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Correspondence
bg200@cam.ac.uk

In Brief

Wilson et al. combine single-cell

functional assays with flow cytometric

index sorting and single-cell gene

expression assays to reveal gene

expression programs of HSCs with

durable self-renewal potential in

transplantation assays. They also

demonstrate the broader applicability of

this approach for linking key molecules

with defined stem cell functions.
Accession Numbers
GSE61533

mailto:bg200@cam.ac.uk
http://dx.doi.org/10.1016/j.stem.2015.04.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stem.2015.04.004&domain=pdf


Cell Stem Cell

Resource
Combined Single-Cell Functional
and Gene Expression Analysis Resolves
Heterogeneity within Stem Cell Populations
Nicola K. Wilson,1,9 David G. Kent,1,9 Florian Buettner,2,9 Mona Shehata,7 Iain C. Macaulay,3 Fernando J. Calero-Nieto,1

Manuel Sánchez Castillo,1 Caroline A. Oedekoven,1 Evangelia Diamanti,1 Reiner Schulte,4 Chris P. Ponting,3,5

Thierry Voet,3,6 Carlos Caldas,7 John Stingl,7 Anthony R. Green,1 Fabian J. Theis,2,8 and Berthold Göttgens1,*
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3Single Cell Genomics Centre, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
4Head of Flow Cytometry, Cambridge Institute for Medical Research, Cambridge University, Cambridge CB2 0XY, UK
5MRC Computational Genomics Analysis and Training Programme, MRC Functional Genomics Unit, Department of Physiology,

Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, UK
6Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
7Department of Oncology and Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre,
Cambridge CB2 0RE, UK
8Department of Mathematics, Technische Universität München, Boltzmannstraße 3, 85748 Garching, Germany
9Co-first author

*Correspondence: bg200@cam.ac.uk
http://dx.doi.org/10.1016/j.stem.2015.04.004

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
SUMMARY

Heterogeneity within the self-renewal durability of
adult hematopoietic stem cells (HSCs) challenges
our understandingof themolecular frameworkunder-
lying HSC function. Gene expression studies have
been hampered by the presence of multiple HSC
subtypes and contaminating non-HSCs in bulk HSC
populations. To gain deeper insight into the gene
expression program of murine HSCs, we combined
single-cell functional assays with flow cytometric in-
dex sorting and single-cell gene expression assays.
Through bioinformatic integration of these datasets,
we designed an unbiased sorting strategy that sepa-
rates non-HSCs away from HSCs, and single-cell
transplantation experiments using the enriched pop-
ulation were combined with RNA-seq data to iden-
tify key molecules that associate with long-term
durable self-renewal, producing a single-cell mole-
cular dataset that is linked to functional stem cell
activity. Finally, we demonstrated the broader appli-
cability of this approach for linking key molecules
with defined cellular functions in another stem cell
system.

INTRODUCTION

Hematopoiesis is one of the best describedmodels of adult stem

cell biology due to the accessibility of tissue and the ability to

isolate and functionally characterize multiple stages of a clearly
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defined hierarchy of differentiation (Bryder et al., 2006; Ema

et al., 2014). HSCs can divide symmetrically, producing two

HSCs or two progenitor cells, or asymmetrically, giving rise to

an HSC and a progenitor cell. On a population level, these fate

choices must be tightly regulated to maintain the HSC pool

size throughout life while still supplying the required numbers

and types of mature blood cells needed by the organism.

Single-cell and serial transplantation studies have revealed

significant heterogeneity in both the mature cell production

and self-renewal durability of individual HSCs (Beerman et al.,

2010; Dykstra et al., 2007; Goodell et al., 1996; Morita et al.,

2010). This functional heterogeneity is thought to be controlled

via cell intrinsic and extrinsic mechanisms (Copley and Eaves,

2013; Wilkinson and Göttgens, 2013) and is thought to play a

role in disease evolution (Prick et al., 2014).

Advances in multiparameter flow cytometry have permitted

isolation of HSCs for single-cell functional assays of cellular

fate choice (Dykstra et al., 2007; Kent et al., 2008; Naik et al.,

2013; Rieger et al., 2009). Because of the retrospective nature

of these assays, individual cells shown to possess HSC proper-

ties are no longer available for molecular analyses. A long-stand-

ing goal in the field has been the identification of phenotypically

and functionally pure HSCs, both in terms of cell surface

marker expression and regenerative capacity upon transplanta-

tion. While this has led to the identification of dozens of

markers that enrich for HSC populations containing long-term

HSCs (LT-HSCs), it is unclear which cells are HSCs and

which are contaminating cells within any given HSC-enriched

population.

To address the issue of molecular and functional heterogene-

ity in HSCs, we took an integrated single-cell approach. Using

four commonly used HSC purification strategies, we performed

single-cell gene expression in combination with flow cytometric
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index sorting. We report the molecular signature for these four

HSC populations and present the integration of these data with

indexed flow cytometry data and single-cell RNA-seq (scRNA-

seq) alongside in vitro and in vivo functional assays. Subsequent

integration of these datasets permitted design of an unbiased

sorting strategy that separates non-HSCs away from HSCs.

Single-cell transplantation experiments using the enriched pop-

ulation were then undertaken and combined with the RNA-seq

data to identify key molecules that associate with long-term

durable self-renewal to produce a single-cell molecular dataset

that is linked to functional stem cell activity.

RESULTS

Single-Cell Gene Expression Analysis Reveals an
Overlapping Molecular Signature for Four
Heterogeneous HSC Populations
The most refined HSC purification strategies can now isolate

HSCs at 40%–50%purity as validated by single-cell transplanta-

tion experiments (Beerman et al., 2010; Challen et al., 2010; Kent

et al., 2009; Kiel et al., 2005;Morita et al., 2010).While each strat-

egy identifies some fraction of functional HSCs, not all cells are

able to repopulate an irradiated mouse. To identify commonal-

ities between populations, we selected four widely used HSC

isolation strategies (Adolfsson et al., 2001; Kent et al., 2009;

Kiel et al., 2007; Weksberg et al., 2008) in addition to a finite

self-renewal HSC (FSR-HSC) fraction (Kent et al., 2009) and

four defined progenitor populations, lymphoid-primed multipo-

tent progenitors (LMPPs) (Adolfsson et al., 2005), common

myeloid progenitors (CMPs), megakaryocyte-erythroid progeni-

tors (MEPs), and granulocyte-monocyte progenitors (GMPs)

(Akashi et al., 2000) (Figures 1A and S1A). Progenitor populations

were included to further resolve HSC fractions in terms of self-

renewal and multilineage capacity. We isolated over 1,800 cells

for single-cell gene expression analysis (n = 210 per population)

and validated each population by functional assays, as outlined

below. For CMP, GMP, and MEPs, 500 cells were isolated and

placed into methylcellulose cultures, while single LMPPs were

sorted onto OP9 feeder cells in 96-well plates, as described

previously (Månsson et al., 2007) (Figure S1B). Clonal assays

were performed for all populations and functional readouts

were 65% CMPs, 60% GMPs, 38% MEPs, and 45% LMPPs,

in line with previous publications. For each HSC population, 50

cells were isolated and transplanted into five lethally irradiated

recipients (e.g., an average of ten cells per mouse). All four stra-

tegies contained HSCs at a frequency of one in ten or greater, as

estimated by the extreme limiting dilution tool (http://bioinf.wehi.

edu.au/software/elda/), with two populations repopulating all

mice transplanted (Figures S1C and S1D; Kent et al., 2009). Cells

for single-cell expression and functional assays were isolated on

the same day from the same mouse bone marrow suspension.

Single-cell gene expression analysis of 48 genes was per-

formed in all 1,800 cells. Our gene set included 33 transcription

factors important for HSCs and hematopoiesis (Wilkinson and

Göttgens, 2013), 12 additional genes implicated in HSC biology,

and 3 housekeeping genes (Figure 1B; Table S1). Unsupervised

hierarchical clustering revealed that the HSCs and progenitors

form two distinct clusters (I and II respectively, Figure 1C). Within

the progenitor cluster (II), cells were divided into five subclusters,
which separate the LMPPs (IIa) and MEPs (IIc). The GMPs are

divided in two locations, with one subset of cells (IIb) clustering

next to the LMPPs (IIa) and the second subset (IId) between

the MEPs (IIc) and a number of HSC-sorted cells (IIe). CMPs

tended to be interspersed within the GMP clusters (IIb and IId).

Clusters IIa and IIb had higher expression of Pu.1 (Spi1), whereas

IIc, IId, and IIe have higher expression of the more erythrocyte/

megakaryocyte TFs Scl/Tal1, Gfi1b, Gata1, and Gata2.

Unsupervised clustering revealed a distinct group of cells

(cluster IIe) sorted using HSC gating strategies yet clustering

with progenitor cells. These cells express high levels of vWF,

as well as several myeloid lineage-associated genes (Gfi1b,

Itga2b, Pbx1, and Mpl), potentially suggesting a bias toward

the megakaryocytic lineage, as recently described (Sanjuan-

Pla et al., 2013; Yamamoto et al., 2013). Of note, these cells

did not cluster with any specific progenitor or HSC cluster and

are only present in sorting strategies HSC1 and HSC3, which

suggests that they could represent a separate entity. The HSC

cluster (I) contained the vast majority of phenotypically defined

HSCs (86%) and only 4% of various progenitor cells. Generally,

the HSC populations overlap with each other, but individual

patterns can be observed. For example, cluster Ib is primarily

made up of HSC5, the HSCs with finite self-renewal, and does

not express vWF as previously shown (Kent et al., 2009).

Multidimensional Analysis Can Further Resolve Cell
Populations
To further analyze the multidimensional gene expression data

from the 43 genes (excluding housekeepers, Cdkn2a and Egfl7,

see Experimental Procedures) we performed t-distributed sto-

chastic neighbor embedding analysis (t-SNE) (van der Maaten

andHinton, 2008),which haspreviously been reported as a supe-

rior method for the definition of subpopulations by cytometry

time of flight (CyTOF) mass spectrometry (Amir et al., 2013). In

contrast to standard linearmethods suchasprincipal component

analysis (PCA), t-SNE can capture nonlinear relationships in the

data. Each point on the t-SNE map represents an individual

cell, and each cell is colored according to the sorting strategy

described in Figure 1. The t-SNE analysis reiterates separation

of the cell populations seen in the hierarchical clustering, but

the scatterplot presents a clearer distribution of the populations

in relation to one another (Figures 2A and S2A). The t-SNE

analysis largely recapitulates the population dendrogram from

Figure 1C, except that the CMPs are divided into three clusters;

the majority of CMPs is distributed between the two progenitor

subgroups, whereas a minority falls into a third fraction that

groups preferentially with a small subset of the HSC1 population.

The HSC populations are divided into five subsets of cells. The

majority of three of the HSC populations are separately parti-

tioned within the t-SNE map (HSC4 [SPKSL CD150+], HSC2 [E-

SLAM], and HSC5 CD45+EPCR+CD48�CD150�). Interestingly,
a cluster of cells falling in between progenitors and HSCs is

comprised of HSC1 (Lin�c-Kit+Sca-1+(KSL)CD34�Flt3�CD48�

CD150+), HSC3 (KSLCD34�Flt3�), GMPs, and CMPs. There is

89% overlap with this group of cells and the cells from cluster

IIe of the hierarchical clustering; 48%were sorted as progenitors,

and 41%were sorted using HSC sorting parameters (Figure 1C).

The remaining HSCs cluster together in the t-SNE map. These

‘‘overlapping’’ HSCs therefore share a common gene expression
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Figure 1. Single-Cell Expression Analysis Reveals an Overlapping Molecular Signature for Four Heterogeneous HSC Populations

(A) Schematic of the hematopoietic tree. The cell types highlighted are populations that will be further investigated within this study; the colors and names remain

constant throughout the text. The individual sorting strategies are also highlighted next to the appropriate cell population. HSC1 (dark blue, Lin�c-kit+Sca-1+

CD34�Flt3�CD48�CD150+), HSC2 (pink, Lin�CD45+EPCR+CD48�CD150+), HSC3 (cyan, Lin�c-kit+Sca-1+CD34�Flt3�), HSC4 (orchid, Lin�c-kit+Sca-1+SP

(legend continued on next page)
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profile for the 43 genes and may represent, at least partially, the

subset of true HSCs present in each sorted population.

To identify common functional HSCs from the heterogeneous

mix of the five populations, we developed a bioinformatic

approach, based on the reasoning that a functionally homoge-

neous HSC subpopulation should consist of a mixture of cells

from all sorting strategies, with mixture weights corresponding

to the respective published probability of durable self-renewal

(Figure 2B). Using these probabilities together with the 2D

t-SNE representation of the cells, we identified a subpopulation

of HSCs that first consists of cells that are similar in terms of their

gene expression and second consists of a mixture of all HSC

populations weighted by their repopulation probability (Fig-

ure 2C). By iteratively assessing the local neighborhoods of all

points (see Experimental Procedures), our approach located a

region within the t-SNE map that contains a defined subpopula-

tion of HSCs (cells highlighted in red, Figure 2D). We refer to this

HSC subpopulation with homogenous gene expression as the

molecular overlapping population (MolO) and the HSCs outside

of the identified neighborhood as cells with no molecular overlap

(NoMO).

Comparing MolO and NoMO populations, we identified 28 of

43 genes, which were differentially expressed (Figure 2D). We

also investigated which cell surface markers could distinguish

the MolO from the NoMO population by taking advantage of in-

dex sorting (Osborne, 2011), which allows for the exact flow cy-

tometric phenotype and location of each single cell sorted to be

reviewed post-sort. The index sort data revealed that the MolO

cells were enriched for higher than average CD150 and Sca-1

surface marker expression and lower than average CD48

expression (Figures 2D, S2D, and S2E). Together these data

show that subsets from different phenotypically defined HSC

populations share commonmolecular features and can be retro-

spectively assigned to a common cell surface phenotype.

Genome-wideExpressionData of 92SingleHSCsReveal
a MolO HSC Gene Signature
Single-cell gene expressionanalysis provided aprecise snapshot

of the dynamic gene expression levels within a heterogeneous

population, but it only permits a select number of genes to be

analyzed. To provide an unbiased genome-wide approach and

increase the probability of gene discovery, we performed

scRNA-seq (Picelli et al., 2014) for 96 single cells of the HSC1

population. Following reverse transcription, library preparation,

andnext generation sequencing, 92 cells passed stringent quality

control measures (see Experimental Procedures) and yielded an

average of 2million uniquely mappable paired-end reads per sin-

gle cell. To identify genes which were differentially regulated be-

tween individual cells, we took advantage of a recent quantitative

statisticalmethod (Brennecke et al., 2013) and determined genes

for which the biological variability exceeded technical variability
CD150+), HSC5 (seagreen, Lin�CD45+EPCR+CD48�CD150�), LMPP (yellow, Li

(yellow-green, Lin�c-kit+Sca-1�CD34�FcgRlo) and GMP (orange, Lin�c-kit+Sca-1
(B) Flow diagram of single-cell qRT-PCR.

(C) Unsupervised hierarchical clustering of gene expression for all investigated

population (colors are the same as in A). Intensity of heat map is based on the DCt

distances of the population dendrogram are not proportional to the dissimilarity.

See also Figure S1 and Table S1.
(Figures 3A and 3Ai). This resulted in a set of 4533 genes (Table

S2). Many of the genes analyzed by the multiplexed qPCR were

identified as being heterogeneously expressed in the scRNA-

seq dataset (Bptf, Dnmt3a, Ets2, Fli1, Gata1, Gata3, Gfi1,

Gfi1b, Hhex, Itga2b, Lyl1, Myb, Notch1, Pbx1, Procr, Spi1, and

vWF) (Table S2). Next, PCAwas performed based on the variable

genes to visualize the distribution of the individual HSC1 cells

based solely on their global gene expression profiles (Figure 3Aii).

Substantial heterogeneity can be seenwithin the population, with

principal component 1 separating theHSCs, visualized by a large

numberof cells shifted to the left of thePCAplot. TheHSCs,which

are located toward the left-hand side of the plot, are then further

separatedbyprincipal component 2. Thegenes that influence the

principal components can be seen in the loading plot (Figures

3Aiii and S3A). Genes important for component 1 include Ly6a

(Sca-1), Procr (EPCR), and Pqlc3, whereas component 2 is influ-

enced by Acap1, Cdkn1c, Clu, Ctla2a, Ctla2b, Ctnna1, Glipr 1,

Muc13, Rgs1, Sultlal, and vWF.

Wenext used a random forest classifier (Breiman, 2001) to pre-

dict which of the 92 HSC1 single-cell RNA-seq profiles have a

molecular signature similar to the intersecting MolO subpopula-

tion identified in Figure 2C (Figure 3B). The genes with the great-

est influence upon the classifier were Itga2b, vWF, Procr, Ets2,

and Gata1 (Figure S3B). All HSC1 scRNA-seq cells were given

a MolO score, which denotes at which confidence level the clas-

sifier can accurately determine that the individual cell is in fact a

MolO cell (Figure 3C). The cells with the highest MolO score are

located in the top left-hand side of the PCA plot with strong cor-

relation between PC1 andMolO scores (p = 4.5e-7) and, separa-

tion of cells on the PCA plot is driven by genes such as Ly6a,

Procr, Slamf1, and vWF (Figure 3Aiii). We next ranked on a tran-

scriptome-wide level all 4,533 differentially expressed genes

based on their MolO score (Table S3). Following correction for

multiple testing using the Benjamini-Hochberg method, a total

of 75 genes were found to be significantly negatively correlated

to the MolO score and consequently more highly expressed in

the NoMO population (Figure 3D). Gene ontology (GO) analysis

identified the cell cycle to be an overrepresented functional

category (colored in red). Twenty-nine genes showed significant

positive correlation to theMolO score andwere therefore overex-

pressed in the MolO population. Three of these genes (Cdkn1c,

Ptpn14, and Ifitm1) are associated with negative regulation of

cell proliferation (colored yellow). Together these data show

that at least two distinct molecular clusters are present in the

HSC1 population, one primed for proliferation and the other en-

riched for genes that would negatively regulate proliferation.

Single-Cell Assays Affirm High Proliferation and
Differentiation of NoMO HSCs
We had previously seen that the MolO cells had higher than

average CD150 and Sca-1 expression and lower than average
n�c-kit+Sca-1+CD34+Flt3+), CMP (red, Lin�c-kit+Sca-1�CD34+FcgRlow), MEP
�CD34+FcgRhi).

cell populations. Colored bar (population) above heat map indicates the cell

, black is highest expressed—dark blue is lowest, and gray is not detected. The
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Figure 2. Multidimensional Analysis Can Further Resolve Cell Populations

(A) t-SNE plot of all cells calculated from the 43 genes analyzed by Fluidigm. All HSCs are circles and all progenitors are diamonds. Axes are in arbitrary units.

(B) Table of the published repopulation data used for the weighting program and schematic of the computational weighting program.

(C) Schematic showing the definition of MolO cells.

(D) t-SNE plot as in (A) with the MolO HSCs identified by the computational weighting highlighted in red. Axes are in arbitrary units. Table showing differentially

regulated genes between MolO and NoMO populations. Red, genes upregulated in MolO population; blue, genes downregulated in MolO population.

See also Figure S2.
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Figure 3. Genome-wide Expression Pattern of 92 Single HSCs Reveals a Gene Signature for the MolO Population

(A) RNA-seq analysis. (i) Identification of variable genes across all 92 cells. The genes highlighted in magenta have a coefficient of variation exceeding technical

noise. The blue dots represent the distribution of the internal control ERCC spike-ins. (ii) PCA plot for the 92 cells analyzed by RNA-seq, showing the first and

second components for all genes which were identified to be variably expressed. (iii) Principal component loading plot of scRNA-seq, indicating which genes also

assayed by Fluidigm analysis and/or flow cytometry contribute to the separation of the cells along each component.

(B) Schematic showing the principle of the classifier to determine the MolO HSCs from the scRNA-seq dataset.

(C) PCA plot showing MolO score.

(D) Table of signature genes differentially expressed in either NoMO or MolO cells following correction for multiple testing at a false discovery rate (FDR) of 0.1.

Coloring relates to the GO term associated with the gene: red, cell cycle; yellow, negative regulation of cell proliferation.

See also Figure S3 and Tables S2 and S3.
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Figure 4. SLAM Scalo Cells Make Large

Differentiated Clones Compared with

SLAM Scahi Cells

(A) The most discriminating sequence of surface

markers resulted in the sorting strategy shown on

the right, which first selects CD48�CD150+ cells

and then partitions the Sca positive cell fraction

into high (SLAMScahi) and low (SLAMScalo) levels.

The negative Sca-1 population was set at less than

101, meaning all cells were Sca1+.

(B) Schematic for single cell in vitro study where

single HSCs were cultured in SCF and IL-11 for

10 days and analyzed by flow cytometry.

(C) The bar graph shows the cumulative number of

cells that reached the first, second, and third divi-

sion on each of the first four days of culture. First

division was determined by the presence of two

cells, second by three or more cells, and third

by five or more cells. Notably, the SLAM Scahi

population entered division significantly later and

also had fewer second and third division clones on

days 2–4.

(D) The pie charts depict the ratio of small (<500),

medium (500–5,000), large (5,000–20,000), and

very large (>20,000) clones formed from single

SLAM Scalo (upper chart) and SLAM Scahi (lower

chart). All clones formed by single SLAM Scalo

cells were large or very large.

(E) Clones were assessed by flow cytometry, and

accurate clone sizes were determined using a

standard number of fluorescent beads in each well

and then back calculated to get total clone size.

The clone size (left), percentage of lineage marker

expression (middle), and percentage of KSL cells

(right) are shown. Notably, SLAM Scahi clones are

smaller and less differentiated. Error bars repre-

sent data ± SEM.

See also Figure S4. *p < 0.05, **p < 0.01.
CD48 expression. Based on this finding, we designed a sorting

strategy to distinguish between MolO and NoMO cells. We first

gated on CD48�CD150+ cells and then separated this popula-

tion based on high or low Sca-1 expression (Figure 4A). Impor-

tantly, all cells, including the ‘‘SLAM Scalo’’ cells, were clearly

Sca-1 positive, and SLAM Scalo cells still expressed the other

markers typical of HSCs (Figure S4). This analysis provided a

sorting strategy specifically designed to enrich for MolO cells

in the most simple and discriminatory way possible. In order to

validate both themolecular classification and the surface marker

phenotype, we performed single-cell assays on the newly

defined MolO cell-sorting strategy. We first cultured individual

SLAM Scalo and SLAM Scahi cells in culture conditions previ-

ously used to determine the proliferation and differentiation char-

acteristics of single HSCs (Dykstra et al., 2007; Kent et al., 2008,

2013) (Figure 4B). SLAM Scalo cells entered the cell cycle more

rapidly than SLAM Scahi cells (Figure 4C), and when 10-day

clones were scored for size, the only small (<500 cells) and me-

dium (500–5,000 cells) clones observed were from the SLAM

Scahi fraction (Figure 4D). All medium, large (5,000–20,000 cells),
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and very large clones (>20,000 cells) were

next assessed individually by flow cytom-

etry. Those originating from a SLAM Scalo
cell expressed more mature lineage markers and contained

fewer KSL cells compared with SLAM Scahi cells (Figure 4E).

Together these data show that SLAM Scahi cells have low prolif-

eration and low differentiation characteristics compared with

SLAM Scalo cells, consistent with the cellular behavior predicted

by the MolO gene expression profile.

To confirm that in vitro culture of sortedMolO HSCs correlated

with in vivo HSCproperties, we undertook transplantation exper-

iments of SLAM Scalo and SLAM Scahi cells. Whereas all mice

receiving 10 SLAM Scahi cells had robust multilineage donor re-

population at 16 weeks, those receiving 10 SLAMScalo cells had

lower chimerism (p < 0.05, t test; Figure 5A) with four of five hav-

ing fewer than 1%myeloid cells, strongly predictive of a low suc-

cess in secondary transplantation experiments (Figure 5B). We

investigated whether this was due to differences in cell-cycle

status or homing, but no differences were observed (data not

shown). We next transplanted 29 mice with single SLAM Scahi

cells to quantify HSC frequency. Fifteen of 29 mice receiving a

single SLAM Scahi cell gave rise to long-termmultilineage recon-

stitution (Figure 5C). Two of these HSCs would be classified as a



gamma subtype HSC, meaning that they are lymphoid biased

and unlikely to possess durable self-renewal activity (i.e., not

able to reconstitute in a secondary transplantation). Interestingly,

Grinenko et al. (2014) recently described c-Kit levels as a robust

marker of HSCs, with intermediate levels of c-Kit associating

with durable self-renewal potential. In agreement with this study,

the SLAM Scahi cells show a modest but consistent reduction in

c-Kit mean fluorescence intensity (MFI) values compared with

SLAM Scalo cells (data not shown).

A Refined HSC Molecular Profile Based on Single-Cell
Function
Since all of the SLAMScahi cells used in the single-cell transplan-

tation experiments were also index sorted with readings for 11

flow cytometry parameters recorded for every single cell, we

used the index data to link HSC functional capacity (i.e., positive

transplantation readout) with the RNA-seq data in Figure 3.

Importantly, relative intensities for the same 11 flow cytometry

parameters (FSC, SSC, 7AAD, Sca-1, Lin, CD34, EPCR, FLT3,

CD48, CD150, and c-Kit) were obtained for both the single cells

used in the RNA-seq and transplantation experiments. This al-

lowed the definition of a population of cells with surface marker

overlap (SuMO cells), containing both cells for which functional

information is available as well as cells for which transcriptional

information is available. We performed t-SNE analysis on the

92 single cells analyzed by scRNA-seq together with the 29 cells

assayed by single-cell transplantation experiments (Figure 5D).

The resulting 2D representation of the cells based on their sur-

face marker expression only resulted in two major clusters of

cells (top right-hand and lower left-hand portions of the plot).

Single cells from the RNA-seq dataset with high MolO scores

were significantly enriched (p = 0.0003, Wilcoxon rank sum

test) in the lower left-hand portion of the plot. Moreover, the ma-

jority (12 of 15) of the functional HSCs were also found in this

lower left-hand portion of the plot. This region was also enriched

for Sca-1hi cells (p < 0.0001, Wilcoxon rank sum test), with Sca-1

being the surface marker best able to discriminate between the

two regions (Figure S5A). The SuMO score (capturing the overall

phenotype) was significantly correlated (p < 0.0001, Spearman

rank correlation) with the MolO score, representing the probabil-

ity of reading out as functional HSCs based on gene expression

results.

One of the three repopulating HSCs not associated with a high

MolO score was a gamma-HSC (finite self-renewal), and another

was a balanced beta-HSC with just 1% chimerism, both repre-

senting the lower end of qualitative HSC activity. Nine of the 14

non-repopulating cells were associated with a low MolO score

and located in the upper portion of the t-SNE plot, suggesting

that these cells may differ in terms of their cell surface marker

expression. Notably, 5 of the 14 cells determined to be non-

repopulating HSCs clustered with those cells with high MolO

scores, and one of these showed characteristics of an alpha-

HSC described by Dykstra et al. (2007) with 0.4% chimerism

dominated by elements of the myeloid system (but did not

meet the 1%criteria we set for HSC repopulation). The remaining

four cells showed no traces of donor cells and possibly reflect

the limitations of the single-cell transplantation assay itself where

a cell may remain in the syringe or die within the first few hours of

transplantation. Together, these data strongly link a specific
subset of scRNA-seq libraries with functional transplantation

outcomes and reinforce the strength of the MolO scoring metric.

To further resolve the functional HSC population using the

single-cell RNA-seq data, we applied single-cell latent variable

model (scLVM), a recently proposed framework for the computa-

tional dissection of gene expression heterogeneity (Buettner

et al., 2015). Briefly, we used known gene sets to estimate latent

factors representing hidden sources of variation and then de-

composed the observed gene expression variability on a gene-

by-gene basis. We separated the variation into technical noise

(estimated using External RNA Controls Consortium spike-ins),

variations in cell size (from the flow cytometry index data), differ-

entiation related processes, homing, apoptosis, and interaction

between differentiation and apoptosis. The largest contributor

(111 genes) was the interaction factor between differentiation

and apoptosis, supporting the link between differentiation and

proliferation identified in the NoMO cell population. We then as-

sessed the correlation between the hidden factors representing

apoptosis and differentiation with surface markers and found

that apoptosis had a weak but significant correlation with Sca-

1 (p = 0.001), while differentiation was significantly (negatively)

correlated with EPCR (p < 0.0001; Figure 5E). Based on this anal-

ysis, we refined our single-cell sorting gates and undertook an

additional 39 single-cell transplantations using EPCRhi in addi-

tion to SLAM Scahi; 67% (26 of 39) single-cell transplantations

gave rise to long-term multilineage clones at 16–24 weeks, rep-

resenting a near pure population of HSCs (Figure 5F).

We next derived a SuMO score from the 2D t-SNE representa-

tion of the high-dimensional surface marker expression data

by fitting a linear model through the cells in 2D (Figure S5B).

When compared with the scRNA-seq libraries that associate

with a greater number of non-repopulating HSCs, a specific

gene signature for the SuMO cells could be identified by per-

forming a correlation analysis and assessing which genes were

significantly correlated with the SuMO score. We again ranked

all differentially expressed genes based on their SuMO score

(Table S4) and list those genes that are significantly associated

with the SuMO score (which in turn is associated with repopulat-

ing HSCs) in Figure 5G.There is a high degree of overlap between

the gene lists for the MolO/NoMO and SuMO/non-SuMO cells.

Importantly, the MolO score is based solely on the molecular

profile, and the SuMO population is generated independently

based on the surface marker expression of the single cells. GO

analysis again revealed positive and negative regulators of cell

cycle in the non-SuMO and SuMO gene lists, respectively, as

well as terms including hematopoietic or lymphoid organ devel-

opment, immune system development, and hemopoiesis in the

non-SuMO list and terms such as response to cytokine stimulus

and response to chemical stimulus in the SuMO list (Table S4).

Together, these data provide a comprehensive functionally

linked gene expression program for single HSCs and provide

strong evidence that these genes are central to the HSC self-

renewal process. It further provides a paradigm applicable to

other stem cell populations for establishing robust cell purifica-

tion strategies and functional gene expression profiles.

To further confirm the utility of our approach, we next tested

index sorting coupled with functional assays in the human mam-

mary system using tissue from patients that had undergone

breast reduction surgery. These samples were biologically
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Figure 5. SLAM Scahi Cells Are Enriched for Long-TermMultilineage HSCs, and Their Single-Cell Transplantation Activity Links to a Distinct

Molecular Profile

(A) Donor chimerism (% donor/[% donor + % recipient]) in mice receiving either 10 SLAM Scahi or SLAM Scalo cells. Recipients of SLAM Scahi cells have

significantly increased levels of donor chimerism. Error bars represent data ± SEM.

(B) Individual recipient mice of ten SLAM Scahi or SLAM Scalo cells and the donor contribution to various lineages. Ratios are formed by taking the total cells of a

particular lineage (e.g., GM) and calculating the donor contribution (e.g., Donor GM/(Donor + Recipient GM). GM contribution is red, B is blue, and T is green. Note

that four of five recipients of SLAM Scalo cells have <1% GM contribution, whereas all five recipients of SLAM Scahi cells have robust myeloid contribution.

(C) Donor chimerism (%donor/[% donor +% recipient]) in mice receiving 1 SLAMScahi cell. Fifteen of 29mice transplanted had donor chimerism of >1% and are

displayed on this graph. Blue indicates beta subtype; red indicates alpha subtype; and green indicates gamma/delta subtypes.

(legend continued on next page)
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heterogeneous (outbred population, different aged individuals),

heavily premanipulated (overnight enzymatic digestion, frozen,

and re-thawed), and fewer cell surface markers are used in the

purification of progenitor populations. We purified mammary

cell progenitors as described (Shehata et al., 2012) and sorted

192 single-cells per patient into individual wells of 96-well culture

plates, which were assessed 10–12 days later for the formation

of luminal progenitor colonies. Again, we used index sorting to

acquire information on forward/side scatter as well as six addi-

tional surface markers when sorting the single cells into culture

dishes. To permit comparison across patients, we performed

z-score normalization of the index sorting results for all patients

individually and performed t-SNE on the normalized data. Similar

to the hematopoietic data, distinct clusters were resolved (to

establish boundaries we performed hierarchical clustering with

ward distance, Figure S5C), which were enriched for colony-

forming cells for four of five patients (Figure S5D). The average

fold increase in colony forming efficiency was 1.6-fold (Fig-

ure S5E). To characterize the cluster enriched for colony-forming

cells, we performed a Wilcoxon rank sum test to establish that

markers were differentially expressed between the identified

cluster and the remaining cells. This revealed a significant differ-

ence in the fluorescence of five markers, with the largest differ-

ence obtained for side scatter (SSC) and EpCAM (Figure S5F).

In summary, we used a similar bioinformatic algorithm as in the

mouse HSCs to predict that a low SSC and EpCAMhi cell would

give rise to a luminal colony and observed enrichment in luminal

colony-forming cells in four of the five patients tested. This illus-

trates the power of combining index sorting and functional

outcome in more variable cell systems and sets the stage for

other groups to use the technique in their studies to improve

purity and link molecular states with functional outcomes.

DISCUSSION

Identifying the molecular regulators of stem cell function has

been a long-standing challenge in HSC biology and is compli-

cated due to impurities in isolated populations and, more

recently, the identification of functional heterogeneity in HSCs

themselves. Because the assignment of HSC status relies on

retrospective assaysmeasuring their progeny, the transcriptome

of the original HSC is no longer accessible. Therefore, if one is to

identify the individual molecules and the regulatory networks at

play within these cellular systems, alternative approaches are

required. Using a combination of single-cell functional assays

and single-cell gene expression linked together by flow cyto-

metric index sorting, we provide insights into the gene expres-

sion program of transplantable multilineage HSCs compared
(D) Joint representation of sequenced cells and transplanted cells. In the t-SNE sp

cells; cells with a low predicted MolO score cluster with mostly non-repopulat

populators. Black indicates repopulators. Hatch pattern indicates gamma-HSCs

are represented by circles, and the predicted MolO score is shown. Axes are in

(E) The hidden differentiation factor recovered using scLVM was strongly correl

entiation factor also had a high predicted MolO score (colors as in D). Axes are i

(F) Donor chimerism (% donor/[% donor + % recipient]) in mice receiving 1 ESLA

and are displayed on this graph. Blue indicates beta subtype. Red indicates alpha

HSC that had <1% chimerism at 16 weeks, but >1% at 24 weeks.

(G) Table of signature genes significantly associated with SuMO and non-SuMO c

See also Figure S5 and Table S4.
with fluorescence-activated cell sorting (FACS)-marker-defined

HSCs that lack HSC activity.

A number of laboratories have refined strategies to isolate

enriched populations of HSCs with functional purities of up to

�50% (Beerman et al., 2010; Dykstra et al., 2007; Goodell

et al., 1996; Morita et al., 2010). While each strategy identifies

functional HSCs, they do not share the same cell surface

markers in many cases. We took advantage of this diversity,

assuming that each strategy contained both HSCs and non-

HSCs and that the HSCs would share a common molecular pro-

gram. Utilizing four distinct isolation strategies, we were able to

identify common gene expression patterns within HSC popula-

tions (MolO HSCs), which featured numerous genes previously

implicated in HSC biology (e.g., Gata2, Gfi1b, and vWF, Figure 1)

and also reveal previously unrecognized potential players in HSC

biology.

MolO HSCs were further distinguishable by higher than

average CD150 and Sca-1 expression as well as lower than

average CD48 expression. These cell surface markers had

been previously implicated to be of significant importance with

CD150high cells enriching for HSCs with greater self-renewal

(Beerman et al., 2010; Morita et al., 2010), and while genetic

ablation of Sca-1 had no impact on HSC self-renewal (Bradfute

et al., 2005), lower SPKLS cells were shown to have a higher

Sca-1 expression (Challen et al., 2010). However, no previous

studies have used very bright Sca-1 in combination with

CD150 to define an HSC population, which our molecular over-

lapping study predicted to be very effective at isolating near

pure HSCs. Using the cell surface expression of MolO HSCs

compared with NoMO HSCs, we could take an unbiased

approach to identify the simplest and most discriminating

combination of markers. The resultant SLAM Scahi population

was indeed greatly enriched for HSCs compared with the

SLAM Scalo, despite the SLAM Scalo cells still expressing

Sca-1 as well as the vast majority of other popular HSCmarkers.

We further refined our HSC isolation strategy based on a recently

published bioinformatic analysis, scLVM (Buettner et al., 2015),

and report a single-cell long term multilineage efficiency of

67% using the EPCRhiSLAMScahi phenotype. It is likely that

technical challenges of the single-cell transplantation assay will

limit its efficiency, and future studies are needed to evaluate

whether efficiencies higher than �70% can be obtained. Of

note, our dataset may also be used to determine genes unlikely

to be expressed in functional HSCs, which may help identifying

specific contaminating cells from within each specific FACS-

maker-defined HSC population.

Our data report a genome-wide gene expression dataset for

single HSCs suitable to separate out the most likely functional
ace, cells with a high predicted MolO score cluster together with repopulating

ors. Transplanted cells are represented by squares. White indicates non-re-

and the 1% chimerism beta-HSC highlighted in the main text. Sequenced cells

arbitrary units.

ated with EPCR expression. Cells with high EPCR expression and low differ-

n arbitrary units.

M Scahi cell. Twenty-six of 39 mice transplanted had donor chimerism of >1%

subtype, and green indicates gamma/delta subtypes. The asterisk indicates an

ells. Overlapping genes with the MolO/NoMO gene list are highlighted in green.
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HSCs. Themost pronounced difference in terms of gene expres-

sion is the significant enrichment of genes, which are involved in

cell cycle, where the NoMO cells are primed toward proliferation,

whereas the MolO cells express high levels of cell-cycle inhibi-

tors. This genetic signature is supported by in vitro data demon-

strating that single SLAM Scalo cells (enriched for NoMO) were

significantly more proliferative compared with the SLAM Scahi

cells (enriched for MolO). These data support the idea that

SLAM Scahi/MolO cells might constitute the long-term reservoir

of dormant HSCs that respond to stress or injury (Ohlstein et al.,

2004; Wilson et al., 2008).

The integration of the genome-wide scRNA-seq analysis with

the index sorting data also suggests that while functional HSCs

are typically dormant, they have the ability to respond to extrinsic

signaling for stress and injury (King and Goodell, 2011; Wilson

et al., 2008), further supporting their robust activity in long-term

transplantation assays. Linking molecular signatures to func-

tional activity is one of the most challenging aspects of stem

cell biology. Overlaying our single-cell transplantation data onto

the scRNA-seqdata allowed us to separate the non-repopulating

HSC from the repopulating HSCs, offering insights into the mo-

lecular programs that define a repopulating HSC. Of note, our

data focus on HSCs that read out in a transplantation assay

with direct relevance to the therapeutic potential of HSCs, but

investigation of the control mechanisms underlying steady-state

hematopoiesis is likely to require different experimental strate-

gies (Busch et al., 2015). Our approach can be extended in future

to study the molecular programs of individual lineage-biased

HSCs and HSCs with durable compared with finite self-renewal.

Linking gene expression changeswith functional data through in-

dex sorting establishes anexperimental paradigm that canbe ex-

ploited in any cell population with a reasonably high purity and

defined single-cell functional assays. This will greatly enhance

studies of normal andmalignantbloodstemcells, aswell as those

in other cellular systems such asmammary and neural stemcells.

EXPERIMENTAL PROCEDURES

Detailed experimental protocols are provided in Supplemental Experimental

Procedures.

Purification of Stem and Progenitor Cells

Suspensions of bone marrow (BM) cells from the femurs, tibiae, and iliac crest

of 8- to 12-week-old C57BL/6 mice were isolated and depleted of red blood

cells by an ammonium chloride lysis step (STEMCELL Technologies). Anti-

bodies for HSC isolation are listed in Supplemental Experimental Procedures.

Cells were sorted using a Becton Dickinson Influx sorter equipped with five la-

sers. For single-cell gene expression assays, cells were sorted into individual

wells of 96-well PCR plates. For single-cell transplantation and in vitro assays,

cells were sorted into individual wells of a U-bottom 96-well plate. For progen-

itor colony forming cell assays and ten-cell transplantation assays, cells were

sorted into 1.5-ml tubes containing serum-free medium.

Progenitor Cell Assays

Five hundred CMPs, MEPs, or GMPs were sorted into serum-free medium,

divided into a high concentration fraction (�450 cells) and a low concentration

fraction (�45 cells), placed into semisolid medium containing myeloid growth

factors (MC3434; STEMCELL), and counted after 10 and 14 days of culture.

Single LMPPs were sorted into wells containing OP9 cells supplemented

with 100 ng/ml interleukin-7 (IL-7) and 50 ng/ml FLT-3, harvested at day 28

and analyzed for the presence of B (defined as B220+) and myeloid (Ly6g+

and/or Mac1+) cells.
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Single HSC Cultures

SLAM Scahi and SLAM Scalo HSCs were sorted and cultured in STEMSPAN

medium containing SCF and IL-11 as described previously (Kent et al.,

2008, 2013). After 24 hr, wells were scored for the presence of a single cell

and counted each day to track the clonal growth of individual cells. For

immunophenotyping, clones were individually stained and assessed for the

expression of Sca-1, c-Kit, and a panel of lineage markers along with 7-amino-

actinomycin D (7AAD, Invitrogen) to mark dead cells.

Clone Size Calculations and Antibody Information for In Vitro

Cultures

Clones were estimated to be small (50–5,000 cells), medium (5,000–20,000

cells), or large (20,000 or more cells). No clones had fewer than 50 cells.

Ten-day clones were stained with biotinylated lineage marker antibodies

(Haematopoietic Progenitor Enrichment Cocktail; STEMCELL), c-Kit, and

Sca-1. Cells were enumerated using a defined number of fluorescent beads

(Trucount Control Beads, Becton Dickinson).

Single-Cell Gene Expression Analysis

Single-cell gene expression analysis was performed as described previously

(Moignard et al., 2013). Single-cell expression data were collected using the

Fluidigm Data Collection software. DCt values were calculated as previously

described (Guo et al., 2010) by cell-wise normalization to the mean expression

level of two housekeeping genes (Ubc and Polr2a). All housekeepers, Cdkn2a

and Egfl7 were removed from the dataset for downstream analysis. Cdkn2a

was not expressed in any of the cell types, and Egfl7 assay experienced tech-

nical issues. Hierarchical clustering was performed in R (http://www.r-project.

org) using the hclust package and heatmap.2 from the gplots package using

Spearman rank correlations and ward linkage. t-SNE was performed in Matlab

(Mathworks) using the Matlab implementation (http://homepage.tudelft.nl/

19j49/t-SNE.html) with standard settings.

We identified MolO cells based on a weighting matrix defined by repopula-

tion probabilities and the 2D t-SNE representation of the data (Figures S2B and

S2C). Random forests were trained on the normalized Ct values of the set of

genes, which were assayed by single-cell gene expression and variable above

technical noise in scRNA-seq. Training was performed on all cells from sorting

strategy HSC1, and generalizability was quantified using 10-fold cross-valida-

tion (Figure S3C). Training and testing of the classifier was performed in python

2.7 using the sklearn library.

scRNA-Seq

scRNA-seq analysis was performed as described previously (Picelli et al.,

2014). Single cells were sorted by FACS directly into individual wells of a

96-well plate containing lysis buffer, and libraries were prepared using the

Illumina Nextera XT DNA preparation kit. Pooled libraries were run on the Illu-

mina Hi-Seq 2500 and reads aligned using STAR (Dobin et al., 2013). HTSeq

(Anders et al., 2014) was run to assign mapped reads to Ensembl genes.

Mapped reads were normalized using size factors as described (Brennecke

et al., 2013). We estimated technical noise (Brennecke et al., 2013) and fitted

the relation between mean read counts and squared coefficient of variation

using ERCC spike-ins (Life Technologies) (Figure 3Ai). Genes for which the

squared coefficient of variation exceeded technical noise were considered

variable.

Transplantation of HSCs

Ten-cell transplantations were performed in CD45.1 lethally irradiated C57Bl/6

recipients along with 250,000 spleen CD45.1/.2 helper cells. Single-cell trans-

plantations were performed by tail vein injection of sublethally irradiated Ly5-

congenic adult W41/W41 mice as previously described (Dykstra et al., 2007).

Peripheral blood samples were collected from the tail vein of several mice

at 4 weeks and all mice at 8, 16, and 24 weeks after transplantation.

Donor and recipient cells were distinguished by their expression of CD45.1

or CD45.2. Animals with at least 1% donor white blood cells (WBCs) at 16

and/or 24 weeks after transplantation were considered to be repopulated

with long-term reconstituting cells. HSCswere further discriminated according

to previously described high (alpha or beta) or low (gamma or delta) ratios of

their proportional contributions to the GM, B cell, and T cell subsets at

16 weeks after transplantation (Dykstra et al., 2007).

http://www.r-project.org
http://www.r-project.org
http://homepage.tudelft.nl/19j49/t-SNE.html
http://homepage.tudelft.nl/19j49/t-SNE.html


Isolation and Assessment of Mammary Progenitors

All primary human material was derived from five reduction mammoplasties at

Addenbrooke’s Hospital under full informed consent and in accordance with

the National Research Ethics Service, Cambridgeshire 2 Research Ethics

Committee approval (08/H0308/178) as part of the Adult Breast Stem Cell

Study. All tissue donors had no previous history of cancer and were premen-

opausal (ages 20 to 23). Mammary tissue was dissociated to single-cell sus-

pensions as previously described (Eirew et al., 2010). Single-cell suspensions

of human mammary cells were treated to detect the enzyme activity of alde-

hyde dehydrogenase (ALDH) using the Aldefluor Kit (StemCell Technologies)

as per the manufacturer’s instructions. Antibodies for mammary progenitor

cell isolation are listed in Supplemental Experimental Procedures. Cells were

sorted using a Becton Dickinson Influx. Luminal progenitor populations were

seeded as single cells into 96-well plates with 1 3 104 irradiated NIH 3T3

feeder cells. Cultures weremaintained in Human EpiCult-B (StemCell Technol-

ogies) supplemented with 5% fetal bovine serum (FBS) (StemCell Technolo-

gies) and 50 mg/ml gentamicin for 10 to 12 days.

Mice

C57Bl/6J (B6)-Ly5.2 mice and congenic B6-W41/W41-Ly5.1 (W41-5.1) mice

were bred and maintained at the University of Cambridge in microisolator

cages and provided continuously with sterile food, water, and bedding. All

mice were kept in specified pathogen-free conditions, and all procedures

were performed according to the United Kingdom Home Office regulations.

ACCESSION NUMBERS

RNA-seq data for HSC1 have been deposited into the NCBI GEO portal under

the accession number GEO: GSE61533.
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