species in a
microbial community with particular emphasis on the human
gut microbiota. Following a brief overview of relevant CBM meth-
ods for community modelling, we present recent tools and applica-
tions for describing microbial community behavior in time and
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space, with emphasis but not limited to the human gut. Both time
and space dependencies are critical for shaping the collective
behavior of the community [22,24,25], yet it has not been until
recently that more advanced modelling tools have become avail-
able for its use and review. Finally, we discuss the challenges of
modelling complex microbial communities such as the gut micro-
biota in time and space, and the steps required for rationally
designing effective microbial consortia for tailored applications.

2. From genome-scale network reconstructions to
stoichiometric models of metabolism

2.1. Genome-scale network reconstructions for microbial community
modelling

Genome-Scale Metabolic Models (GSMMs) are mathematical
structures derived from GEnome-scale Network REconstructions
(GENREs; Fig. 1A). The latter represent the complete repertoire of
biochemical reactions of a single cell or a microbial community.
The collection of reactions, as well as the participating metabolites,
are assembled based on the list of enzymes contained in the anno-
tated genome, providing Gene-Protein-Reaction (GPR) relation-
ships that capture the genotype-phenotype relation. Several tools
are available for the semi-automatic reconstruction of these net-
works. Among the most popular are modelSEED [26] and RAVEN
[27], among many others [28], which determine the relevant GPRs
from the annotated genomic sequence using different databases
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yielding a draft reconstruction. This draft reconstruction will often
require laborious curation, e.g., gap-filling [29,30]. More recently, a
different bottom-up approach called CarveMe [31] has been pro-
posed. Starting from a curated universal model containing reac-
tions from well-curated GSMM databases (e.g., BiGG [32]),
CarveMe optimizes the reactions to be maintained in the new
reconstruction based on sequence similarity with the annotated
genome. Notably, this tool has been used to build high-quality
metabolic single-species and community models of the human
gut microbiota [31].

The availability of genome sequencing data supported by (semi)
automatic tools for GENREs construction has led to the emergence
of various network reconstruction resources for exploring the
behavior of microbial communities. The most comprehensive
resource is AGORA, which is an open repository of over 800
semi-automatically reconstructed GENREs of microorganisms from
the human gut [33]. This resource has served as a base for multiple
studies, including bile acids metabolism in the human gut [34] and
the development of a large human gut microbiota metabolic model
that integrates metagenomic data [35]. Another key resource is
NJC19 [36], which so far represents the largest literature-based
network resource that comprises human and mouse microbiome
knowledge. NJC19 serves as a reference map and consists of two
groups of nodes; the first group is made up of the considered spe-
cies (883 microbial species and 6 mouse and human cell types),
and the second group contains the metabolites related to each
organism. Associations between consumed or produced metabo-
lites by species were either identified from empirical data or pre-
dicted by bioinformatic algorithms. Importantly, NJC19 has
evidenced a limited number of metabolic phenotypes currently
supported as measured by the low average number of metabolites
produced or consumed [37]. This information can be very valuable
for building and curating metabolic networks.

2.2. Genome-scale metabolic models and constrained-based methods

From a defined GENRE, a GSMM can be constructed by mathe-
matically encoding the metabolic reactions in the stoichiometric
matrix, which represents the mass balances for each intracellular
metabolite located inside the cell. Then, the imposition of the
steady-state assumption for the latter enables writing a system
of linear equations that represents the metabolic state of the sys-
tem, here the metabolic network (Fig. 1B). Although the resulting
system of equations is typically undetermined, i.e., there are infi-
nite solutions describing the same observations, it is possible to
compute particular solutions using CBMs. Briefly, by defining an
objective function and applying capacity constraints on the fluxes
that simulate specific environmental conditions, the optimal meta-
bolic flux distribution that achieves that goal can be computed. The
most popular of such methods is Flux Balance Analysis (FBA) [38],
which has been extensively applied for better understanding
microbial physiology [39–41], and more lately, to model microbial
communities [42–44]. Application of FBA in GSMMs are vast and
range from gene essentiality predictions to identification of genetic
targets for metabolic engineering (Fig. 1C). The reader is referred
elsewhere for a more comprehensive review [28].

There are four types of CBMs that have been employed for mod-
elling microbial communities [45]: 1) lumped approach, 2) com-
partment per guild [35,46], 3) bi-level optimization simulation
[21,47], and 4) dynamic stoichiometric modelling [48,49]. The
lumped approach models the union of all reactions and metabo-
lites from all the species of the community as if they were one
organism with all common and unique metabolic pathways. In
the compartment per guild approach, each microorganism is repre-
sented as a different compartment, each with its own set of reac-
tions and metabolites. In both cases, popular CBMs such as FBA
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can be employed to performmetabolic flux predictions. In contrast,
bi-level optimization frameworks individualize each microorgan-
ism but apply two consecutive rounds of optimization: one for
each individual species, and a second for the entire community
integrating the results from the previous round. Finally, dynamic
stoichiometric modelling methods employ dynamic models cou-
pled to GSMMs to describe dynamic changes in metabolite and bio-
mass concentration across time. The most important of such
methods is dynamic FBA (d-FBA) [50]. Briefly, d-FBA employs
GSMMs equipped with kinetic expressions (see [51] for more
details) for describing the rate of consumption/production of exter-
nal metabolites consistent with intracellular fluxes. By dynami-
cally updating the latter rates using extracellular concentrations
and using them as constraints for FBA, metabolic fluxes and bio-
mass production can be calculated in a specific time. The latter
fluxes can be then employed to update the concentrations of the
external species. By repeating this procedure iteratively, one can
solve the ODE system describing the concentration of biomass
and external metabolites as a function of time. Importantly, this
method can be readily adapted to model space and temporal
dependencies by discretizing the modelled domain and solving
the Partial Differential Equations (PDEs) that describe the diffusion
of species. The methods reviewed hereafter use extensively this or
similar approaches for modeling communities in time and space.
3. Metabolic properties of microbial communities inferred from
genome-scale metabolic models

Genome-scale metabolic tools can be categorized according to
their mathematical features or biological/ecological scope. Using
the latter criterion, we review the most relevant and recent tools
for modelling the composition, interaction and biological function
of microbial communities (Fig. 2A). The presented tools are mostly
based on CBMs, and as such, they provide mechanistic insights into
the metabolic interactions for example between microbial species
and their impact on the (human) host (Fig. 2B). The main features
of the reviewed tools are illustrated in Fig. 3.
3.1. Prediction of composition in microbial communities

Metagenome samples can be sequenced for their 16S rRNA con-
tent to determine the species and their abundance – as determined
by the number of reads – in the microbial community [52,53]. The
reads abundance data can then be integrated into metabolic mod-
els for evaluation of the microbial community behavior. Using this
strategy, a customizable collection of metabolic models (collec-
tively called MICOM, Fig. 3A) [35] was applied to study the micro-
bial gut composition of Swedish and Danish individuals (healthy or
with diabetes) consuming a Western Diet [54]. In the study, 186
metagenome samples were gathered and relative abundance data
were used to construct a community model and simulate its
behavior (compartment per guild approach). The metagenomic
data was relevant for the differential selection of bacterial genera,
and the community objective involves a trade-off between the
community and individual growth.

A recent CBM for microbial composition prediction is Steady-
Com [46]. SteadyCom seeks to determine the optimal microbial
composition that supports the maximum community growth rate
at steady-state. In particular, SteadyCom predicted the dominance
of the bacterial phyla Bacteroides and Firmicutes in the gut micro-
biota [46]. Notably, the method formulates and solves a finite ser-
ies of linear optimization problems that do not depend on the
number of species considered in the community. A limitation of
this approach is that it assumes the same specific growth rate for
all members of the community. This assumption is known to hold



Fig. 2. Scope of different metabolic modelling tools for the study of microbial
communities. A Metabolic modelling tools can be classified based on their
capabilities for probing key ecological aspects of microbial communities, namely:
composition, interactions and biological function. B Rooted on constraint-based
methods such as Flux Balance analysis, metabolic models can provide insights into
the metabolic state of a host cell (e.g., enterocyte) upon invasion of a pathogen or in
the presence of commensal bacteria by comparing the flux distributions in the two
conditions.
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over periods of time [42]; however, it cannot be used to model
dynamic conditions of microbial growth and communities.

The change of microbial composition over time is of great
importance for understanding biological interactions. For this task,
d-FBA is the most used CBM for metabolic modelling. lbialSim is a
d-FBA-based simulator that describes the dynamic evolution of the
biomass composition and metabolite concentrations in a microbial
community growing in batch culture (Fig. 3B) [49]. Notably, lbial-
Sim incorporates a numerically robust integration scheme that
enables efficient simulation of a large number of species avoiding
infeasible trajectories, e.g., reaching negative concentrations. The
application of this method enabled satisfactory simulation of a
773-species human gut microbiome that exhibited a complex
and dynamic pattern of metabolite exchanges. lbialSim is, how-
ever, limited to well-mixed environments, which could miss criti-
cal metabolic phenomena arising from spatial interactions,
especially when it comes to simulation of the gut microbiota.

Simulation of community growth in time and space and assum-
ing different objectives has also been achieved. For instance, d-
OptCom [48], an extension of OptCom [47], uses a multi-level
multi-objective optimization approach maximizing the overall
community biomass and individual specific growth rates at each
time step, which ultimately yields the time-course profile of the
consortium composition. As lbialSim, d-OptCom assumes perfect
mixing in the community. In contrast, COMETS [22] uses d-FBA
to simulate metabolite production/consumption by different spe-
cies, and diffusion on a discretized lattice to simulate spatial and
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temporal gradients. Similarly, BacArena [55] has also described
the evolution and spatial distribution of different species and
metabolites. However, it employs a hybrid agent-based framework
that combines FBA and Michaelis-Menten kinetics for describing
the dynamics of the agents. Notably, this approach enabled pre-
dicting not only the abundances but also the spatial distribution
of members of a representative consortium and niche separation
in the human gut [55].

3.2. Probing metabolic interactions within microbial communities

Pairwise ecological interactions can be broadly considered as
detrimental, beneficial, or neutral. Many of these interactions can
be captured by GSMMs. In a metabolic modelling context, compe-
tition involves the uptake of common substrates (detrimental)
from the environment, whereas cross-feeding (syntrophy) describe
the exchange of metabolites from one organism to another (bene-
ficial). The previously mentioned MICOM method has been applied
to simulate cross-feeding interactions involved in SCFA production
[35] (Fig. 3A). Computational results fromMICOMwere unusual, as
they pointed to Bacteroides and Eubacterium genera to be responsi-
ble for acetate and propionate consumption, respectively, while
Shigella and Escherichia genera were responsible for their produc-
tion, which is not been commonly reported in vivo. Additionally,
MICOM showed that competition was a common interaction
between almost all members of the gut microbiota due to the large
set of metabolites that could be consumed. Notably, simulation
results also suggested niche partitioning in the gut microbiota
(see [56,57] for other examples); there is either consumption of
fibers and starches (e.g., inulin, xylan, and pectin) by a group, or
consumption of Branched Chain Amino Acids (BCAAs) by another.

By using different metabolic reconstructions from various
sources, the Microbiome Modelling Toolbox (MMT) [58] enables
studying microbial interactions within a community in a specific
context (e.g., diet, fecal compartments) using relative microbial
abundances as input (Fig. 3C). Following the construction of a com-
munity model contextualized with experimental data [59], this
tool indicated a metabolic cross-talk between Lactobacillus rham-
nosus and Caco-2 cells. CASINO [21] is another tool that enables
similar analyses. By defining a certain diet and microbial abun-
dance (e.g., estimated from 16S rRNA sequencing), CASINO enabled
simulation of different metabolite production and consumption
profile with the added benefit of predicting the individual contri-
butions of each species, e.g., SCFAs production. The application of
this tool is, however, limited to small communities. d-OptCom,
already mentioned above, has also been applied for simulating
cross-feeding metabolic interactions between E. coli auxotrophs
[48].

As mentioned in the previous section, agent-based modelling
methods are both useful for capturing the dynamic and spatial dis-
tribution of species and flexible for integrating results derived from
FBA. For instance, Agent and Constraint-Based Modelling Frame-
work (ACBM, Fig. 3D) [18] satisfactorily simulated the cross-
feeding between Faecalibacterium prausnitzii and Bifidobacterium
adolescentis in the gut microbiota. In this case, F. prausnitzii was
predicted to produce four times the amount of butyrate in co-
culture with B. adolescentis, which was in agreement with experi-
mental data [60]. Similarly, IndiMeSH (Fig. 3E) [24] is a hybrid
CBM and ABM tool, which predicted trophic relationships between
different populations of a bacterial species, namely Pseudomonas
putida and Pseudomonas veronii. More specifically, simulations pre-
dicted the growth of facultative anaerobes with the concomitant
production of acetate in the center of a soil aggregate under wet
conditions, whereas in the outer region, aerobic growth was sus-
tained by the produced acetate. Another agent-based method
called MiMoSa [25] uses a similar approach as the previous



Fig. 3. Schematic representations of different genome-scale metabolic modelling tools for probing microbial communities in space and time. A MICOM computes microbial
interactions in the human gut by integrating abundance data from metagenomic samples and GSMMs obtained from AGORA under defined conditions (e.g., western diet). B
lbialSim describes the time-course growth and metabolic consumption/production of multiple microbial species in a well-mixed culture. C MMT employs a simple steady-
state approach for studying pairwise interactions within the community and building the associated Pareto front. Community models generated with MMT differ from others
in that non-traditional compartments can be considered. D ACBM uses a 3D cubic space (agents) to simulate bacterial chemotactic behavior in a microbial community. This
method also enables the incorporation of transcriptomic data using constraint-based methods to characterize different phenotypes within the community. E IndiMeSH uses a
2D lattice to simulate the dynamics and movement of bacteria and diffusion of chemical compounds within a pore-network. IndiMeSH can simulate changes in abundance of
cells upon external perturbations as well as the differentiation of the microbial population according to the local environment. F MiMoSa employs a dynamic multi-objective
hybrid constraint-based approach for simulating concentration changes in time and space for different species. Individual optimized fluxes for each cell type (blue and green
weighted arrows) are used to update the chemical concentrations of the 2D environment and also to decide whether cells divide or differentiate based on their size. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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method, but it employs multi-objective optimization instead
(Fig. 3F). This tool was employed to model two different cell types
– photoautotrophic and diazotrophic – of Trichodesmium ery-
thraeum, and accurately predicted the differential activation of bio-
chemical pathways by varying the weights of the objective
function according to cell size. This function prioritized biomass
production at small cell sizes and production of either glycogen
or cyanophycin for larger cell sizes below the threshold of cell
division. Although these tools have been deployed for simulating
environmental habitats, they can be readily applied to represent
other situations such as proliferation of infectious bacteria in
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human tissues like the lungs or aerated epithelial tissues colonized
with microbes like the mouth [24].

Finally, the study of pairwise interactions of mutualistic nature,
or between two closely interrelated cell types, might be comple-
mented with the quantification of the metabolic support that each
species brings to the other. To this task, the Metabolic Support
Index (MSI) quantifies the number of reactions of a metabolic net-
work that are enabled (i.e., increased metabolic capacities) when
the metabolic network of another organism interacts in a simu-
lated co-culture [61]. Although MSI is not a method per se, it can
be readily implemented within a CBM framework, for example,
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for better understanding how mutualistic interactions may be
affected by media composition.
3.3. Inferring biological functions under different environmental
conditions

The biological role or function of a community depends inevita-
bly on environmental factors such as nutrients and oxygen avail-
ability, light intensity, shear forces, water activity, or
temperature. To appropriately capture this interdependency, the
time evolution and spatial distribution of the cells and molecules
need to be described. These are particularly the cases of ACBM,
InsiMeSH, and MiMoSa.

IndiMeSH predicted the spatial distribution and metabolic
behavior of Pseudomonas stutzeri A1501 under wet and dry condi-
tions of soil. Under dry conditions, the entire population was in
fully aerobic metabolism thanks to oxygen penetration, whereas
under wet conditions, nitrate consumption was predicted
(Fig. 3E). Notably, the latter resulted in overflow metabolism and
the production of acetate by a denitrifying subpopulation at the
center of the lattice [24]. As opposed to IndiMeSH, ACBM models
single agents in a 3D cube across time. By incorporating transcrip-
tomic data from Escherichia coli MG1655 in the form of constraints
for metabolic simulation, this tool predicted the emergence of two
distinct phenotypes in different locations determined by the glu-
cose concentration at the end of the log phase (Fig. 3D). One of
the drawbacks of this approach is that it assumed no cost for motil-
ity and momentaneous starvation, i.e., no maintenance energy
requirement considered. In turn, MiMoSa enabled spatial and
time-course simulation of how changes in the microenvironment
– particularly light intensity – affect the metabolic flux distribution
of single cells (Fig. 3F). In the T. erythraeum case study, MiMoSa
predicted the excretion of 20% of the fixated nitrogen into the envi-
ronment, improving previous estimates in terms of the energetic
costs [62].

In the context of the effect of the gut microbiota on human
health, there have been two recent studies that showcased how
CBMs can probe biological functions [34,58]. In one study, MMT
was used to generate personalized community models based on
metagenomic data simulating an average European diet (Fig. 3C).
FBA calculations yielded the maximum potential capability of con-
jugation and biotransformation of bile acids for each individual
model, which is relevant for inflammatory bowel disease patients.
Similarly, the metabolic potential was analyzed in microbiomes
obtained from Parkinsońs disease patients. A relationship between
the potential of maximal production of certain metabolites and
constipation – among other traits of Parkinsońs disease – was
found, which suggests that alterations in the gut microbiota com-
position may play a role in metabolic potential and related Parkin-
son’s disease symptoms.
4. Challenges and outlook

GSMMs are excellent tools for exploring the properties of
microbial communities as they are suited for the application of a
variety of computational methods [23]. From predicting the com-
position of environmental communities or host-associated consor-
tia (e.g., human gut) [46], to understanding the biological function
of individual species in the context of their community and envi-
ronment [24,34,58], there is a growing family of methods that have
been developed to resolve these fundamental questions, and to
grasp even more complex features related to dynamics and spatial
distribution microbial communities. Despite the many virtues of
GSMMs and the associated tools, there are still many challenges
hindering further progress.
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Construction of predictive GSMMs from GENREs remains a
laborious and challenging task. Although there are different pipeli-
nes and workflows available for streamlining the reconstruction
process [26,27], detailed manual curation is still required for arriv-
ing at high-quality networks. For instance, recent comprehensive
GENREs resources (e.g., AGORA [33]) contain several hundreds of
reconstructions, which are mostly developed in a semi-
automated fashion. Careful manual curation and revision are thus
needed to ensure the quality of the network. This difficulty is only
exacerbated when modelling the gut microbiota, as many of its
members lack detailed biochemical information of their metabo-
lism and functional annotation of their genes [63]. Furthermore,
even if single-species GSMMs can be satisfactorily constructed, for-
mulation of a community model is not a trivial task as different
strategies can be employed. The selection of the most appropriate
strategy will mostly depend on the underlying assumptions,
research question, and available data, which may largely vary for
different communities [45]. For instance, what are the most rele-
vant interactions within the community remains an open question
for most relevant microbial systems [64].

A critical limitation of current genome-scale metabolic mod-
elling tools is related to their temporal and spatial resolution capa-
bilities for modelling microbial communities. This is particularly
relevant for the human gut microbiota. The gut microbiota is a
highly heterogenous group of microbes spatially distributed along
various sections of the human intestines. It is known that the
adopted spatial organization has an important effect on human
health, as it can promote different types of Inflammatory Bowel
Diseases (IBDs) [65]. A recent study using a combination of CBMs
modelled representative bacteria (5) of the human gut and yielded
valuable insights about the role of oxygen as a key contributing
factor in the longitudinal and radial spatial organization (composi-
tion) of the simulated community [66]. Some of the tools reviewed
here display similar capabilities for modelling spatial distributions
with even greater detail [18,22,25], however, they are all only suit-
able for describing small communities. Furthermore, in all these
cases, there is no consideration as to how the environment – or
host in the case of the human gut – will respond. In the latter case,
multi-scale models of the human body [67] could be constructed
and adapted for capturing the dynamics and interplay between
host metabolism, microbiota, and possibly diet. In this way, more
holistic therapeutic strategies may be designed for more personal-
ized site-specific perturbations of the gut microbiota.

A more detailed understanding of the composition, metabolic
interactions, and ultimately, biological functions of microbial com-
munities within a given environment will enable the design of syn-
thetic consortia with desired functions. Synthetic communities
have already been used in bioremediation [68], and there is grow-
ing interest in designing consortia with therapeutic activities to
treat relevant pathologies [7,8]. Experimental efforts can benefit
from computational methods as they enable narrowing the vast
design space to a more practical set of consortia. Framework based
on dynamic modelling of GSMMs could be extremely helpful in
predicting emergent properties of microbial communities. How-
ever, they have not been applied to the design of large consortia
due to the combinatorial nature of the problem. To this task, other
tools – typically graph-based – have been proposed as they can
cope with the massive scale at the cost of yielding only qualitative
predictions. For instance, Miscoto [69] has been shown to exhaus-
tively enumerate millions of possible minimal consortia (i.e., with
the least number of members) capable of performing a defined
metabolic task, i.e., producing a metabolite from a set of substrates.
This method is suited for screening large sets of compounds and
networks and enables redundancy analysis of metabolic tasks.
The identification of keystone species is also critical for properly
modelling in microbial communities [19]. These species are essen-
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tial for the development of the community and, when removed,
they drastically disrupt the community and environment. Eventu-
ally, experimental studies will need to be conducted to determine
the presence/absence of such microbes in the synthetic community
[70]. Importantly, by leveraging the power of computational meth-
ods, the biological function of keystone species will be identified
and preserved – or even engineered using in silico tools [71] – in
the synthetic consortia.
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