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ABSTRACT.	 This study investigated consecutive fluctuations in serum activities of bone-specific 
alkaline phosphatase (ALP) isoenzyme 3 (ALP3) in 11 clinically healthy Holstein heifers during the 
first 18 months of life. ALP3 activities at the first sampling time point after weaning (3 months) 
were significantly lower than those at multiple time points during the pre-weaning period. Those 
activities increased from a minimum at 3 months to a peak at 6 months during the post-weaning 
period. In the anthropometric data, daily body weight and wither height gains appeared to be 
below the public data at 4 months and 4–5 months, respectively. The data suggested that serum 
ALP3 activity can be used to monitor skeletal growth of heifers at weaning.
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Replacement rearing of heifers is an essential part of dairy farm management, because approximately 25–35% of the herd is 
culled every year and must be replaced [15]. The assessment of nutritional plans is required for stable management of dairy farms. 
Therefore, heifers must be monitored throughout the rearing period to identify any deviations from pre-set rearing targets at an 
early stage [15]. Analysis of blood biochemistry is an indirect approach to infer the efficiency of replacement rearing of heifers [4].

A recently developed commercial agarose gel electrophoresis (AGE) kit can be used to analyze circulating alkaline phosphatase 
(ALP) isoenzymes in humans, and this off-the-shelf kit may be useful for veterinary practice. We recently reported that this AGE 
kit was useful for measuring ALP isoenzymes in newborn calves [17] and lactating cows [3]. In particular, the use of the kit with 
both protease- and protease and neuraminidase-treated sera can discriminate among three major alkaline phosphatase isoenzymes 
in bovine sera: a hepatic ALP isoenzyme derived from hepatic tissue (ALP2), a bone isoenzyme derived from osteoblasts (ALP3), 
and an intestinal isoenzyme derived from intestinal tissue (ALP5) [3]. Because the ultimate goal of replacement rearing of heifers 
is to reach first-calving age at a predetermined time with an optimal skeletal growth rate [15], we hypothesized that circulating 
ALP3 activities may be useful for the monitoring of their skeletal growth. Therefore, the present study determined consecutive 
fluctuations in serum activities of ALP3 in 11 clinically healthy Holstein heifers during the period from birth to 18 months.

The study included 11 female Holstein newborn singleton calves born at the Obihiro University of Agriculture and Veterinary 
Medicine (OUAVM) farm. They were separated from the dams immediately after birth, and fed good-quality colostrum defined 
by density >1,044 kg/m3 [7] three times on the first day (6 l in total). From the second day, calves were fed 3 l milk replacer (Calf 
Top EX; Zenrakuren, Tokyo, Japan) twice a day until day 7. Then they were fed replacer using an automatic calf feeder (VARIO+ 
automatic feeder; Förster-Technik GmbH, Engen, Germany) with calf starter (Calf Manna; Futaba Feed, Shioya, Japan), followed 
by hay and water ad libitum until the time of weaning. The calves were fed 6 l milk replacer per day until 6 weeks, and it was 
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gradually decreased to 3 l per day by 7 weeks for calves with body weight (BW) >77 kg at 6 weeks. Subsequently, the calves 
were fed 3 l replacer until 8 weeks and then weaned. Calves with BW <77 kg at 6 weeks were fed 6 l milk per day until the BW 
exceeded 77 kg, at which point they were considered heifers.

After weaning (mean ± standard deviation [SD]: 9.6 ± 0.7 weeks, range: 8.8–10.9 weeks), the heifers moved through three 
groups in sequence as they gained weight (~150 kg, ~200 kg, and ~300 kg). They were fed concentrate (Shin-Yogyu-Green; 
HOKUREN Kumiai Shiryo, Sapporo, Japan), vitamins, and minerals depending on their growth, along with hay and water ad 
libitum. When the heifers reached BW >300 kg, they were moved into another group and fed total mixed ration containing 
grass silage, concentrate (Farm Aid 18; Snow Brand Seed Co., td., Sapporo, Japan), vitamins, and minerals, with hay and water 
ad libitum. They were conceived by artificial insemination at 13.4 ± 1.1 months of age (range: 11.8–15.3 months of age). The 
procedures of feeding management for the heifers in this farm during the experiment period was operated according to the 
guideline of Japanese Feeding Standard for Dairy Cattle [16].

Blood samples were withdrawn from the jugular vein immediately before the first colostrum feeding (0), at 1, 2, 3, 4, 6, and 8 
weeks (0.25, 0.5, 0.75, 1, 1.5 and 2 months) during the pre-weaning period, and at 3, 4, 5, 6, 8, 10, 12, 15, and 18 months during 
the post-weaning period. The blood samples were withdrawn into 5 ml plain vacuum collection tubes (Venoject II; Terumo, Tokyo, 
Japan), centrifuged, and then serum was stored at −60°C prior to analyses. BW was determined using a weight scale (EziWeigh5i 
Weigh System; Datamars Inc., Temple, TX, USA) before the first colostrum feeding (0) and at 1, 2, 3, 4, 5, 6, 8, 10, 12, 15, and 18 
months. Wither height (WH) was measured at 2 weeks and 1, 2, 3, 4, 5, 6, 8, 10, and 12 months. Daily BW and WH gains were 
calculated by dividing the difference between two consecutive measurements by the number of days.

The study protocol and study design were approved by the OUAVM Laboratory Animal Care and Use Committee (approval 
Nos. 28-158 and 29-123), under the jurisdiction of the Science Council of Japan.

Total ALP (t-ALP) activity in serum was measured spectrophotometrically using a LabAssay ALP kit (Wako Pure Chemical 
Industries, Ltd., Osaka, Japan). Agarose gel electrophoresis (AGE) was performed using a QuickGel ALP agarose gel kit (J713; 
Helena Laboratories Japan, Saitama, Japan), QuickGel ALP (bone-type) reagent (J871; Helena Laboratories Japan), and an 
automatic electrophoresis system (Epalyzer-2; Helena Laboratories Japan), as described previously [3]. Briefly, control sera (5139; 
Helena Laboratories Japan) containing extract of bovine liver or intestine tissue were used as references for ALP2 and ALP5, 
respectively. Each serum sample (60 µl) was subjected to two treatments before electrophoresis; one half (30 µl) was mixed with 
a 300 U/ml protease cocktail (4 µl) and distilled water (2 µl) (P-treated serum), while the remainder (30 µl) was mixed with the 
protease cocktail (4 µl) and a separator solution containing neuraminidase (2 µl) (PN-treated serum). After electrophoresis (23 
min at 230 V and 15°C), the gels were stained and scanned as densitometric images. The P-treated serum showed a distinct ALP5 
fraction emerging on the cathode side and a fraction containing poorly separated ALP2 and ALP3 on the anode side, whereas the 
PN-treated serum showed a definite ALP2 fraction on the anode side and a poorly resolved fraction of overlapping ALP3 and 
ALP5 on the cathode side. The relative percentages of the ALP2 and ALP5 fractions were determined by the optical absorbance of 
the bands. The percentage of the ALP3 fraction was assessed by subtracting the percentage of the ALP5 fraction from that of the 
overlapping ALP3 and ALP5 fraction in the PN-treated serum. The absolute activity (U/l) of each isoenzyme was calculated from 
the t-ALP activity measured spectrophotometrically.

All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University, Saitama, Japan), which 
is a graphical user interface for R (The R Foundation for Statistical Computing, Vienna, Austria). More precisely, it is a modified 
version of R Commander designed to add statistical functions frequently used in biostatistics [12]. The numerical data are 
expressed as means ± SDs. First, the values were checked for normality of the distribution by Kolmogorov–Smirnov normality test. 
The parameters were analyzed by one-way repeated-measures ANOVA and Holm post hoc tests to compare the values between 
pre-weaning and post-weaning periods and to evaluate the changes in values within the pre-weaning or post-weaning periods. In all 
analyses, P<0.05 was taken to indicate statistical significance.

Figure 1 shows the changes in serum levels of t-ALP and ALP3 activities during the pre-weaning (0–8 weeks) and post-weaning 
(3–18 months) periods. ALP3 was the largest fraction accounting for 64.1–77.5% of t-ALP activity, whereas ALP2 and ALP5 
accounted for 19.0–31.4% and 3.5–6.6% of t-ALP activity, respectively. The activities of t-ALP at six time points (1, 2, 3, 4, 6, and 
8 weeks) during the pre-weaning period were significantly higher than those at either of eight time points (3, 4, 5, 8, 10, 12, 15, 
and 18 months) during the post-weaning period (P<0.01–0.05). ALP3 activities at four time points (1, 4, 6, and 8 weeks) during the 
pre-weaning period were significantly higher than those at either of seven time points (3, 4, 8, 10, 12, 15, and 18 months) during 
the post-weaning period (P<0.01–0.05).

During the pre-weaning period in the 11 heifers, the t-ALP activities showed bimodal peaks at 1 and 6 weeks (1139.2 ± 297.6 
and 1136.9 ± 263.4 U/l, respectively) and a minimum value at 3 weeks (775.6 ± 149.3 U/l; P<0.01–0.05 vs. the bimodal peaks). 
ALP3 activities showed a similar pattern of fluctuation to t-ALP, with bimodal peaks at 1 and 6 weeks (883.0 ± 266.6 and 822.0 ± 
240.1 U/l, respectively) and a minimum value at 3 weeks (495.9 ± 133.3 U/l; P<0.01–0.05 vs. the bimodal peaks).

During the post-weaning period, the t-ALP activities showed a minimum (423.4 ± 222.8 U/l) at 3 months, increased to a 
peak (785.2 ± 179.2 U/l; P<0.05 vs. the minimum) at 6 months, and then remained almost constant until 18 months. Similarly, 
ALP3 activities also showed a minimum (289.6 ± 188.9 U/l) at 3 months, increased to a peak (567.3 ± 171.5 U/l; P<0.05 vs. the 
minimum) at 6 months, and then remained constant thereafter.

Figure 2 shows the changes in BW, WH, and daily BW and WH gains in 11 heifers. BW was 41.1 ± 4.4 kg at birth (immediately 
before the first colostrum feeding), which increased to 556.5 ± 32.8 kg at 18 months. WH was 81.6 ± 3.0 cm at 2 weeks, which 
increased to 131.3 ± 3.6 cm at 12 months. The changes in these anthropometric measurements were equivalent to or somewhat 
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Fig. 1.	 Changes in serum activities (mean ± SD) of total alkaline phosphatase (ALP) and ALP isoenzyme 3 (ALP3) during the pre-weaning 
(0–8 weeks; ●) and post-weaning (3–18 months; ■) periods in 11 Holstein heifers. Superscript letters indicate significant differences in mean 
values between the pre-weaning and post-weaning periods: A,B,C,D,F,GP<0.05, a,b,c,e,gP<0.01. Asterisks indicates significant differences in 
mean values from the minimum during each period of pre-weaning (3 weeks) or post-weaning (3 months): *P<0.05, **P<0.01.

Fig. 2.	 Changes in body weight (BW), wither height (WH), and daily BW and WH gains of 11 Holstein heifers (●). For comparison, the 
standard values of mean BW, WH, and daily BW and WH gains of Holstein heifers in Japan obtained from the public data of the Holstein 
Cattle Association of Japan (http://hcaj.lin.gr.jp/) are also shown (□).
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higher than the public data on BW (40.0 and 458.0 kg, respectively) and WH (75.1 and 122.4 cm, respectively) of heifers in Japan 
(http://hcaj.lin.gr.jp). The daily BW gain of our heifers fluctuated around the values of the public data until 6 months, and thereafter 
showed consistently higher values than the public data until 18 months. In particular, the daily BW gain at 4 months (i.e., the value 
obtained by dividing the difference in BW between 3 and 4 months by the number of days) appeared to be below the public data. 
The daily WH gain gradually declined in a manner similar to the public data until 12 months, except at 4 and 5 months when the 
values dropped markedly.

The present study examined consecutive changes in serum activities of t- ALP and ALP3 in 11 heifers during the first 18 months 
of life. Our data indicate that ALP3 is the primary contributor to t-ALP activity. Generally, serum t-ALP activity is higher in 
young animals than in adults [6], and ALP3 accounts for the major fraction in immature and/or growing animals, including kittens, 
puppies, foals, and calves [1, 6, 11, 17]; our results are consistent with these data.

ALP3 is considered an accurate marker of bone formation, which is the standard index for increased osteoblastic activity [1, 20] 
and extracellular mineralization [8]. In the present study, the activities of ALP3 as well as t-ALP showed bimodal peaks at 1 and 
6 weeks during the pre-weaning period. Hatate et al. [10] reported that a large amount of ALP in the colostrum was transferred to 
the neonatal circulation of calves, leading to marked increases in plasma activities of t-ALP and bone-specific ALP [14] during the 
period from 10 to 30 hr after the first colostrum feeding. A similar increase in t-ALP activity was seen after ingestion of colostrum 
in 1- to 2-day-old kittens [6]. Therefore, this first peak of t-ALP and ALP3 at 1 week in our calves may have been due to the 
increases in levels of these enzymes after colostrum feeding.

Activities of t-ALP and ALP3 in our heifers showed a significant decline at the first sampling time point after weaning (3 
months) compared to the values at multiple time points during the pre-weaning period. A decrease in serum t-ALP activity has also 
been reported in association with undernutrition in humans [9]. During the pre-weaning period, the weight of the reticulorumen 
increases from 38 to 67% of the total weight of the forestomach in calves [5]. Weaning alters the diet fed to the calves gradually 
from milk to solid food (hay and concentrate), which often leads to a risk of insufficient nutrient intake [18, 21]. Serum t-ALP 
activity is positively correlated with average feed intake [19] and feed efficiency [2] in growing cattle. In our heifers, daily BW 
and WH gains seemed to decrease at 4 and 4–5 months, respectively, suggesting a transient deceleration of active growth of the 
physique and skeleton soon after weaning (3–5 months). Therefore, the decline in t-ALP and ALP3 activities may be related to 
reduced bone formation due to insufficient feed intake and/or nutritional condition at the time of weaning.

After weaning, t-ALP and ALP3 activities in our heifers increased, peaking at 6 months and then mostly remained constant 
thereafter. The feeding time in post-weaned calves increases to a level equivalent to that in adults by 6 months [13]. The increases 
in t-ALP and ALP3 activities after weaning were considered to reflect activated bone formation due to the increase in food intake 
following prolongation of feeding time and BW gain.

The overall fluctuation of serum ALP3 activity in our heifers during the first 18 months of life appeared to show a peak at 6 
weeks (1.5 months) followed by gradual decline, if the first transient rise at 1 week and the significant decrease at the 3 months 
were not existed. Dairy WH gain seem to be the highest at 1–2 months in our heifers and the public data (Fig. 2), suggesting the 
possibility of accelerated bone formation around 6 weeks. It was controversial whether colostral ALP3 suppressed an endogenous 
release of ALP3 from osteoblasts during the early period of pre-weaning, because this enzyme may facilitate extracellular 
mineralization [8, 10]. On the other hand, ALP3 activity in our heifers showed a significant decrease at the time of weaning 
(3 months), suggesting reduced bone formation. Weaning off milk is the major feeding transition for young heifers, which is 
particularly stressful for the animal and challenging for the producer [21]. In the present study, daily BW and WH gains appeared 
to be below the public data at 4 months and 4–5 months, respectively, which were consistent with the timing of weaning and herd 
migration. The declines of ALP3 activity may be specific blood biochemical indicators of the need to improve the techniques 
of weaning and herd migration in heifers. In conclusion, the present study suggested that the measurement of circulating ALP3 
activity can be useful for the monitoring of skeletal growth of Holstein heifers. Further studies are needed to examine change 
in serum ALP3 activity specific to several nutritional and several disease conditions in cattle to develop useful diagnostic 
methodologies for veterinary clinicians.
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