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Peripartal cows often experience negative energy balance, and are therefore prone to suffering from
metabolic diseases such as hyperketonemia, which causes financial losses in dairy farms. This study aimed
to investigate the effect of green tea polyphenol (GTP) supplementation during the periparturient period on
production performance, oxidative stress and immunometabolism in dairy cows with hyperketonemia. One
hundred Holstein cows were assigned to GTP (0.2 g/kg DM; n ¼ 50) or control (without GTP; n ¼ 50) group
based on body weight, previous milk yield, and parity on d 15 before expected parturition. Subsequently, 10
cows with hyperketonemia were selected from each group, according to blood b-hydroxybutyric acid
(BHBA) concentration between 1.2 and 2.9 mmol/L from 2 to 3 d postpartum. All cows were fed a close-up
diet and a lactation diet with or without GTP supply from 15 d prepartum until 30 d postpartum. Milk and
blood samples were obtained from 20 cows selected with hyperketonemia on 10, 20, and 30 d postpartum.
Compared with control cows, greater milk yield and lower somatic cell count were observed in GTP cows.
The GTP group had lower concentrations of BHBA, free fatty acids, cholesterol, triglyceride, reactive oxygen
species, malondialdehyde, and hydrogen peroxide, greater concentrations of glucose, lower activities of
aspartate aminotransferase, alanine aminotransferase, and glutamyl transpeptidase, alongside greater ac-
tivities of superoxide dismutase, glutathione peroxidase, and total antioxidant capacity. Additionally, GTP
supplementation up-regulated concentrations of interleukin-6 and interleukin-10, but down-regulated
concentrations of tumor necrosis factor-a, interleukin-1b, interleukin-2, interleukin-8, and interferon-g
in plasma. Greater concentrations of plasma immunoglobulin G were also detected in the GTP group.
Overall, the data suggested that GTP supplementation from 15 d prepartum to 30 d postpartum improved
the milk yield and health status in cows with hyperketonemia during early lactation.
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1. Introduction

The transition period, from 3wk before to 3wk after parturition,
represents the most critical period in the productive life of high-
producing dairy cows (Drackley, 1999). Peripartal cows undergo a
negative energy balance (NEB) due to decreased dry matter intake
(DMI), and increased energy requirements for milk production
(Drackley, 1999), resulting in increased oxidative stress (Sordillo
and Aitken, 2009) and compromised inflammatory response
(Sordillo et al., 2009). Despite the fact that body fat mobilization is
an adaptive response, extremely high rates of lipid mobilization
uction and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is
nses/by-nc-nd/4.0/).
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Table 1
Ingredients and nutrient composition of basal close-up and lactation diets (% of DM).

Item Close-up
(15 d prepartum)

Lactation
(30 d postpartum)

Ingredients
Whole corn silage 32.36 30.16
Alfalfa 14.44 12.50
Oat hay 17.46 2.86
Cottonseed 6.09 4.07
Corn 15.09 17.71
Molasses 1.81 1.60
Soybean husk 3.21 3.61
Sodium bicarbonate 0.96 0.83
Cottonseed meal e 4.42
Rapeseed meal e 2.33
Distiller's dried grains with soluble e 4.21
Wheat bran 2.33 e

Yeast e 1.38
5% vitamin and mineral premix1 5.0 5.0
Soybean e 2.49
Soybean meal 3.27 4.81

Nutrient composition2

DM, % as fed 45.7 49.3
Net energy, MJ/kg of DM 6.38 6.85
Crude protein 14.2 18.3
Crude fiber 19.8 16.0
Neutral detergent fiber 36.9 31.2
Acid detergent fiber 23.4 21.2
Calcium 0.59 0.69
Phosphorus 0.41 0.45

1 Provided per kilogram of total mixed ration (on DM basis): calcium, 0.36 g;
phosphorus, 0.36 g; sodium, 0.36 g; magnesium, 0.40 g; zinc, 28 mg; manganese,
17 mg; copper, 6.0 mg; cobalt, 0.24 mg; iodine, 0.80 mg; selenium, 0.21 mg; vitamin
A, 4,000 IU, vitamin D, 600 IU, vitamin E, 20 mg (CVAS, Beijing, China).

2 Measured values.
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promotes the production of b-hydroxybutyric acid (BHBA) by the
liver, which contributes to the development of hyperketonemia.
Intense body fatmobilization leads to increased circulation levels of
reactive oxygen metabolites and malondialdehyde (MDA)
(Bernabucci et al., 2005; Celi, 2011), and up-regulated pro-inflam-
matory cytokines, including tumor necrosis factor-a (TNF-a)
(Kushibiki, 2011), interleukin-1b (IL-1b), and interleukin-6 (IL-6)
(Trevisi et al., 2015), which is detrimental to the health of dairy
cows in transition cows. It has been demonstrated that tea, a plant
rich in phytochemicals including flavonoids, tannins, caffeine,
polyphenols, epigallocatechin gallate (EGCG), and quercetin, pos-
sesses potent antioxidant properties (Fang et al., 2005). Plant
polyphenols, end products of the plant flavonoid biosynthetic
pathway, play a role in the regulation of intolerance to elevated
levels of blood glucose (GLU) (Dixon et al., 2005), which is impor-
tant for non-ruminants health (Yang et al., 2001; McKay and
Blumberg, 2002; Rodriguez et al., 2006). In vitro and in vivo
studies prove that tea and tea polyphenols have strong antioxidant
activities (Elbling et al., 2010; Hu et al., 2011; Zhao et al., 2018); thus
they can be used as an antioxidant and anti-aging functional food
(Zhao et al., 2018). Human and rodent studies have verified that
green tea polyphenols (GTP) are responsible for decreased con-
centrations of plasma GLU, insulin, triglyceride (TG), and free fatty
acids, as well as increased GLU uptake stimulated by insulin (Wu
et al., 2004; Wolfram et al., 2006; Fernando et al., 2017). Addi-
tionally, GTP altered gene expression related to lipid-metabolism in
the liver of broiler chickens by increasing the phosphorylation of
adenosine 5'-monophosphate (AMP)-activated protein kinase
(Huang et al., 2017). Our previous study revealed that GTP had
beneficial effects on redox balance in bovine mammary epithelial
cells (Ma et al., 2018). For instance, GTP reduced cellular oxidative
stress via the inhibition of reactive oxygen species (ROS) accumu-
lation, which is partly explained by the activation of the nuclear
factor erythroid 2 like 2 (NFE2L2)/heme oxygenase-1 (HMOX1)
pathway (Ma et al., 2019). The available data implies that GTP may
potentially act as an antioxidant against oxidative stress in dairy
cows. However, to our best knowledge, studies that investigate the
effect of GTP supplementation on oxidative stress and immune
function in dairy cows with hyperketonemia are limited. Therefore,
the aim of this study was to explore the effect of GTP supplemen-
tation during the periparturient period on production performance
and health status in postpartum dairy cows with hyperketonemia.

2. Materials and methods

2.1. Ethics statement

The experimental protocol used in this study was approved by
the Animal Ethics Committee of the Inner Mongolia Academy of
Agricultural and Animal Husbandry Sciences (approval number
IMAAAHS#1215000046002373XP), which is responsible for Ani-
mal Care and Use in the Inner Mongolia Autonomous Region of
China.

2.2. Animals and treatments

The feeding trial was carried out on a commercial dairy farm
(Hohhot, China) from Nov 15th to Dec 30th, 2018. One hundred
pregnant nonlactating Holstein cows were classified into 2 groups:
control (without GTP supplementation; n ¼ 50) or GTP (with GTP
supplementation; n ¼ 50) group according to body weight (BW),
previous milk yield, and parity on �15 d (�15 ± 2 d) relative to the
expected calving date. Control (n¼ 50, BW¼ 725 ± 6.7 kg, previous
milk yield ¼ 36.34 ± 2.89 kg/d, parity ¼ 3.85 ± 0.27,
BHBA ¼ 0.89 ± 0.08 mmol/L, means ± SEM) and GTP cows (n ¼ 50,
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BW ¼ 729 ± 2.4 kg, previous milk yield ¼ 36.68 ± 2.48 kg/d,
parity ¼ 3.89 ± 0.33, BHBA ¼ 0.93 ± 0.07 mmol/L, means ± SEM)
were fed a same basal close-up diet (6.38 MJ/kg of dry matter and
14.2% crudeprotein) from�15duntil parturition and the samebasal
lactation diet (6.85 MJ/kg of DM and 18.3% CP) from calving to 30 d
postpartumwith or without GTP supplementation (0.02% dry mat-
ter of total mixed ration). Green tea polyphenols (Dehe Biological
Technology Co., Ltd, Jiangsu, China), composed of 91.20% total
polyphenols, 41.11% EGCG, and 70.09% catechins, weremixedwith a
total mixed ration after being diluted with rice hull powder. The
ingredient and chemical composition of these diets are shown in
Table 1. Both diets were formulated to meet the cow predicted re-
quirements according to the NRC (2001). All cows were fed 3 times
daily at 06:00, 12:00 and 18:00 and had free access to water. Feed
wasoffered toachieve5% refusals and feed intakewas recordeddaily
before morning feeding. Ten cows with hyperketonemia were
selected from the control (n ¼ 10, BW ¼ 680 ± 18 kg, milk yield
¼34.46±2.49kg/d, parity¼3.88±0.25, BHBA¼2.19±0.52mmol/L,
means ± SEM) and GTP group (n¼ 10, BW¼ 683 ± 22 kg, milk yield
¼35.98±2.53kg/d, parity¼3.89±0.29,BHBA¼0.97±0.27mmol/L,
means ± SEM) based on concentrations of BHBA in plasma during 2
to 3 d postpartum. Hyperketonemia was defined as a plasma BHBA
concentration of 1.2 to 2.9 mmol/L (Fig. 2).
2.3. Feed sample analysis

Drymatter (DM)was determined after samples were dried in an
air-forced oven at 135 �C for 2 h (method 930.15; AOAC, 1990). Net
energy was calculated according to the NRC (2001). Nitrogen (N)
was measured according to the methods of Kjeldahl, and crude
protein (CP) was calculated as 6.25 � N. Neutral detergent fibre
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(NDF) and acid detergent fibre (ADF) were measured according to
Van Soest et al. (1991) and Goering and Van Soest (1970),
respectively.

2.4. Milk samples collection and analysis

Milk samples were collected on 10, 20, and 30 d postpartum
from 20 cows selected with hyperketonemia. Cows were milked 3
times at 05:00, 11:00 and 17:00. Daily milk yield was electronically
recorded at each milking. Morning, noon, and evening milk sam-
ples were collected consecutively every 10 d and mixed according
to the ratio of 4:3:3. Mixedmilk samples were analyzed for milk fat,
protein, and lactose using a portable milk composition analyzer
(LactoStar, Funke Gerber, Germany).

2.5. Blood collection

Blood from the coccygeal vein was obtained from 20 cows with
hyperketonemia before morning feeding on 10, 20, and 30 d post-
partum. Samples were collected into vacuum tubes containing
ethylenediam inetetraacetic acid (EDTA) as an anticoagulant and
were immediately placed on ice. Plasma was obtained by centri-
fugation at 3,000 r/min for 10 min (4 �C) and aliquots stored
at �80 �C until further analysis.

2.6. Blood samples analysis

Activities of total antioxidant capacity (TAC; ab204519), su-
peroxide dismutase (SOD; ab65354), glutathione peroxidase
(GPX; ab102530), and concentrations of hydrogen peroxide
(H2O2; ab102500) and MDA (ab238537) were determined using
spectrophotometric diagnostic kits purchased from Nanjing Jian-
cheng Biotechnology Institute (Nanjing, China) according to
manufacturer's protocols. Absorbance was detected at 405 nm
(TAC), 560 nm (SOD), 420 nm (GPX), 585 nm (H2O2), and 532 nm
(MDA) with a microplate reader (Scientific Instrument Co. Ltd.,
Shanghai, China). A dichlorofluorescein staining assay (CA1410)
was used to detect plasma ROS. The optical density at 450 nmwas
recorded using a microplate reader (Scientific Instrument Co. Ltd.,
Shanghai, China).

Concentrations of interferon-g (IFN-g; ab193681), IL-1b
(ab100704), interleukin-2 (IL-2; ab193682), IL-6 (ab205080),
interleukin-8 (IL-8; ab113352), interleukin-10 (IL-10; ab108870),
immunoglobulin G (IgG) (ab205078), and TNF-a (ab193683) were
determined via ELISA kits purchased from Nanjing Jiancheng
Biotechnology Institute (Nanjing, China) according to manufactur-
er's protocols. Absorbance was detected at 450 nm (IFN-g, IL-1b, IL-
2, IL-6, IL-8, IL-10, IgG, and TNF-a) using a microplate reader (Sci-
entific Instrument Co. Ltd., Shanghai, China). Beta-hydroxybutyric
acid, non-esterified fatty acids (NEFA), GLU, aspartate aminotrans-
ferase (AST), alanine aminotransferase (ALT), glutamyl trans-
peptidase (GGT), albumin (ALB), cholesterol, and triglyceride (TG)
were measured using an automatic biochemical analyzer (H794-
SUNMATIK-6008, Beijing, China).
Table 2
Effects of green tea polyphenols (GTP) supplementation on milk components in multipa

Item 10 d postpartum 20 d postpartum

Control SEM GTP SEM Control SEM GT

Fat 4.06 0.06 4.10 0.08 4.08 0.08 4.0
Protein 3.25 0.11 3.23 0.08 3.25 0.07 3.2
Fat-to-protein ratio 1.25 0.03 1.27 0.01 1.26 0.04 1.2
Lactose 5.17 0.12 5.15 0.2 5.19 0.16 5.1
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2.7. Statistical analysis

All data were analyzed using the mixed procedure of SAS v.9.4
(SAS Institute Inc., Cary, NC, 2014) according to the following model
with repeated measures:

Yijkl ¼ m þ Bi þ Mj þ Tk þ MTjk þ Cl (Bi) þ eijkl,

where Yijkl ¼ dependent, continuous variable, m ¼ overall mean,
Bi ¼ random effect of block,Mj ¼ fixed effect of treatment (j¼ CON
or GTP), Tk ¼ fixed effect of time, MTjk ¼ interaction between
treatment and time, Cl (Bi) ¼ random effect of cow within block,
and eijkl ¼ residual error. Single-factor variance analysis was car-
ried out for the control and treatment group, and Duncan's
method was used for multiple comparisons. All data were pre-
sented as the mean ± SEM. P < 0.05 was considered statistically
significant.

3. Results

3.1. Feed intake, milk yield and milk composition

Effects of green tea polyphenols (GTP) supplementation on
milk components were shown in Table 2 and Fig. 1. The Day � GTP
interaction was significant for milk yield (P < 0.01; Fig. 1B), milk
protein yield (P ¼ 0.02; Fig. 1C), milk fat yield (P ¼ 0.05; Fig. 1D),
and somatic cell count (SCC, P ¼ 0.01; Fig. 1E). Green tea poly-
phenols supplementation increased milk yield (P < 0.01; Fig. 1B)
and decreased somatic cell count (SCC, P < 0.01; Fig. 1E) compared
to the control. Dry matter intake (P ¼ 0.03; Fig. 1A), milk protein
yield (P < 0.01; Fig. 1C), and milk fat yield (P < 0.01; Fig. 1D)
increased over time during early lactation, regardless of
treatment.

3.2. Plasma parameters associated with liver function and energy
metabolism

The Day � GTP interaction was not significant for plasma pa-
rameters associated with liver function and energy metabolism
(P > 0.05), except for BHBA (P < 0.01; Fig. 2A) and GLU (P ¼ 0.0006;
Fig. 2C). GTP cows had lower concentrations of plasma BHBA
(Fig. 2A), NEFA (Fig. 2B), GGT (Fig. 3C), ALB (Fig. 3D), cholesterol
(Fig. 3E) and TG (Fig. 3F) than controls (all P < 0.01). Greater con-
centrations of GLU (P < 0.01; Fig. 2C) in plasma were observed in
GTP cows compared with the controls. Additionally, GTP supple-
mentation up-regulated activities of AST (P < 0.01; Fig. 3A) and ALT
(P < 0.01; Fig. 3B) in plasma.

3.3. Plasma parameters associated with oxidative stress

A Day � GTP interaction was observed for GPX (P ¼ 0.01;
Fig. 4C). Compared to control group, activities of TAC (Fig. 4A), SOD
(Fig. 4B), and GPX (Fig. 4C) in plasmawere greater in the GTP group
(all P < 0.01). Meanwhile, GTP supplementation decreased
rous Holstein cows with hyperketonemia during early lactation (% of DM, n ¼ 10).

30 d postpartum P-value

P SEM Control SEM GTP SEM GTP Day GTP � Day

2 0.06 4.09 0.05 4.05 0.05 0.22 0.47 0.68
5 0.05 3.29 0.04 3.27 0.04 0.44 0.15 0.86
4 0.02 1.24 0.01 1.24 0.01 0.14 0.55 0.36
0 0.21 5.02 0.36 5.06 0.36 0.68 0.23 0.69
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Fig. 1. Effects of green tea polyphenols (GTP) supplementation on dry matter intake (DMI, A), milk yield (B), milk protein yield (C), milk fat yield (D) and somatic cell count (SCC, E)
in multiparous Holstein cows with hyperketonemia during early lactation. n ¼ 10. Data are presented as the mean ± SEM. a-e means with different letters differ significantly
(P < 0.05).
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concentrations of ROS (Fig. 4D), MDA (Fig. 4E) and H2O2 (Fig. 4F) in
plasma (all P < 0.01).

3.4. Plasma parameters associated with inflammation

The Day � GTP interaction was significant for IgG (P ¼ 0.0005;
Fig. 5A), IL-1b (P ¼ 0.0003; Fig. 5C), IL-2 (P ¼ 0.0003; Fig. 5D), IL-8
(P ¼ 0.0002; Fig. 5F), and IL-10 (P < 0.01; Fig. 5G). Higher concen-
trations of IgG (Fig. 5A), IL-6 (Fig. 5E), and IL-10 (Fig. 5G) were
observed in the plasma of cows supplemented with GTP (all
P < 0.01). Moreover, GTP cows had lower concentrations of TNF-a
(Fig. 5B), IL-1b (Fig. 5C), IL-2 (Fig. 5D), IL-8 (Fig. 5F), and IFN-g
(Fig. 5H) in plasma than the controls (P < 0.05).
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4. Discussion

4.1. Hyperketonemia and energy metabolism

Hyperketonemia, a commonmetabolic disorder, usually occurs
in the postpartum period. It is associated with NEB resulting from
decreased DMI and increased energy requirements that are
needed for postpartum milk production (Drackley, 1999; Dann
and Drackley, 2005; Xu et al., 2008). Hyperketonemia is charac-
terized by high concentrations of BHBA in the blood, urine, and
milk, and is identified by a blood BHBA concentration of 1.2 to
2.9 mmol/L (McArt et al., 2012; Itle et al., 2015). Additionally, low
circulating GLU (<3.75 mmol/L) is another characteristic of
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Fig. 2. Effects of green tea polyphenols (GTP) supplementation on plasma bio-markers
related to energy metabolism in multiparous Holstein cows with hyperketonemia
during early lactation. A to C: concentrations of b-hydroxybutyric (BHBA, A), non-
esterified fatty acids (NEFA, B) and glucose (GLU, C). n ¼ 10. Data are presented as
the mean ± SEM. a-d means with different superscripts differ significantly (P < 0.05).
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hyperketonemia. Blood GLU level decreases dramatically before
the occurrence of hyperketonemia, which results in the mobili-
zation of body fat reserves along with elevated concentrations of
NEFA in blood (Xu et al., 2010). Non-esterified fatty acids are
mainly derived from lipolysis, reflecting the extent of body fat
mobilization. In the current study, lower concentrations of BHBA
and NEFA, coupled with greater concentrations of GLU in plasma
in GTP cows, suggest that GTP supplementation during the peri-
parturient period helps alleviate NEB during early lactation (Cao
et al., 2007; Winkler et al., 2015). Other studies of monogastric
animals have revealed that dietary GTP supplementation could
alleviate oxidative stress and insulin resistance (Hininger-Favier
et al., 2009). Although the exact mechanism of how GTP regu-
lates NEB is unclear, it is possible that this might be related to the
antioxidant property of GTP (Ma et al., 2018).
4.2. Oxidative stress

It is well-known that ROS are essential for mitohormesis;
however, excessive ROS generation results in cellular oxidative
stress (Jain et al., 2019). The protective role of GTP against the ROS-
mediated cellular damage is widely recognized, at least in non-
ruminants (Schroeder et al., 2003; Raza and John, 2005). Malon-
dialdehyde is one product of lipid peroxidation, and elevated
plasma MDA concentrations indicate lipid peroxidation (Kohen
and Nyska, 2002). In vivo studies found that appropriate doses
of GTP reduced the increase of the MDA level caused by cerebral
ischemia (Lee et al., 2004). Our previous in vitro studies using
bovine mammary epithelial cells revealed that GTP enhanced ac-
tivities of antioxidant enzymes and reduced ROS and MDA con-
centrations through activating the NFE2L2/HMOX1 pathway (Ma
et al., 2018, 2019). This suggests that GTP contributes to eradi-
cating ROS, which subsequently promotes cell growth and meta-
bolism (Ma et al., 2019). In the current study, lower concentrations
of ROS, MDA, and H2O2 in cows supplemented with GTP, indicate
that GTP might potentially help attenuate oxidative stress in vivo,
which is consistent with our previous in vitro results (Ma et al.,
2018, 2019).

Superoxide dismutase converts superoxide to H2O2, which plays
an essential role in the first defense line, and GPX, which converts
H2O2 to H2O, belongs to the secondary defense mechanisms; thus,
they regulate the recovery of cellular oxidative damage (Masella
et al., 2005). Overall, increased activities of antioxidant enzymes
including TAC, SOD and GPX in GTP and decreased concentrations
of ROS and MDA imply that GTP supplementation might alleviate
oxidative stress and lipid peroxidation in cows with hyper
ketonemia.
4.3. Liver function

Liver is a major site for lipid, GLU, and protein metabolism.
Transcriptomic and proteomic analyses demonstrated that NEB led
to marked alterations of many biochemical pathways in the liver of
dairy cows (Loor et al., 2007; McCarthy et al., 2010; McCabe et al.,
2012). Postpartum hyperketonemia alters the biomarkers associ-
ated with liver function; for example, concentrations of AST were
higher in cows with hyperketonemia than that in healthy cows. In
the current study, lower concentrations of AST, ALT and GGT in GTP
cows indicate that GTP supplementation can improve liver function
in cows with hyperketonemia. One particularly interesting finding
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Fig. 3. Effects of green tea polyphenols (GTP) supplementation on plasma bio-markers associated with liver function in multiparous Holstein cows with hyperketonemia during
early lactation. (A) to (F): concentrations/activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT), glutamyl transpeptidase (GGT), albumin (ALB), cholesterol,
and triglyceride (TG). n ¼ 10. Data are presented as the mean ± SEM. a-d means with different superscripts differ significantly (P < 0.05).
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was how the supplementation of GTP could reduce concentrations
of ALB, cholesterol and TG in peripartal cows, which suggests an
altered liver hormone sensitivity to lipase activity and cholesterol
absorption in response to GTP supply (Niu et al., 2013; Winkler
et al., 2015). However, improved liver function would lead to
increased levels of ALB, TG and cholesterol, as the secretion of these
lipids from liver into plasma is enhanced. Therefore, we speculate
that the lack of elevated concentrations of ALB, cholesterol and TG
in cows fed GTP might be due to the fact that liver function has not
recovered to healthy levels. Further studies are warranted to
elucidate the exact mechanism on how GTP regulates liver
metabolism.
211
4.4. Inflammation

Enhanced pro-inflammatory cytokines (TNF-a, IL-1b, IL-2, IL-6,
IL-8, and IFN-g) lead to the development of inflammation and
impair liver function in cows during the transition period. Addi-
tionally, it has been demonstrated that NEB contributes to the
induction of hepatic inflammation (Loor et al., 2007; McCarthy
et al., 2010). Tumor necrosis factor-a, IL-1b, IL-2, IL-6, IL-8, and
IFN-g are major pro-inflammatory cytokines that play crucial roles
in cell survival and apoptosis of normal and malignant cells
(Brenner et al., 2015). Interleukin 6 exerts a regulatory effect on
anti-inflammatory response (Pedersen et al., 2007). Interleukin 10,
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Fig. 4. Effects of green tea polyphenols (GTP) supplementation on plasma bio-markers associated with oxidative stress in multiparous Holstein cows with hyperketonemia during
early lactation. (A) to (C): total antioxidant capacity (TAC), activities of superoxide dismutase (SOD), and glutathione peroxidase (GPX). (D) to (F): concentrations of reactive oxygen
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secreted by monocytes, macrophages, T cells, and dendritic cells in
response to systemic inflammation, is an anti-inflammatory
cytokine and plays a critical role in modulating the inflamma-
tory response to protect host tissue against damage induced by
overt inflammation (Kwon and Kaufmann, 2010). In the current
study, GTP supplementation increased concentrations of anti-
inflammatory cytokines and decreased concentrations of pro-
inflammatory cytokines in plasma, suggesting that GTP supple-
mentation alleviated inflammatory responses in dairy cows with
hyperketonemia.

4.5. Production performance

Milk yield is an important indicator of dairy cow production
performance. Milk yield is influenced by many factors, such as
212
management, health status, genetic background, and stress fac-
tors including oxidative stress. Cows undergoing greater NEB,
coupled with increased oxidative stress and inflammation post-
partum, are likely to suffer from hyperketonemia. Up-regulated
oxidative stress and inflammation biomarkers in the blood sug-
gest a more pronounced oxidative stress status and inflammatory
response in postpartum dairy cows, which is consistent with
previous findings (Winkler et al., 2015). Cows in a state of meta-
bolic disease will lead to the decline of the cow's health and
production performance (Drackley et al., 2001). In the present
study, despite greater milk yield, cows with GPT supplementation
did not have more DMI, suggesting that an increased milk yield
might be at least, in part, attributed to a decreased oxidative stress
status and down-regulated inflammatory response, in reaction to
GTP supply.
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5. Conclusions

Supplementation of GTP during the transition period reduced
concentrations of oxidative stress bio-markers including ROS, H2O2
andMDA, and pro-inflammatory cytokines, such as TNF-a, IL-1b, IL-
2, IL-8, and IFN-g in plasma. This might partly explain the enhanced
milk yield and improved health status in dairy cows during early
lactation. Overall, GTP supply during the periparturient period
contributes to improving the milk yield and well-being of post-
partum dairy cows with hyperketonemia.
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