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Genetic and Epigenetic Fine Mapping of
Complex Trait Associated Loci in the Human Liver
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Marcia Holsbach Beltrame,1 Marco Trizzino,1 YoSon Park,1 Samuel W. Baker,1 Alessandra Chesi,3,4

Matthew E. Johnson,3,4 Kenyaita M. Hodge,3,4 Michelle E. Leonard,3,4 Baoli Loza,6 Dong Xin,6

Andrea M. Berrido,1 Nicholas J. Hand,1 Robert C. Bauer,7 Andrew D. Wells,4,8 Kim M. Olthoff,6

Abraham Shaked,6 Daniel J. Rader,1,9 Struan F.A. Grant,1,3,4,10 and Christopher D. Brown1,2,*

Deciphering the impact of genetic variation on gene regulation is fundamental to understanding common, complex human diseases.

Although histone modifications are important markers of gene regulatory elements of the genome, any specific histone modification

has not been assayed in more than a few individuals in the human liver. As a result, the effects of genetic variation on histone modifi-

cation states in the liver are poorly understood. Here, we generate the most comprehensive genome-wide dataset of two epigenetic

marks, H3K4me3 and H3K27ac, and annotate thousands of putative regulatory elements in the human liver. We integrate these findings

with genome-wide gene expression data collected from the same human liver tissues and high-resolution promoter-focused chromatin

interaction maps collected from human liver-derived HepG2 cells. We demonstrate widespread functional consequences of natural ge-

netic variation on putative regulatory element activity and gene expression levels. Leveraging these extensive datasets, we fine-map a

total of 74 GWAS loci that have been associated with at least one complex phenotype. Our results reveal a repertoire of genes and reg-

ulatory mechanisms governing complex disease development and further the basic understanding of genetic and epigenetic regulation

of gene expression in the human liver tissue.
Introduction

The liver has a central role in detoxification of endogenous

and exogenous toxins, synthesis of essential proteins, and

regulation of carbohydrate, lipid, and drug metabolism. As

such, the liver is associated with a diverse range of clini-

cally important human traits1 and was recently reported

as one of the most critical tissues for explaining cellular

mechanisms at loci revealed by genome-wide association

studies (GWASs).2 GWASs have been effective at providing

robust, but imprecise, information about genetic risk

factors of complex human diseases.3 These studies have re-

vealed that most variation associated with complex hu-

man phenotypes do not alter protein-coding sequences,

making causal variant and trait-relevant gene identifica-

tion a considerable challenge.4 Characterization of the reg-

ulatory functions of non-coding regions is the first key step

toward linking non-coding regions to disease biology.

Large-scale efforts such as the Encyclopedia of DNA Ele-

ments (ENCODE)5 and the NIH Roadmap Epigenomics6

consortia have made major contributions to this end. It re-

mains an important priority to obtain such data across

many individuals, to characterize the extent of between-

individual variation in the activity of regulatory elements,

and to identify the genetic determinants of such differen-
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tial activity. Discovering genotype-dependent non-coding

functional activity can help to fine map and reveal mech-

anisms underlying complex trait associations.7–14 Perform-

ing such studies at genome-wide scale in large numbers of

human tissues is challenging15 and therefore has been

limited to those performed in easily accessible lymphoblas-

toid cell lines or blood cell types.16–22 Here, we quantify

regulatory element activity in the human liver across mul-

tiple individuals and integrate these findings with

genome-wide gene expression data collected from the

same human liver tissues, high-resolution promoter-

focused chromatin interaction maps collected from

human liver-derived HepG2 cells, and GWAS summary sta-

tistics for 20 commonly studied phenotypes with variable

levels of suggested causality manifesting in the liver.2 We

identify 2,625 genes and 972 regulatory elements with ge-

notype-dependent activity in the human liver and fine-

map a total of 74 GWAS loci that have been associated

with at least one complex phenotype. Overall, we provide

a unique resource that contributes to basic understanding

of genetic and epigenetic regulation of gene expression in

the human liver tissue and highlight the benefits of inte-

grating multiple cellular traits for the identification and

characterization of disease-relevant genes, regulatory ele-

ments, and variants.
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Material and Methods

Study Subjects
Penn Cohort 1

Samples in this cohort were prospectively collected between

August 2014 and February 2015 at the Penn Transplant Institute.

The cohort was comprised of 50 liver donors (49 deceased, 1

living). Sex and age of the donors were reported as 19 females

and 31 males aged between 6 and 77 years old.

Penn Cohort 2

Between January 2012 and August 2014, �25 mg of liver needle

biopsy samples were collected from deceased donors prior to trans-

plantation surgery at the Penn Transplant Institute. All samples

were stored in RNAlater. For this study, 96 samples were chosen

based on cold ischemic time (138–320 min) and reported sex

(48 females, 48 males). Age of the donors ranged between 7 and

75 years old.

GTEx Cohort

Complete description of the Genotype-Tissue expression (GTEx)

cohort was published previously.23,24 In this study, 96 individuals

(33 females, 63 males; age range 21–68) with genotype and liver

gene expression data were included. 37 of the subjects were organ

donors and 59 were postmortem. Liver needle biopsy samples

from each subject were obtained in two centers. Samples were pre-

served in PAXgene tissue kits and shipped to the GTEx Laboratory

Data Analysis and Coordinating Center LDACC at the Broad Insti-

tute for processing.23,24 All GTEx datasets used in this study were

from GTEx Analysis Releasev6p.25
ChIP-Seq Experimental Protocol
Penn Cohort 1

Between 40 and 900 mg of liver wedge biopsies were obtained

from each donor prior to transplantation surgery at the Penn

Transplant Institute. Flash frozen liver wedge biopsies were pro-

cessed in a total of 8 batches (six/eight randomized samples per

day). On each tissue preparation day, 20 mg of tissue from each

liver sample was cut, placed in 1 mL of RNAlater, and flash frozen

for isolation of DNA and RNA at a later date. When available,

120 mg of tissue from each subject was processed for the chro-

matin immunoprecipitation (ChIP) experiment. From 33 subjects,

120mg of tissue could be used. Tissue amount from the remaining

17 subjects was limited, so the largest amount available was used

(ranging between 20 and 110 mg). The tissue was cut into small

pieces (�1 mm3), washed with PBS, and fixed with 1% formalde-

hyde for 5 min at room temperature. Nuclei were prepared with

the Covaris truChIP Tissue Chromatin Shearing Kit with SDS

Shearing Buffer according to manufacturer’s recommendations.

Chromatin was sheared for 14 min at 5% duty cycle, 140 Watts

peak incident power, and 200 cycles per burst using a Covaris

S220 Focused-ultrasonicator. Shearing efficiency was assessed

using the Agilent High Sensitivity DNA kit and chromatin concen-

tration was determined using a NanoDrop Spectrophotometer.

From each subject, a 0.5 mg aliquot of sheared chromatin was

kept aside to be used as input chromatin. Each immunoprecipita-

tion was performed using 9 mg of sheared chromatin and 5 mg of

antibody (H3K27ac:ab4729, H3K4me3:ab8580) with an overnight

incubation at 4�C following the Magna ChIP A/G Chromatin

Immunoprecipitation Kit protocol. After elution and reverse-cross-

linking of protein-DNA complexes, DNA was cleaned with a

QIAGEN QIAquick PCR Purification Kit and quantified using the

Agilent High Sensitivity DNA kit. 40 H3K27ac and 45 H3K4me3
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samples yielded sufficient DNA (R2 ng) to generate sequencing li-

braries. 2 or 5 ng of immunoprecipitated and input DNAwas used

to generate sequencing libraries using the NEBNext ChIP-Seq

Library Prep Master Mix Set for Illumina. Libraries were sequenced

to generate 100 bp single-end reads on Illumina HiSeq2500 instru-

ments at the Penn Next-Generation Sequencing Core.
RNA-Seq and Genotyping Experimental Protocol
Penn Cohort 1

RNA and DNA were extracted in a total of 4 batches (12 or 14 ran-

domized samples per day) using QIAGEN’s AllPrep DNA/RNA/

miRNA Universal Kit. Barcoded, strand-specific, polyAþ selected

RNA-seq libraries were generated using the Illumina TruSeq

Stranded mRNA kit. Quality of each library was assessed using

the Agilent Bioanalyzer High Sensitivity DNA Kit. Libraries were

then pooled into one group and sequenced to generate 125 bp

paired-end reads on Illumina HiSeq2500 instruments at the

Penn Next-Generation Sequencing Core. DNA was genotyped

using Illumina HumanCoreExome arrays at the Center for Applied

Genomics Core at the Children’s Hospital of Pennsylvania.

Penn Cohort 2

RNA and DNA extraction method and library preparation was

identical to that of Penn Cohort 1. Libraries were pooled into

two groups of 48 samples and sequenced to generate 125 bp

paired-end reads on Illumina HiSeq2500 instruments at the

Penn Next-Generation Sequencing Core. DNA was genotyped us-

ing Illumina HumanCoreExome arrays at the Center for Applied

Genomics Core at at the Children’s Hospital of Pennsylvania.

GTEx

RNA was extracted from 96 human liver samples as described pre-

viously.26 Non-strand specific, polyAþ selected RNA-seq libraries

were generated using the Illumina TruSeq protocol. Libraries

were sequenced to generate 76 bp paired end reads. DNA was ex-

tracted from whole blood using the QIAGEN Gentra Puregene

method and genotyped using the Illumina Human Omni 2.5M

and 5M-Quad BeadChip as described previously.26
Genome-wide Promoter-Focused Capture-C

Experimental Protocol
Cell Fixation for Chromatin Capture

The protocol used for cell fixation was similar to previously pub-

lished methods.27 HepG2 cells were collected and single-cell sus-

pension was made with aliquots of 107 cells in 10 mL media

(RPMI þ 10% FCS). 540 mL 37% formaldehyde was added and in-

cubation was carried out for 10 min at room temperature in a

tumbler. The reaction was quenched by adding 1.5 mL, 1 M cold

glycine (4�C). Fixed cells were centrifuged for 5 min at 1,000 3 g

at 4�C, and supernatant was removed. The pellets were washed

in 10 mL cold PBS (4�C) by centrifugation for 5 min at 1,000 3

g at 4�C. Supernatant was removed and cell pellets were resus-

pended in 5 mL of cold lysis buffer (10 mM Tris [pH 8], 10 mM

NaCl, 0.2% NP-40 [Igepal] supplemented with protease inhibitor

cocktails). Resuspended cells were incubated for 20 min on ice

and centrifuged to remove the lysis buffer. Finally, the pellets

were resuspended in 1 mL lysis buffer and transferred to 1.5 mL

Eppendorf tubes prior to snap freezing (ethanol/dry ice or liquid

nitrogen). Cells were stored at�80�C until they were thawed again

for digestion.

3C Library Generation

For preparation of initial 3C libraries, 10 million cells were har-

vested and fixed. Cells were thawed on ice and spun down, and
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the lysis buffer was removed. The pellet was resuspended in water

and incubated on ice for 10 min, followed by centrifugation and

removal of supernatant. The pellet was then resuspended with

20% SDS and 1 3 NEBuffer DpnII and incubated at 37�C for 1 h

at 1,000 rpm on a MultiTherm (Sigma-Aldrich). Triton X-100

(at 20% concentration) was added and the pellet was incubated

for another 1 h. After the incubation, 10 mL 50 U/mL DpnII (NEB)

was added and left to digest for 8 h. An additional 10 mL DpnII

was added and digestion was left overnight at 37�C. The next

day, another 10 mL of DpnII was added and incubated for an addi-

tional 3 h. The chromatin was then ligated overnight (8 mL T4

DNA Ligase, HC ThermoFisher [30 U/mL]; with final concentration,

10 U/mL) and shaken at 16�C at 1,000 rpm on the MultiTherm.

The next day, an additional 2 mL T4 DNA ligase was spiked in to

each sample and incubated for 3 more hours. The ligated samples

were de-crosslinked overnight at 65�C with Proteinase K (Invitro-

gen) and the following morning incubated for 30 min at 37�C
with RNase A (Millipore). Phenol-chloroform extraction was per-

formed, followed by an ethanol precipitation overnight at �20�C
and then washed with 70% ethanol. Digestion efficiencies of 3C

libraries were assessed by gel electrophoresis on a 0.9% agarose

gel and quantitative PCR (SYBR green, Thermo Fisher).

Capture-C

Custom capture baits were designed using Agilent SureSelect library

design targeting both ends of DpnII restriction fragments encom-

passing promoters (including alternative promoters) of all human

coding genes and non-coding RNAs (antisense RNA, snRNA,

miRNA, snoRNA, and lincRNA), totaling 36,691 RNA baited frag-

ments. The capture library design successfully covered 95% of the

coding gene promoters and 88% of the non-coding RNA pro-

moters. Custom capture bait design failed for 5% of the coding

genes, which were either duplicated genes or contained highly re-

petitive DNA in their promoter regions. The isolated DNA of the 3C

libraries generated by DpnII digestion and ligation was quantified

using a Qubit fluorometer (Life Technologies), and 10 mg of each

library was sheared in dH2O using a QSonica Q800R to an average

DNA fragment size of 350 bp. QSonica settings used were 60%

amplitude, 30 s on, 30 s off, 2 min intervals, for a total of 5 intervals

at 4�C. After shearing, DNA was purified using AMPureXP beads

(Agencourt), the concentration was checked via Qubit and DNA

size was assessed on a Bioanalyzer 2100 using a 1000 DNA Chip.

SureSelect XT Library Prep Kit (Agilent) was used to repair DNA

ends and for adaptor ligation following the standard protocol.

Excess adaptors were removed using AMPureXP beads. Size and

concentration were checked again before hybridization. 1 mg of

ligated library was used and the standard protocol of the SureSelect

XT capture kit was followed to obtain the custom designed

Capture-C library. The quality of the captured library was assessed

using both Qubit fluorometer and Bioanalyzer’s high sensitivity

DNA chip. Each SureSelect XT library was initially sequenced on

one lane of HiSeq 4000 machine to generate 100 bp paired end

reads for QC purposes. All Capture-C libraries were then sequenced

three at a time on an S2 flow cell on an Illumina NovaSeqmachine,

generating �1.6 billion paired-end reads per sample.

ChIP-Seq Data Processing
Penn Cohort 1

Quality of the raw sequence data was assessed using FastQC. Low-

quality base calls and sequencing adapters were trimmed using

Trim Galore! with the following parameters: -stringency 5 -length

50 -q 20. Reads were then aligned to the reference human genome

(hg19) using the BWA-MEM algorithm.28 Aligned reads were
The A
sorted and filtered based on a minimum mapping quality of 10

using SAMtools-1.3.1.29 MACS230 was used to call peaks for each

individual ChIP data using the following parameters:–nomodel–

extsize 147 -q 0.01 and the corresponding input data as control.

Samples that both had fraction of reads in peaks (FRiP) R 1% as

suggested previously31 and that displayed a significant overlap

(i.e., right tailed Fisher’s p < 10�6 and at least 2-fold enrichment)

with ENCODE DNaseI Hypersensitive sites (the ENCODE DNaseI

Hypersensitive site master list generated by the ENCODE Analysis

Working Group downloaded in October 2016) were retained for

the downstream analyses (Table S1). See Figure S1 for the heatmap

plot of Spearman’s correlation of normalized and averaged ChIP-

seq read counts for 27 samples that passed the ChIP-Seq QC

thresholds. To generate Figure S1, deepTools32 was used to

normalize the ChIP-Seq read counts to 13 depth of coverage

while excluding chromosome X and average scores were calcu-

lated based on 10 kb bins that consecutively cover the entire

genome.

To define the final set of ChIP-Seq peaks, ChIP-Seq data from

biological replicates (n ¼ 9 for H3K4me3 and n ¼ 18 for

H3K27ac) as well as their corresponding input data (n ¼ 9 for

Input of H3K4me3 and n ¼ 18 for Input of H3K27ac) were pooled

into separate groups. See Figure S2 for heatmap and profile plots of

read density signal around TSS (based on GENCODE v19 annota-

tions) and Figure S3 for correlation between read density signal

around TSS and gene expression levels. MACS230 was used to

call the peaks on the pooled ChIP-seq data of 9 and 18 individuals

respectively while using the corresponding input data as control.

Among peaks that were called, 68,600 H3K4me3 and 131,293

H3K27ac peaks that have a mean read count of at least 20 were

included in further analyses. See Table S2 for chromosomal posi-

tions of the peaks, Figure 2A for distribution of peak lengths,

and Figure S4 for genomic annotation of ChIP-Seq peaks.

Genomic annotations were obtained using Bioconductor’s

GenomicFeatures package33 and based onGENCODE v.19 annota-

tions. H3K4me3 peaks were significantly enriched near promoter

regions (%3 kb to TSSs) relative to 1,000 sets of randomly selected

size-matching regions of the genome (one-side Fisher’s exact test p

< 2.2 3 10�16 when the observed overlap was compared with the

mean overlap of 1,000 permutations). H3K4me3 and H3K27ac

peaks identified also displayed significant enrichment for

ENCODE DNase and FAIRE open chromatin regions as well

as ENCODE H3K4me3 and H3K27ac sites in HepG2 cells

(p < 2.2 3 10�16; Figure S5). Links to ENCODE datasets used are

included in Table S5. ENCODE datasets were intersected with liver

histone peaks as well as 1,000 sets of randomly selected size-

matching regions. Fisher’s exact test was used to compare the

observed number of overlap with the mean overlap of 1,000 sets

of randomly selected size-matching regions.

RNA-Seq Data Processing
Penn Cohort 1

One outlier sample with fewer than one million reads was

excluded from the analysis. Quality of the raw sequence data

was assessed using FastQC. Low-quality base calls and

sequencing adapters were trimmed using Trim Galore! with the

following parameters: -stringency 5 -length 50 -q 20 --paired.

Trimmed reads were aligned to the reference human genome

(hg19) as implemented in STAR aligner34 using (1) genome in-

dexes based on GENCODE v.19 annotations and (2) genome in-

dexes based on discovered as well as expressed and annotated

splice junctions. Specifically, STAR v.2.534 was run in two-pass
merican Journal of Human Genetics 105, 89–107, July 3, 2019 91



mode using the following parameters: --outFilterMultimapNmax

10 --outFilterMismatchNmax 10 --outFilterMismatchNoverLmax

0.3 --alignIntronMin 21 --alignIntronMax 0 --alignMatesGapMax

0 --alignSJoverhangMin 5 --twopassMode Basic --twopass1readsN

500000000 --sjdbOverhang 124. Aligned reads were sorted and

filtered to retain only primary aligned reads using SAMtools-

1.3.1.29 See Figure S6 for a histogram of number of primary aligned

reads. RSEM35 was used to estimate gene-level expression as tran-

scripts per million (TPM). 19,133 genes with RSEM expected read

count of >6 and TPM of >0.1 in at least 10% of the subjects were

defined as expressed. TPM values of the expressed genes were nat-

ural log transformed after adding a pseudocount of 1. After log

transformation, expression values were quantile normalized

between individuals across all expressed genes. For each gene,

expression values were then inverse quantile normalized to a stan-

dard normal distribution across individuals.

Penn Cohort 2

RNA-seq data of Penn Cohort 2 was processed the same way as in

Penn Cohort 1. 19,537 genes with RSEM expected read count

of>6 and TPM of>0.1 in at least 10% of the subjects were defined

as expressed in this cohort.

GTEx

Low-quality base calls and sequencing adapters were trimmed

using Trim Galore!. Trimmed reads were aligned to the reference

human genome (hg19) as implemented in STAR aligner34 using

(1) genome indexes based on GTEx’s GENCODE v.19 gene level

annotations; gencode.v19.genes.v6p_model.patched_contigs.gtf

and (2) genome indexes based on discovered as well as expressed

and annotated splice junctions. STAR v.2.534 was run in 2-pass

mode using the same parameters as in Penn Cohorts 1 and 2

except the parameter–sjdbOverhang 75 to correspond to the

RNA-seq read length of this cohort. Similarly, aligned reads were

sorted and filtered to retain only primary aligned reads using

SAMtools-1.3.129. RSEM35 was used to estimate gene-level expres-

sion as TPM. 22,415 genes with RSEM expected read count of >6

and TPM of >0.1 in at least 10% of the subjects were defined as

expressed.
Genotype Data Processing
Penn Cohort 1

Genotype data were subjected to standard QC checks using whole-

genome association analysis toolset PLINK.36 First, genetic sex of in-

dividuals was compared to the self-reported sex. Out of 50 subjects,

1 had inconsistency between self-reported (male) and genotyped

(female) sex, but the subject was retained in the study because geno-

type data were concordant when genotypes based on genotyping

array and RNA-seq data were compared. Next, variants with HWE

p < 10�6 and variants with more than 5% missing rate were

excluded. QC’ed genotype data were phased and imputed with

SHAPEIT237 and IMPUTE2,38 respectively, using multi-ethnic panel

reference from 1000 Genomes Project Phase 3.39 Following imputa-

tion, variants with HWE p < 10�6, missing rate > 5%, minor allele

frequency (MAF) < 5%, and imputation info score < 0.4 were

excluded. This yielded in a total of 4,584,583 imputed variants.

Penn Cohort 2

Genotype data of Penn Cohort 2 was processed the same way as in

Penn Cohort 1. Out of 96 subjects, 2 had inconsistencies between

their self-reported (female) and genotyped (male) sex. Both sub-

jects were retained in the study after making sure the genotypes

based on genotyping array and RNA-seq data were concordant. Af-

ter imputation and QC checks, 4,541,981 variants were retained.
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GTEx

Genotype data was phased and imputed as described previously.25

Variants with HWE p < 10�6, missing rate < 5%, MAF < 5%, and

imputation info score < 0.4 were excluded. 5,598,884 variants

were retained after imputation and QC filtering.
Genome-wide Promoter-Focused Capture-C Data

Processing
Paired-end reads were pre-processed with the HICUP pipeline,40

with bowtie2 as aligner and hg19 as reference genome. Signifi-

cant interactions at 1-DpnII fragment resolution were called

using CHiCAGO,41 an open-source package that is commonly

used for detection of robust chromatin-chromatin interactions.

For this analysis, CHiCAGO was run using default parameters

except for binsize, which was set to 2,500. The 4-cutter restric-

tion enzyme, DpnII, yields high-resolution fragments (median

fragment size ¼ 264 bp, mean size ¼ 433 bp) compared to the

HindIII 6-cutter (median fragment size ¼ 2,274 bp, mean frag-

ment size ¼ 3,697 bp), which is commonly used in comparable

Hi-C-based approaches, but sequencing reads are distributed

across many fragments, leaving fewer reads available per frag-

ment to call significant promoter contacts, especially when

further from the bait. In order to identify additional distal con-

tacts, we also called interactions at the lower 4-DpnII fragment

resolution (median fragment size ¼ 1,440 bp, mean fragment

size ¼ 1,736 bp), which is still substantially higher than the Hin-

dIII resolution. To this end, we proceeded as described in Chesi

et al.42 and according to recommendations in the CHiCAGO

vignette.41 Namely, we generated artificial .baitmap and .rmap

files where DpnII fragments were grouped into four consecu-

tively and used these files to run CHiCAGO with default

parameters, except for binsize, which was set to 10,000 and re-

moveAdjacent, which was set to False. Results from the two res-

olutions were merged by taking the union of the interaction calls

at either resolution and removing any 4-fragment interaction

which contained a 1-fragment interaction.
Estimating Population Structure
Principal component analysis (PCA) as implemented in

EIGENSOFT43 was performed using the genotype data of each

cohort in aggregate with HapMap Phase 3 genotype data from

1,184 individuals from 11 populations (ASW, African ancestry in

Southwest USA; CEU, Utah residents with Northern and Western

European ancestry from the CEPH collection; CHB, Han Chinese

in Beijing, China; CHD, Chinese in Metropolitan Denver, Colo-

rado; GIH, Gujarati Indians in Houston, Texas; JPT, Japanese in

Tokyo, Japan; LWK, Luhya in Webuye, Kenya; MEX, Mexican

ancestry in Los Angeles, California; MKK, Maasai in Kinyawa,

Kenya; TSI, Toscani in Italia; YRI, Yoruba in Ibadan, Nigeria).44

In Penn Cohort 1, 34 of 50 individuals clustered with the

HapMap European populations, 12 of them clustered with the

HapMap African populations, and the remaining 4 individuals dis-

playedmixed genetic ancestry (Figure S7). In Penn Cohort 2, 62 of

96 individuals clustered with the HapMap European populations,

24 of them clustered with the HapMap African populations,

and the remaining 10 individuals displayed mixed genetic

ancestry (Figure S8). In GTEx, 81 of 96 individuals clustered with

the HapMap European populations, 12 of them clustered with

the HapMap African populations, 1 individual clustered with the

HapMap Asian populations, and the remaining 2 individuals dis-

played mixed genetic ancestry (Figure S9).
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Mapping cis-Expression Quantitative Trait Loci

(cis-eQTLs)
cis-eQTLs were mapped by linear regression as implemented in

FastQTL v2.184.45 Associations between total expression level

(normalized TPM values) of each autosomal gene and variants

within 1 Mb of the transcription start site (TSS) were tested within

each cohort while adjusting for sex, first three genotype-based

PCs, and PEER factors.46 In the GTEx cohort, genotyping platform

was additionally included as a covariate in eQTL mapping. The

most suitable effective number of PEER factor was determined to

be 5, 22, and 16 for Penn Cohort 1, Penn Cohort 2, and GTEx co-

horts, respectively (Figure S10). Nominal p values between each

variant and gene pair within 1 Mb of the TSS were calculated by

measuring the Pearson product-moment correlation coefficients

and using standard significance tests for Pearson correlation.45

To identify the most significantly associated variant per gene,

adjusted p values were estimated by beta approximation method

using the parameter ‘‘–permute 10000.’’ Genome-wide signifi-

cance was determined by correcting the adjusted p values for mul-

tiple testing across genes using Benjamini&Hochberg method

(FDR < 0.05 were considered significant).

METAL47 was used for meta-analysis of cis-eQTL mapping by

combining nominal p values across three cohorts while taking the

sample size and direction of effect into account. For each gene, the

most significantly associated variant per gene (i.e., the one with

the smallest meta p value) was recorded to form the empirical, true

metap valuedistribution. To assess the significance ofmetap values,

eQTL mapping within each cohort was repeated using permuted

gene expression data. METALwas successively run on the permuted

eQTL results across three cohorts and permuted meta p values were

obtained. For each gene, the most significantly associated variant

per gene (i.e., the one with the smallest meta p value) was recorded

to form the empirical, null meta p value distribution. Next, FDR

of 0.05 was estimated such that Probability(p value0< z)/ Probabili-

ty(pvalue1< z)¼0.05,whereProbability(pvalue0< z) is the fraction

of p values from thenullmeta pvalue distribution that fall below the

p value threshold z and Probability(p value1< z) is the correspond-

ing fraction in the true meta p value distribution (See Figure S11 for

QQ-plots of meta cis-eQTL associations, Figure S12 for relative dis-

tance ofmeta cis-eQTLs to their target gene TSS, and Table S4 for sig-

nificant meta cis-eQTL results).
Identification of Shared and Liver-Specific cis-eQTLs
Among 2,625 lead cis-eQTLs, 2,552 of them were tested in GTEx

Analysis Releasev6p. For each of these 2,552 lead cis-eQTL-gene

expression pairs, posterior probability of association in 43 non-

liver GTEx tissues25 were calculated usingMETASOFT.48 cis-eQTLs

with a posterior probability of 0.9 in at least 38 non-liver tissues

were defined as ‘‘shared-eQTLs’’ and cis-eQTLs with a posterior

probability of 0.9 in fewer than 5 non-liver tissues were defined

as ‘‘liver-specific eQTLs.’’ Overlap between these three sets of

cis-eQTLs (total, shared, and liver-specific) and H3K4me3 and

H3K27ac peaks were identified using bedtools intersect –u func-

tion. Liver H3K4me3 and H3K27ac peaks identified in this study

as well as those of ENCODE consortium (links to ENCODE

datasets are in Table S5) were included in this analysis. For each

cis-eQTL set, 1,000 matching SNP sets (LD of r2 0.5, MAF of

55%, gene density of 55%, distance to nearest gene of 550%,

LD buddies of 550% in European 1000G Phase3) were obtained

using SNPsnap.49 Odds ratios of observed/expected overlaps were

plotted in Figures S13 and 3B.
The A
Mapping trans-Expression Quantitative Trait Loci (trans-

eQTLs)
Associations between each expressed autosomal protein coding

gene and variants that are more than 5 Mb apart were considered

as trans. trans-eQTLs were mapped using MatrixeQTL51 while ad-

justing for the same covariates that were used in cis-eQTLmapping

(i.e., sex, ancestry, PEER factors in each cohort as well as genotyp-

ing platform in GTEx cohort). trans-eQTLmapping was performed

within each cohort using (1) all linkage disequilibrium pruned var-

iants (r2 > 0.5, plink parameters –indep 50 5 2 across cohorts), (2)

variants that were identified as cis-eQTLs in this study (2,625 var-

iants based on meta cis-eQTL results), and (3) variants that are

likely to affect transcription factor activity. In approach 1, our

goal was to perform a hypothesis-free genome-wide trans-eQTL

scan. In approach 2, we hypothesized that cis-eQTLs through

regulation of gene expression can alter protein levels of their cis-

eGenes and differences in protein levels can affect expression

levels of other genes downstream. In approach 3, we hypothesized

that cis-eQTLs and coding variants of transcription factors are

likely to alter transcription factor activity (either through altering

protein level or protein function) and that differences in transcrip-

tion factor activity can affect expression levels of other genes

downstream. For approach 3, we obtained the curated list of

1,988 transcription factors from T. Ravasi et al.52 We included

the significantmeta cis-eQTLs for this set of genes and protein cod-

ing variants of this set of genes (based on gnomAD release-170228)

that passed our initial genotyping QC threshold within each

cohort (4,997, 4,860, and 5,516 variants for Penn Cohort 1,

Penn Cohort 2, and GTEx, respectively).

METAL47 was used for meta-analysis of trans-eQTL mapping by

combining nominal p values across three cohorts while taking the

sample size and direction of effect into account for each type of

trans-eQTL approach. Similarly, METAL was run on the permuted

trans-eQTL results across three cohorts and permuted meta p

values were obtained. Permutation-based FDR was calculated as

explained in the cis-eQTL mapping section above. See Figure S14

for QQ-plots of meta trans-eQTL associations. There were two sta-

tistically significant trans-eQTL findings when genome-wide

approach was used. However, both of these results were filtered

due to presence of genes near trans-eQTL (within 100 kb) with ev-

idence of RNA-seq read cross-mapping due to sequence similarity

(Table S12). There were no significant findings when only cis-

eQTLs or only variants likely to affect transcription factor activity

were tested as trans-eQTLs.
Mapping cis-Histone Quantitative Trait Loci (cis-hQTLs)
Picard Tools’ MarkDuplicates function was used with the

‘‘REMOVE_DUPLICATES ¼ true’’ parameter set to remove dupli-

cate reads from aligned and q10 filtered ChIP-seq data (initial

ChIP-seq data processing and QC steps were explained above in

the ChIP-Seq Data Processing section). Genotype data of Penn

cohort 1 were further processed to include only single-nucleotide

substitutions in hQTL mapping. Allele-specific read counts were

obtained with GATK’s53 ASEReadCounter function. Total feature

counts and GC% values of each feature were used to generate sam-

ple specific offset values for each feature. To generate PEER Factors,

FPM values (equivalent of TPM for ChIP-seq data) were calculated,

quantile normalized between individuals, and inverse quantile

normalized to a standard normal distribution within each peak.

Sex, first three genotype-based PCs, and five PEER factors were

included as covariates. RASQUAL20 was used to map hQTL
merican Journal of Human Genetics 105, 89–107, July 3, 2019 93



associations. Variants within 10 kb of each end of a histone peak

were considered as cis. All autosomal peaks were included in

hQTL mapping. This corresponded to a total of 65,649 and

128,822 tested peaks for H3K4me3 and H3K27ac, respectively.

For each peak, the most significant p value was selected to

form the empirical, true hQTL p value distribution. To assess

genome-wide significance, RASQUAL was successively run using

the -r/–random-permutation option. For each peak, the most

significant p value from the permutation run was selected to

form the empirical, null hQTL p value distribution. Next, FDR of

0.05 was estimated such that Probability(p value0 < z)/

Probability(p value1 < z) ¼ 0.05, where Probability(p value0 < z)

is the fraction of p values from the null hQTL p value

distribution that fall below the p value threshold z and Probabili-

ty(p value1 < z) is the corresponding fraction in the true hQTL

p value distribution. Peaks with significant hQTLs were excluded

if they had potential reference mapping bias (f < 0.25 and

f > 0.75). See Table S7 for significant hQTL results.
Integrative Analyses of Liver cis-hQTLs with Other

Functional Datasets
We used ENCODE Regulation ‘‘Txn Factor’’ track and downloaded

the wgEncodeRegTfbsClusteredWithCellsV3.bed.gz file, which in-

cludes transcription factor binding site clusters together with the

input cell sources. Using this file, we extracted the binding sites

of 61 transcription factors that were obtained in HepG2 cell line.

Link to the ENCODE dataset used is included in Table S5. Peaks

with cis-hQTLs were overlapped with 61 different transcription

factors’ binding sites in HepG2 cells using bedtools intersect –u

function. Enrichment of overlap was calculated relative to 1,000

sets of randomly chosen matching numbers of H3K4me3 and

H3K27ac autosomal peaks in our data. One-sided Fisher’s exact

test was used to assess the significance of the enrichment.

For 151 of the hQTL-peaks, target interacting gene promoters

could be identified using the Capture-C data. For each variant

that was located within such hQTL-peak, cis-eQTL p value for

the interacting gene was pulled to form the distribution of

observed cis-eQTL p values. This observed p value distribution

was then compared to the expected distribution of p values that

was observed when 151 histone peaks with no hQTLs were chosen

randomly from the set of autosomal histone peaks that do not

have significant hQTLs. In a complementary analysis, the propor-

tion of eQTL-genes among the 210 genes that interact with hQTL-

peaks was compared with the proportion that was observed

among 1,000 sets of randomly chosen 210 genes that were baited

and expressed but that do not interact with hQTL-peaks. Signifi-

cance was assessed based on the permutation p value.
Identification of Shared Genetic Signals Underlying

Variation in Histone Modification States and Gene

Expression Levels
For each gene with a significant meta cis-eQTL, H3K4me3 and

H3K27ac peaks with significant hQTLs that are located within 1

Mb of its transcription start site (TSS) were tested for evidence of

co-regulation. Gene-peak pairs with r2 > 0.8 between the lead

hQTL and lead eQTL were considered as putatively co-regulated.

r2 was calculated in the 1000 Genomes, Phase 3, European popu-

lation. Among significant co-regulation results, the ones in the

MHC region (chr6: 28,510,120–33,480,577) were excluded owing

to complicated LD patterns of this locus.We note that hQTLs were

mapped using a subset of Penn Cohort 1 samples and eQTLs were
94 The American Journal of Human Genetics 105, 89–107, July 3, 201
mapped across the three cohorts in our study. While the majority

of the individuals in our cohorts were of European ancestry

(Figures S7–S9), we suggest that caution be taken, as there could

be differences in LD in specific genomic regions when genotype

data of our study subjects are compared to 1000 Genomes, Phase

3, European population.
Identification of Trait-Relevant Genes and Regulatory

Elements in GWAS Loci
GWAS summary statistics of 20 phenotypes including coronary ar-

tery disease,54 HDL cholesterol,55 LDL cholesterol,55 total choles-

terol,55 triglycerides,55 diastolic blood pressure,56 systolic blood

pressure,56 mean arterial pressure,56 rheumatoid arthritis,57 type

2 diabetes,58 multiple sclerosis,59 asthma,59 psoriasis,59 Parkinson

disease,59 Alzheimer disease,60 schizophrenia,61 Crohn disease,62

ulcerative colitis,62 inflammatory bowel disease,62 and age-related

macular degeneration63 were obtained (see Table S9 for links to da-

tasets). Among GWAS variants with p < 10�6, most significant

variant was chosen to represent each 2 Mb region and to define

each significant GWAS locus, 1 Mb upstream and 1 Mb down-

stream of the lead variant. Approximate Bayes Factor colocaliza-

tion analysis of the coloc package64 was performed between

each eQTL-gene whose TSS was within each GWAS locus and

the corresponding GWAS phenotype. To assess the significance

of colocalization analysis,64 we used a previously published

approach16 and assessed whether there was sufficient power to

test for colocalization (PP3þPP4 > 0.8), and for the colocalization

pairs that pass the power threshold, we defined PP4/(PP3þPP4)

> 0.9 as the significant colocalization threshold. Similarly, signif-

icant hQTL-peaks that were located within each GWAS locus

were tested for evidence of underlying GWAS signals. When

lead hQTLs and lead GWAS variants were in high linkage disequi-

librium (r2 > 0.8), we considered such hQTL-peaks as the

likely trait-relevant regulatory elements in GWAS loci. r2 was

calculated in the 1000 Genomes, Phase 3, European population.

All significant signals in the MHC region (chr6: 28,510,120–

33,480,577) were excluded owing to the complicated LD patterns

of this locus.

In loci where we identified a single colocalized gene, we classi-

fied whether the candidate genes prioritized in our study have

been previously reported as likely trait-relevant genes for the

phenotype of interest or not. To do so, we downloaded the

NHGRI-EBI GWAS Catalog in May 2018. We retrieved the entries

that matched the GWAS phenotype (column ‘‘MAPPED_TRAIT’’)

as well as chromosome nomenclature of the GWAS locus under

question (column ‘‘REGION’’). For each retrieved entry, we

checked the hg19 genomic position of the SNP reported (column

‘‘SNPs’’) and pulled entries that are located within the GWAS locus

of interest (within 1 Mb to GWAS lead variant). Among the

selected entries, we checked the proportions of studies that re-

ported the colocalized gene as the sole versus among many candi-

date genes of interest (column ‘‘REPORTED.GENE.S’’). Colocalized

genes that have not been reported as candidate GWAS genes in

NHGRI database were further retrieved in PubMed database using

search terms that included the colocalized gene ID in combination

with GWAS phenotype. Each retrieved manuscript was then eval-

uated to determine whether colocalized gene has been previously

reported as candidate GWAS gene for the phenotype of interest or

not. We note that our literature review may be incomplete as the

review was performed by a single author and was limited to man-

uscripts that were written in English and those that were open
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Figure 1. Descriptions of the Study Cohorts and Datasets Collected
(A) Subjects from three cohorts were included in this study. Penn cohort 1 and Penn cohort 2 samples were collected at the Penn Trans-
plant Institute and datasets from these two cohorts have not been published previously. GTEx liver samples were collected as a part of the
GTEx Analysis Releasev6p.25

(B) For eQTL mapping, associations between variant-gene pairs that are within 1 Mb of the TSS were considered as cis. cis-eQTLs were
mapped within each cohort and a meta-analysis was performed across cohorts. Numbers of genes with a significant cis-eQTL at an
FDR of 5% are shown.
(C) For hQTL mapping, associations between histone peaks and variants within 10 kb of the nearest end of the histone peaks were
considered as cis. Numbers of histone peaks with a significant cis-hQTL at an FDR of 5% are shown.
(D) Genome-wide promoter-focused Capture-C was used to identify gene promoter-histone peak interactions. 29,328 gene promoter-
H3K4me3 peak and 40,839 gene promoter-H3K27ac peak interactions were identified at CHiCAGO score41 of R 5. *DNA from GTEx
liver samples were extracted from whole blood.
access and/or could be retrieved through Penn Library-licensed

electronic resources.

Results

Annotation of Regulatory Elements and Their

Interacting Gene Promoters

H3K4me3 and H3K27ac are epigenetic histone modifica-

tions that are enriched in functional non-coding regions

of the human genome, including active gene promoters

and enhancers.65–67 We performed chromatin immunopre-

cipitation (ChIP)68 for H3K4me3 and H3K27ac modifica-

tions in human liver tissue, sequenced ChIP-ed DNA, and

obtained H3K4me3 and H3K27ac ChIP-seq data from 9

and 18 individuals, respectively (Figure 1A and Table S1,
The A
see Material and Methods for all cohort and analysis de-

tails). Using these data, we annotated 68,600 and 131,293

genomic regions enriched for H3K4me3 and H3K27ac

modifications (i.e., ChIP-seq peaks; Figure 2A and

Table S2). Similar to previous reports,65–67 we showed that

H3K4me3 is highly enriched (p < 2.2 3 10�16) near tran-

scription start sites (TSSs) and H3K27ac is approximately

equally present within intronic, distal intergenic, and

near-TSS regions (Figure 2B). We also collected genome-

wide genotype and RNA-seq data in the liver from two co-

horts and, alongside with publicly available GTEx v6p liver

data,25 we studied the extent of inter-individual variation

in liver gene expression levels in a total sample size of

241 (Figure 1A). Across the three cohorts in our study, we

identified 23,271 expressed genes. Using a genome-wide
merican Journal of Human Genetics 105, 89–107, July 3, 2019 95
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Figure 2. Annotation of Regulatory Ele-
ments and Their Interacting Gene Pro-
moters
(A) Distribution of H3K4me3 (green) and
H3K27ac (blue) peak lengths. Median peak
lengths were 507 bp and 491 bp for
H3K4me3 and H3K27ac peaks, respectively.
Note that this zoomed-in plot does not
display peaks with length >3,000 bp.
(B) Genomic annotations of the 68,600
H3K4me3 and 131,293 H3K27ac ChIP-seq
peaks.
(C) Percentage of baited gene promoters
that form DNA-looping interactions with
H3K4me3 peaks. Expressed genes were
significantly more likely to form DNA-loop-
ing interactions with H3K4me3 peaks. Pear-
son’s chi-square test p values were < 2.2 3
10�16 for all, protein-coding, lincRNA gene
groups and 0.00036 for pseudogenes.
(D) Percentage of baited gene promoters
that form DNA-looping interactions with
H3K27ac peaks. When expressed genes
were compared with genes that were not de-
tected as expressed, Pearson’s chi-square test
p values were < 2.2 3 10�16 for all, protein-
coding, lincRNA gene groups and 4.23 10�8

for pseudogenes.
(E) Mean CHiCAGO interaction scores be-
tween baited gene promoters and H3K4me3
peaks. Interaction scores between H3K4me3
peaks and expressed genes were significantly
higher than those between H3K4me3 peaks
and genes that were not detected as ex-
pressed. One-tailed Welch two sample t
test p values were < 2.2 3 10�16, 5.34 3
10�6, 0.0061, 0.084 for all, protein-coding,
lincRNA, and pseudogenes, respectively.

(F) Mean CHiCAGO interaction scores between baited gene promoters and H3K27ac peaks. Interaction scores between H3K27ac peaks and
expressed genes were significantly higher than those between H3K27ac peaks and genes that were not detected as expressed. One-tailed
Welch two sample t test p values were < 2.23 10�16, < 2.23 10�16, 6.33 10�5, 8.63 10�4 for all, protein-coding, lincRNA, and pseudo-
genes, respectively.
(G) Distribution of distance between interacting bait promoters and histone peaks. >99% of all interacting bait-peak pairs were within less
than 1 Mb apart.
promoter-focused Capture-C method (approach was

derived from Hughes et al.;27 see Material and Methods

for details), we identified 29,328 significant41 promoter-

H3K4me3 and 40,839 promoter-H3K27ac peak interactions

within the liver-derived HepG2 cell line (Figure 1D and

Table S3). The promoters of expressed genes were signifi-

cantly more likely to have DNA looping interactions with

the histone peaks identified in our study relative to the pro-

moters of genes that were not expressed (p < 2.2 3 10�16;

Figures 2C and 2D). Furthermore, the interactions between

expressed gene promoters and the liver histone peaks were

significantly stronger than those observed between histone

peaks and genes that were not expressed (p < 2.2 3 10�16;

Figures 2E and 2F). More than 99% of the histone peaks

with evidence of looping were within 1 Mb of their inter-

acting promoters (Figure 2G).

Identification of Shared and Liver-Specific cis-eQTLs

Wemapped cis-expression quantitative trait loci (cis-eQTL;

here defined as associations between the expression level
96 The American Journal of Human Genetics 105, 89–107, July 3, 201
of a gene and a variant within 1Mb of the gene TSS) within

each cohort by linear regression45 and performed a meta-

analysis47 across three cohorts. We identified 2,625 genes

with cis-eQTLs at 5% FDR; we hereafter refer to such genes

as eQTL-genes (Figure 1B and Table S4). For each cis-eQTL

identified, we estimated the posterior probability48 that

the eQTL effect is present in 43 non-liver GTEx v6p tis-

sues25 (Figure 3A and Table S4). We classified cis-eQTLs

that have a posterior probability of greater than 0.9 for be-

ing an eQTL in at least 38 non-liver tissues as ‘‘shared

eQTLs’’ and those with a posterior probability of greater

than 0.9 in fewer than five non-liver tissues as ‘‘liver-spe-

cific eQTLs’’ (the last and first quartiles of the distribution

in Figure 3A, respectively). We integrated these cis-eQTL

findings with H3K4me3 and H3K27ac peaks that we iden-

tified in the human liver as well as those that were identi-

fied in multiple cell lines by the ENCODE consortium5

(Table S5). Overall, cis-eQTLs were significantly more likely

to overlap H3K4me3 and H3K27ac histone peaks relative

to randomly selected SNPs matched for key properties
9
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Figure 3. Identification of Expression and
Histone Quantitative Trait Loci in the
Human Liver
(A) Distribution of the number of non-liver
GTEx tissues with an association posterior
probability (m-value) of > 0.9 for lead cis-
eQTL-gene pairs. cis-eQTL-gene pairs in the
first quartile of the distribution were consid-
ered as liver-specific, those in the last quar-
tile were considered as shared eQTLs.
(B) Overlap between cis-eQTL sets (total,
shared, and liver-specific) and H3K4me3
and H3K27ac peaks. Odds ratios are relative
to randomly chosen matching (with respect
to LD,MAF, gene density, distance to nearest
gene) SNP sets. H3K4me3 andH3K27ac data
from non-liver tissues were obtained from
ENCODE database, links to the ENCODE
data files are included in Table S5. The
odds ratios are only plotted for cell lines
with both H3K4me3 and H3K27ac data. Re-
sults from other cell types are included in
Figure S13, p values and odds ratios are
included in Table S6.
(C) QQ-plots of the cis-hQTL association p
values of H3K4me3 (panel 1) and H3K27ac
(panel 2). Solid lines represent the expected
distribution of p values based on permuted
data.
(D) Observed and expected numbers of tran-
scription factor binding sites (TFBS) in
hQTL-peaks. Expected numbers represent
the mean TFBS overlap of 1,000 set of
randomly chosen matching numbers of
autosomal liver histone peaks. Transcription
factors that were significantly enriched
(one-tailed Fisher’s exact test p < 0.05) in
hQTL-peaks are shown in red triangles.
(E) hQTL-peaks were assigned to their inter-
acting gene(s) using chromatin capture
data. For each variant within a hQTL-peak,
its eQTL-pvalue on the interacting gene(s)
is plotted in magenta color. Matching

numbers of peaks were drawn from the set of expressed and baited genes that do not interact with hQTL-peaks. eQTL p values of the
variants within the background set of histone peaks on their interacting gene(s) are shown in black color. One-sided Wilcoxon rank
sum test p value comparing two p value distributions was 3.75 3 10�9.
(F) Percentage of eQTL-genes among genes that interact with hQTL-peaks is shown in themagenta vertical line. Distribution of expected
percentage based on 1,000 sets of randomly chosen matching numbers of genes that do not interact with hQTL-peaks are shown in
black. p value of 0.001 is based on the permutation test.50
including linkage disequilibrium (LD), minor allele fre-

quency (MAF), gene density, and distance to nearest gene

(Figure 3B and Table S6). Moreover, shared eQTLs overlap-

ped H3K4me3 promoter marks more often than liver-spe-

cific eQTLs (Figure 3B and Table S6). Conversely, while

shared eQTLs showed similar levels of overlap with

H3K27ac enhancer marks across different tissues, liver-spe-

cific eQTLs were significantly more likely to overlap

H3K27ac marks that we identified in human liver tissue

as well as those that were identified in liver-derived

HepG2 cell lines, consistent with the previous reports of

significantly higher cell-type specificity of enhancers rela-

tive to promoters69 (Figure 3B and Table S6). Despite imple-

menting multiple approaches, we did not identify any sig-

nificant trans-eQTLs in the human liver (see Material and

Methods for details).
The A
Identification of cis-hQTLs in the Human Liver

To identify genetic determinants of H3K4me3 and

H3K27ac modifications in the liver, we applied a method

that uses both total and allele-specific signals in

sequencing data to enable quantitative trait loci (QTL)

mappingwith relatively small sample sizes.20We identified

cis-QTLs for 51 H3K4me3 and 921 H3K27ac peaks at 5%

FDR (Figures 1C and 3C and Table S7). We refer to such var-

iants as histone QTLs (hQTLs) and the peaks that they

regulate as hQTL-peaks throughout themanuscript. We in-

tersected the hQTL-peaks with transcription factor binding

sites (TFBSs) that were obtained in HepG2 cells by the

ENCODE consortium (Table S5).5 We found that liver

hQTL-peaks are significantly enriched for binding sites of

hepatocyte nuclear factors (HNF4A, HNF4G, FOXA2) as

well as transcription factors (TF) involved in hepatocellular
merican Journal of Human Genetics 105, 89–107, July 3, 2019 97



A

B C

D Figure 4. Putatively Co-regulated Histone
Modification States and Gene Expression
Levels
(A) For each gene with a significant meta cis-
eQTL, H3K4me3 and H3K27ac peaks with sig-
nificant hQTLs that are locatedwithin 1Mb of
its transcription start site (TSS) were tested for
evidence of co-regulation. Gene-peak pairs
with r2 > 0.8 between the lead hQTL and
lead eQTL were considered as putatively co-
regulated.
(B) Distance between putatively co-regulated
gene-peak pairs.

(C) Distribution of number of genes that are closer to the hQTL-peak than its putatively co-regulated eQTL-gene.
(D) Example of a putatively co-regulated gene-peak pair. SNP rs12961966 was significantly associated with chromatin modification state
of an enhancer (H3K27ac-84963; chr18: 12,551,731–12,553,678) residing in the second intron of SPIRE1 and SPIRE1 expression level.
Sushi plots70 show themean normalized read counts of each genotype group. Sample sizes of each genotype group were TT:4, AT:8, AA:5
for ChIP-seq data and TT:55, AT:94, AA:88 for RNA-seq data. SPIRE1 model shown below the sushi plots was generated using ggbio Bio-
conductor package71 and SPIRE1 transcript ENST00000409402. Boxplots of normalized H3K27ac-84963 ChIP-seq and SPIRE1 RNA-seq
read counts are stratified by genotype at the rs12961966 are displayed in Figure S16.
remodeling (JUN and JUND) when compared with

randomly selected matching numbers of liver histone

peaks from our data (p< 0.05; Figure 3D). Furthermore, us-

ing our chromatin capture data, we found that variants

within hQTL-peaks were more likely to be significantly

associated with the expression of genes with which they

are in contact with relative to the variants within histone

peaks that do not have hQTLs (p ¼ 3.75 3 10�9,

Figure 3E). Overall, genes that interact with an hQTL-

peak were almost twice as likely to have cis-eQTLs relative

to randomly selected matching numbers of expressed

and baited genes that do not interact with hQTL-peaks

(p ¼ 0.001; Figure 3F). These results suggest that geno-

type-dependent putative functional elements identified

here play causal roles in the regulation of gene expression

levels and this, at least in part, is mediated via DNA looping

interactions.
Putatively Co-regulated HistoneModification States and

Gene Expression Levels

Integrating eQTL associations with regulatory element an-

notations has proven useful for the precise identification

of causal regulatory variants and the specific regulatory

elements they perturb. Our results highlight the value of

analyzing tissue-type-matched gene expression and regula-

tory element datasets (Figure 3B). These analyses, however,

are limited as there are often multiple regulatory elements

within each eQTL locus and hence it has remained difficult

to systematically link regulatory elements to their respec-

tive target genes. To address this, we first identified puta-

tively co-regulated hQTL-peaks and eQTL-genes. Because

of the limited sample size of our ChIP-seq data, we identi-

fied co-regulated peak-gene pairs based on LD between lead

QTL-SNPs (i.e., r2 > 0.8 between the lead hQTL and lead

eQTL; Figure 4A). We found 116 gene-peak pairs that are

likely regulated by the same causal variant (Table S8). These

116 gene-peak pairs corresponded to 104 unique eQTL-

genes and 95 unique hQTL-peaks. hQTL-peaks were

often not assigned to their nearest gene; in 71% of the
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co-regulated gene-peak pairs, there was at least one other

gene that is closer to the hQTL-peak than the eQTL-gene

with which it is co-regulated (Figures 4B and 4C).

Figure 4D displays an example of a putatively genetically

co-regulated gene-peak pair (r2 between lead QTLs ¼
0.89), supporting the presence of a shared causal effect un-

derlying the activity of an enhancer located in the second

intron of SPIRE1 (H3K27ac-84963; chr18: 12,551,731–

12,553,678) as well as SPIRE1 gene expression level. The

full set of putatively genetically co-regulated gene-peak

pairs are included in Table S8.
Identification of Trait-Relevant Genes and Regulatory

Elements in GWAS Loci

Next, we asked whether leveraging our hQTL, eQTL, and

chromatin capture findings could help fine-map GWAS

loci. Throughout this manuscript, we defined ‘‘fine-map-

ping’’ as evidence of refinement in putatively trait-relevant

gene, regulatory element, and variant identification in any

individual GWAS locus. We obtained GWAS summary sta-

tistics of 20 phenotypes that are commonly studied (based

on the number of PubMed IDs in the NHGRI-EBI GWAS

Catalog) and that have variable levels of suggested causal-

ity manifesting in the liver.2 These phenotypes included

coronary artery disease,54 HDL cholesterol,55 LDL choles-

terol,55 total cholesterol,55 triglycerides,55 diastolic blood

pressure,56 systolic blood pressure,56 mean arterial pres-

sure,56 rheumatoid arthritis,57 type 2 diabetes,58 multiple

sclerosis,59 asthma,59 psoriasis,59 Parkinson disease,59

Alzheimer disease,60 schizophrenia,61 Crohn disease,62

ulcerative colitis,62 inflammatory bowel disease,62 and

age-related macular degeneration.63 Links to the GWAS

summary statistics used are included in Table S9. We

used a p value threshold of < 1 3 10�6, selected a lead

variant to represent each 2 Mb region (1 Mb upstream

and 1 Mb downstream of the lead variant), and identified

1,614 loci previously associated with these phenotypes.

Genetically regulated gene expression levels and histone

modification states in GWAS loci can reveal the
9
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Figure 5. Candidate Trait-Relevant Genes and Gene Regulatory Elements in GWAS Loci
(A) Each GWAS locus was defined as the 2 Mb region around the lead GWAS variant. A Bayesian colocalization approach was performed
between the GWAS phenotype and each gene with a significant meta cis-eQTL whose TSS resides within the GWAS locus.
(B) An LD threshold of r2 > 0.8 between lead GWAS variants and lead hQTLs was used to identify putatively trait-relevant cis-regulatory
elements in GWAS loci.

(legend continued on next page)
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mechanisms underlying observed associations between

genetic variants and disease phenotypes.7–14 We therefore

applied a Bayesian colocalization approach64 to identify

eQTL-genes that likely underlie disease phenotypes

(Figure 5A) and used an LD threshold (r2 > 0.8) between

lead GWAS variants and lead hQTLs to identify putatively

trait-relevant cis-regulatory elements in GWAS loci

(Figure 5B). To assess the significance of colocalization

analysis,64 we used a previously published approach16

and first assessed whether there was sufficient power to

test for colocalization (PP3þPP4 > 0.8), and for the coloc-

alization pairs that pass the power threshold, we defined

the threshold for significance as PP4/(PP3þPP4) > 0.9. In

loci where we found at least one eQTL-gene with signifi-

cant evidence of underlying GWAS associations, we

repeated colocalization analysis using all expressed genes

within 2 Mb region around each lead GWAS variant. Our

rationale was to avoid possibility of excluding genes with

moderate eQTL signals, which did not reach genome-

wide significance threshold of eQTL mapping but dis-

played significant evidence of eQTL-GWAS colocalization.

We found a total of 125 GWAS-gene and 33 GWAS-peak

pairs with evidence of shared genetic causality (Table S10).

For 77 GWAS-gene pairs, our dataset contains evidence sup-

porting identification of the trait-relevant gene, as there

was only one gene that significantly colocalized with the

GWAS phenotype (Figures 5C–5E). We identified several

candidate genes and regulatory elements that underlie asso-

ciations with more than one GWAS phenotype. For

instance, 77 GWAS-gene pairs with only one colocalized

gene implicated 54 unique genes (Figures 5C–5E). 21 of

these genes were previously reported as the likely trait-rele-

vant gene at the locus55,56,61,64,72–79 (Figure 5C). For 10 loci,

our findings help refine candidate gene identification from

among several genes that were suggested to be trait relevant

in the literature56,72,73,76,79–84 (Figure 5D) and in 21 loci, we

discovered candidate trait-relevant genes that have not

been previously suggested to underlie the corresponding

GWAS phenotype (Figure 5E). We were not able to identify

any trait-relevant genes for rheumatoid arthritis, multiple

sclerosis, age-related macular degeneration, and Alzheimer

disease using the data collected in the human liver.

At the 17q21.32 locus, we identified a genetically regu-

lated enhancer (H3K27ac-79622; chr17: 45,733,609–

45,733,977) that likely underlies GWAS associations with
(C) GWAS loci with only one significantly colocalized gene and the g
overwhelming majority of the literature.
(D) GWAS loci with only one significantly colocalized gene and the
suggested to be trait relevant in the literature.
(E) GWAS loci with only one significantly colocalized gene and the ge
ing GWAS phenotype.
(F) GWAS loci withmore than one significantly colocalized gene. Gen
yellow and blue. When identified, putatively trait-relevant histone pe
(G) GWAS loci where candidate trait-relevant regulatory elements w
Phenotype abbreviations are as follows: CAD, coronary artery disease;
TG, triglycerides; DBP, diastolic blood pressure; SBP, systolic blood
asthma; PSO, psoriasis; PD, Parkinson disease; SCH, schizophrenia; C
disease.
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LDL cholesterol, triglyceride, and total cholesterol levels.

We found EFCAB13 and KPNB1 (MIM: 602738) as the

candidate genes driving associations with LDL and triglyc-

eride levels, respectively (Figure 5E). We were not able to

distinguish the effects of these two genes with regard to

total cholesterol associations (Figure 5F). The colocaliza-

tion probabilities of these two genes were close to the sig-

nificance threshold for all three phenotypes, suggesting

that there is insufficient signal to discriminate the two

genes using colocalization analysis. The enhancer identi-

fied in this locus, however, was only forming DNA-looping

interactions with the promoter of KPNB1, and the direc-

tion of effect on enhancer activity was only consistent

with KPNB1 expression, suggesting that KPNB1 is the likely

trait-relevant gene in this locus (Figure 6A). Similary, at the

chromosome 1p13.3 locus, we reassuringly identified the

previously reported trait-relevant enhancer (H3K27ac-

10102; chr1: 109,816,977–109,818,871)11 as the candidate

regulatory element responsible for the GWAS associations

with coronary artery disease, HDL cholesterol, LDL choles-

terol, and total cholesterol levels (Figures 5F and S15). Our

chromatin capture interaction data also revealed an inter-

action between ChIP-seq peak H3K27ac-10102 and the

promoter of the SORT1 (MIM: 602458) gene, supporting

the previously reported regulatory role of this enhancer

on SORT1 gene expression (Figure S15).11

At the 11q12.2 locus, which has been shown to be a crit-

ical component of adaptation to different diets,86,87 we

identified a genetically regulated enhancer (H3K27ac-

33409; chr11: 61,587,373–61,589,527) that likely under-

lies associations with blood lipid phenotypes, asthma,

and Crohn disease (Figure 6B). Interestingly, a previous

study has reported a genetically regulated DNA methyl-

ation probe that overlaps the enhancer we identified and

suggested that DNA methylation differences in this puta-

tive enhancer affects FADS1 (MIM: 606148) protein

activity in the liver.88 While our colocalization analyses

identified both FADS1 and FADS3 (MIM: 606150) as candi-

date trait-relevant genes (Figure 6B), our findings as well as

those fromHoward et al.88 support the identification of the

trait-relevant regulatory element (H3K27ac-33409; chr11:

61,587,373–61,589,527) at this locus.

Lastly, while we were not able to identify a target gene

at the chromosome 16q12.2 locus, we found a genetically

regulated putative enhancer in the first intron of FTO
ene identified has been reported as the likely trait-relevant gene by

gene identified has been reported among several genes that were

ne identified has not been previously implicated in the correspond-

es within the same GWAS locus are shown in alternating shades of
aks are included next to the colocalized gene names of each locus.
ere identified in the absence of colocalized liver eQTL genes.
HDL, HDL cholesterol; LDL, LDL cholesterol; TC, total cholesterol;
pressure; MAP, mean arterial pressure; T2D, type 2 diabetes; AST,
D, Crohn disease; UC, ulcerative colitis; IBD, inflammatory bowel

19



A B

C

Figure 6. Patterns of eQTL, hQTL, Capture-C Signals in Fine-Mapped GWAS Loci
(A) Significant colocalization signals at the 17q21.32 locus are displayed using Manhattan plots. Colocalization posterior probability of
total cholesterol GWAS associations with EFCAB13 gene expression was 0.999 and with KPNB1 was 0.934. Schematic representation of
the genes in the zoomed-in locus of chr17: 45,250,000–45,800,000 and the putatively trait-relevant H3K27ac-79622 peak
(chr17: 45,733,609–45,733,977). H3K27ac-79622 peak only showed significant DNA looping interaction with the promoter of
KPNB1 in the genome (CHiCAGO score: 7.26). The A allele at rs11871606 is the lead hQTL of this peak and significantly increases
the odds of AP1 binding (p ¼ 4.89 3 10�4).85 Boxplots of normalized H3K27ac-79622 ChIP-seq, KPNB1, and EFCAB13 RNA-seq read
counts stratified by genotype at the rs11871606. Sample sizes of each genotype group were AA:3, AC:5, CC:10 for ChIP-seq data and
AA:49, AC:111, CC:81 for KPNB1 and EFCAB13 RNA-seq data.
(B) Significant colocalization signals at the chromosome 11q12.2 locus. Colocalization posterior probabilities of HDL cholesterol asso-
ciations with FADS1 and FADS3 gene expression levels were 0.81 and 0.94, respectively. Schematic representation of the genes in the
zoomed-in locus of chr11: 61,560,452–61,654,826 and the putatively trait-relevant H3K27ac-33409 peak (chr11: 61,587,373–
61,589,527). An allele of the candidate causal variant, rs174564, increases the odds of HNF4A binding (p ¼ 3.4 3 10�5).85 Boxplots
of normalized H3K27ac-33409 ChIP-seq, FADS1 and FADS3 RNA-seq read counts stratified by genotype at the rs174564. Sample sizes
of each genotype group were AA:10, GA:4, GG:4 for ChIP-seq data and AA:112, GA:96, GG:31 for FADS1 and FADS3 RNA-seq data.
(C) 16q12.2 GWAS locus where putatively trait-relevant regulatory element was identified in the first intron of the FTO gene (H3K27ac-
70404; chr16: 53,812,377–53,812,817). Sushi plot shows the mean normalized H3K27ac-70404 ChIP-seq read counts of each genotype
group at rs8063057. This peak could not be assigned to any gene in the human liver tissue. LD heatmap shows the r2 between lead hQTL
and the lead GWAS variants of T2 diabetes, HDL, and triglyceride levels.
(MIM: 610966) (H3K27ac-70404; chr16: 53,812,377–

53,812,817) with evidence of underlying GWAS associa-

tions in this locus with type 2 diabetes, HDL, and
The A
triglyceride levels (Figure 6D). To our knowledge, there

has not been a previous report of a genotype-dependent

regulatory element in the human liver that overlaps the
merican Journal of Human Genetics 105, 89–107, July 3, 2019 101
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Figure 7. Characteristics of Fine-Mapped GWAS Loci
(A) Percentages of GWAS loci with at least one significantly colo-
calized gene are shown for each of the complex phenotypes.
(B) Percentages of GWAS loci with at least one candidate regulato-
ry element are shown for each of the complex phenotypes.
(C) Number of genes that are closer to the lead GWAS variant are
shown for genes that were previously suggested as trait relevant
(i.e., genes shown in Figure 5C) and for genes that were discovered
as trait relevant in our study (i.e., genes shown in Figure 5E).
(D) Distance between lead GWAS variant and the TSS of the candi-
date trait-relevant gene identified. ‘‘Reported’’ corresponds to
genes that were previously reported as likely trait relevant (i.e.,
genes shown in Figure 5C) and ‘‘Discovered’’ corresponds to the
trait-relevant genes that have not been previously suggested to un-
derlie the corresponding GWAS phenotype (i.e., genes shown in
Figure 5E).
GWAS interval at this locus, which has received consider-

able study.89

Characteristics of Fine-Mapped GWAS Loci

Overall, using the genome-wide data collected in the hu-

man liver, we were able to fine-map at least one GWAS lo-

cus for 16 out of 20 phenotypes we studied (Figure 5). 30%

of the trait-relevant genes had liver-specific cis-eQTLs, 16%

had shared cis-eQTLs, and the remaining 54% had cis-

eQTLs that were neither classified as liver-specific nor as

shared. When we looked at the percentage of GWAS loci

with at least one candidate gene (Figure 7A) or regulatory

element (Figure 7B) identified in our study, we found

that our ability to identify trait-relevant genes and regula-

tory elements in GWAS loci is correlated with the physio-

logical relevance of the studied phenotype to the human

liver. Phenotypes with a knownmolecular basis in the liver
102 The American Journal of Human Genetics 105, 89–107, July 3, 20
such as blood lipid phenotypes had larger proportion of

GWAS loci with candidate genes or regulatory elements

identified in our study (Figures 7A and 7B).

A median of two genes were located closer to the lead

GWAS variant than the trait-relevant gene identified in

this study.When we compared the candidate trait-relevant

genes discovered in our study (Figure 5E) to genes that

were previously suggested to be trait relevant in the litera-

ture (Figure 5C), we noted a significant difference both in

terms of the distance and the number of genes between

the lead GWAS variants and the trait-relevant genes identi-

fied (Figures 7C and 7D). This discrepancy emphasizes

once again that genes reported as trait relevant in the liter-

ature are biased toward those that are closer to the GWAS

lead variants and that unbiased genome-wide approaches

are required to identify true trait-relevant genes in

GWAS loci.

We also note that mutations in four of the complex

phenotype-causing genes, LIPA (MIM: 613497), LIPC

(MIM: 151670), GPIHBP1 (MIM: 612757), and IRF8

(MIM: 601565), have been implicated in relatedMendelian

diseases,90–93 and 50% of the trait-relevant genes that have

murine models were reported to display similar phenotype

in the model organism as well (Mouse Genome Database;

Table S11). Lastly, while LIPA, PLTP (MIM: 172425), and

SLC39A8 (MIM: 608732) have been previously suggested

to affect their associated phenotypes through protein

altering mutations,94–96 our findings are in line with those

of Wild et al.97 and Hess et al.,98 suggesting that genotype-

dependent changes in their gene expression levels also

contribute to the complex trait pathogenesis.
Discussion

In 2001, the first published draft of the human genome

confirmed that the vast majority of its sequence, approxi-

mately 97% of the 3.2 billion bases, has no protein-coding

function.99 Following this discovery, the next phase

of research focused on understanding and functionally

annotating non-coding regions within the human

genome. These studies generated reference epigenomic

maps for multiple cell lines and tissue types and demon-

strated that epigenetic marks on histone proteins are

important predictors of gene-regulatory activity.100

Perhaps more interestingly, such gene regulatory regions

were subsequently shown to harbor the majority of the

complex disease-associated variants,4 making studies of

gene regulation an important area of investigation at the

interface of basic and disease biology.

In this study, we generated the most comprehensive, in

terms of sample size and characterizing inter-individual

differences, genome-wide dataset of two epigenetic marks,

H3K4me3 and H3K27ac, in the human liver. Using DNA-

looping interactions, we identified at least one target inter-

acting regulatory element for 65.4% of the genes that were

baited and detected as expressed. We demonstrated
19



widespread functional consequences of natural genetic

variation on regulatory element activity and gene expres-

sion levels. Furthermore, we showed that a single genetic

variant could co-regulate both histone modification states

and gene expression levels and this co-regulation is at least

partly mediated via DNA looping interactions. We expect

that this expansive resource containing functional annota-

tion of non-coding elements and DNA-looping interac-

tions between gene promoters and putative functional

gene regulatory elements will greatly facilitate future ana-

lyses and stimulate new areas of investigation.

Our results also hold significant relevance formedical ge-

nomics. Using genetic colocalization approaches, we fine-

mapped a total of 74 GWAS loci associated with at least one

complex phenotype. For 21 loci, the gene we prioritized

had been previously reported as the likely trait-relevant

gene in the majority of the literature. For 10 loci, our find-

ings helped refine identification of the candidate gene

from among several genes that were suggested to be trait

relevant in the literature. In 21 loci, we discovered candi-

date trait-relevant genes that have not been previously sug-

gested to underlie the corresponding GWAS phenotype

and for a total of 16 loci, we identified candidate trait-rele-

vant gene regulatory elements.

While our efforts constitute the largest GWAS fine-map-

ping effort performed in the human liver, we were able to

identify candidate trait-relevant genes in less than 20% of

the GWAS loci even for the most directly liver-related com-

plex phenotypes (i.e., blood lipid levels). This result indi-

cates a need for similar comprehensive studies of the tran-

scriptome and epigenome in a wider range of tissue types

and stimulation conditions as well as studies focusing on

other complex disease-causing mechanisms. Additionally,

we believe performing Capture-C experiments in the hu-

man liver tissue as opposed to immortalized HepG2 cell

lines could increase our fine-mapping power. We note

that while HepG2 cell lines are a widely accepted model

system to study liver biology, they display an abnormal

hyperdiploid karyotype, which could have effects on chro-

matin-chromatin interactions. It is also likely that there is

inter-individual variation in chromatin-chromatin interac-

tions and when possible Capture-C data should be ob-

tained across several individuals as opposed to a single

cell line. Our eQTL and hQTL mapping experiments were

performed in whole liver tissue samples and performing

similar studies in isolated liver cell types or single cells

could also enhance GWAS fine-mapping ability. Further-

more, while statistical colocalization approaches help pri-

oritization of genes in GWAS loci, it is possible that the

application of such approaches to eQTL and GWAS sum-

mary statistics from larger cohorts may reveal additional

colocalization signals in these same GWAS loci. Lastly,

while we recognize and value the contribution of

genome-wide integrative approaches we and others16–22

have undertaken, we note that further in vivo and organ-

ism-level validations are necessary to confirm the sug-

gested causality of these findings.
The A
Overall, our findings expand the repertoire of candidate

genes and regulatory mechanisms governing complex dis-

ease development and contribute to basic understanding of

genetic and epigenetic regulation of gene expression in the

human liver tissue. Furthermore, by more precisely high-

lighting genes and regulatory elementswith relevance todis-

ease or critical intermediate phenotypes, we believe this

study will improve research into the development of thera-

peutic or preventative measures to mitigate the effects of

complex disease. Finally, our approaches to integrate genetic

variationandmultiplemolecular phenotypes across individ-

uals are likely to be applicable to other tissues and traits.
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