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Abstract

Transient protein-protein and protein-ligand interactions are fundamental components of biological activity. To understand
biological activity, not only the structures of the involved proteins are important but also the energetics of the individual
steps of a reaction. Here we use in vitro biophysical methods to deduce thermodynamic parameters of copper (Cu) transfer
from the human copper chaperone Atox1 to the fourth metal-binding domain of the Wilson disease protein (WD4). Atox1
and WD4 have the same fold (ferredoxin-like fold) and Cu-binding site (two surface exposed cysteine residues) and thus it is
not clear what drives metal transfer from one protein to the other. Cu transfer is a two-step reaction involving a metal-
dependent ternary complex in which the metal is coordinated by cysteines from both proteins (i.e., Atox1-Cu-WD4). We
employ size exclusion chromatography to estimate individual equilibrium constants for the two steps. This information
together with calorimetric titration data are used to reveal enthalpic and entropic contributions of each step in the transfer
process. Upon combining the equilibrium constants for both steps, a metal exchange factor (from Atox1 to WD4) of 10 is
calculated, governed by a negative net enthalpy change of ,10 kJ/mol. Thus, small variations in interaction energies, not
always obvious upon comparing protein structures alone, may fuel vectorial metal transfer.
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Introduction

Protein-protein interactions and protein-ligand interactions are

responsible for most biological functions. The development of

protein structure determination by NMR and crystallography has

improved our understanding of protein function dramatically.

However, to pinpoint why and how biological reactions occur it is

necessary to identify the thermodynamic and kinetic driving

forces. Formation of protein-protein and protein-ligand complexes

are often favored thermodynamically (that is, the free energy of

complex formation is negative) due to an increase in negative

enthalpy or positive entropy, or a combination of both. For

example, the assembly of monomers into the functional hepta-

meric co-chaperonin protein 10 is entropically driven [1] whereas

many protein-DNA complexes are associated with favorable

enthalpy changes [2]. In many signaling and transport pathways

in living systems, protein-protein and protein-ligand complexes are

formed transiently followed by dissociation resulting in a vectorial

transfer of a ligand or a signal. In such cases it is not always easy to

deduce the energetic components involved in every step of the

path as pure intermediates are hard to isolate and reactants and

products often have similar properties. In the respiration chain,

electrons flow between metal centers in membrane proteins with

varying redox potentials resulting in an electrostatic potential

across the membrane. In human copper transport, copper is

shuttled from one protein to another to allow entry into the Golgi

network where loading of copper-dependent enzymes in the

secretory pathway occur [3,4,5]. Despite structural work on the

proteins involved in this chain, it is not clear what the driving force

for vectorial copper transfer is as the involved proteins have similar

folds and Cu-binding sites.

Cu is found in the active sites of proteins that participate in

cellular reactions such as respiration, antioxidant defense, neuro-

transmitter biosynthesis, connective-tissue biosynthesis and pig-

ment formation [6,7,8]. The thermodynamic and kinetic feasibility

of Cu to oxidize/reduce (switching between Cu1+ and Cu2+) allows

copper-containing proteins to play important roles as electron

carriers and redox catalysts in living systems. To avoid toxicity and

to overcome solubility problems of Cu1+, the intracellular

concentration of Cu is regulated via dedicated proteins that

facilitate its uptake, efflux as well as distribution to target Cu-

dependent proteins and enzymes [3,4,5]. In humans, the 68-

residue Cu chaperone Atox1 picks up Cu that has entered the cell

via CTR1 and delivers the metal to cytoplasmic metal-binding

domains in ATP7A and ATP7B (also called Menkes and Wilson

disease proteins), two homologous multi-domain P1B-type ATPas-

es located in the trans-Golgi network. Many human copper-

dependent enzymes (e.g., blood clotting factors, tyrosinase, lysyl

oxidase and ceruloplasmin) acquire Cu in the Golgi before

reaching their final destination [3,4,5]. In both ATP7A and

ATP7B, there are six metal-binding domains in the N-terminal

cytoplasmic part separated by peptide linkers [9]. Structural work

has demonstrated that Cu chaperones and target domains from

many different organisms possess the same ferredoxin-like fold and

Cu-binding motif [10]. The six domains, as well as Atox1, bind Cu

via two conserved Cys residues in a surface-exposed MxCxxC

copper-binding motif [6,10]. Earlier in vitro [11,12,13,14,15,16]
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and in silico [17] work has shown that Cu transfer from Atox1 to

metal-binding domains (WD) of the Wilson disease protein and

metal-binding domains (MK) of the Menkes protein proceeds via a

copper-bridged hetero-dimer complex where the metal is shared

between the two metal-binding sites (Figure 1).

Scheme 1
During this process, Cu is thought to undergo a series of rapid

associative exchange reactions involving two- or three-coordinat-

ed Cu-sulfur intermediates that ultimately allows movement of

the Cu ion from one protein site to another [14]. NMR

experiments have shown that the possibility to detect the hetero-

complex in mixing experiments depends on which target WD or

MK domain is studied [11,12,18,19]. When such hetero-

complexes are detected by NMR, most often via slowed tumbling

times, they are found to be in fast exchange with the free

proteins [11]. Based on affinity and NMR studies, Cu binding to

a Wilson disease domain is favored over binding to Atox1 by a

factor of 3–5 [18,20,21]. In agreement with NMR data [18], we

showed earlier that upon mixing of Cu-Atox1 and the fourth

metal-binding domain of Wilson disease protein (WD4), a stable

ternary complex could be inferred from the near-UV CD

spectrum [22]. However, the ternary complex was in equilibrium

with both substrate and products of the overall reaction scheme 1.

Here we dissect the reaction in scheme 1 to reveal energetic

components of each of the individual steps. It emerges that

vectorial Cu transfer (towards the Golgi) is enthalpically driven.

Results

Detecting the Hetero-complex
The near-UV CD region is strongly influenced by ligand-to-

metal-charge-transfer from Cys-Cu bonds and has been used as a

method to study the metal environment in metallothioneins which

also binds Cu via Cys thiols [23,24]. In accord, for both Atox1 and

WD4, addition of Cu to the apo-protein results in distinct near-

UV CD changes (Figure 2A). Combination of spectra for apo-

and holo-forms was used to generate theoretical signals for 0 and

100% transfer of Cu from Atox1 to WD4. However, when Cu-

Atox1 is mixed with apo-WD4 the resulting near-UV spectrum

does not match that for Cu transfer; instead, the new signal is

distinct, with a positive peak at 295 nm and a more negative signal

at 265 nm (Figure 2B), as previously reported [22]. This indicates

the formation of a protein-protein complex that contains a unique

Cu site (i.e., 3 or 4 Cys ligands instead of 2). Formation of a ternary

complex was also reported from NMR experiments [15,16].

However, the CD data does not resolve how much of each of the

species in scheme 1 is present in the solution. It is a combination of

reactants, intermediate and products in equilibrium with each

other that depends on K1 and K2. To resolve the concentrations of

the various species that are present, and thereby deduce the

equilibrium constants K1 and K2, we turned to size exclusion

chromatography (SEC).

Separating Species with SEC
SEC of a mixture of the apo proteins is shown in Figure 3A

and of the two holo proteins in Figure 3BC. Elution of the

proteins was followed by absorption at 280 nm (reporting on

amount of protein) and at 254 nm (reporting on Cu-loading). It

is clear from the data in Figures 3ABC that the holo forms

have higher absorption at 254 nm than the apo forms due to Cu-

Cys transitions, although the 280 nm signal does not change.

Absorption spectra confirm this (Figure S1) and from the data

we can calculate extinction coefficients at 254 nm for apo

respective holo forms. Despite the similar size and structure, the

two proteins elute at different elution volumes. Specifically, WD4

elutes at an apparent higher molecular weight than expected for

the size of the protein. We found that the elution volume of

WD4 was salt dependent (not shown). Abnormal elution of

copper chaperones has been noted before for CopZ [25]. To

assure that WD4 was monomeric at low and high salt

concentrations, we performed NMR diffusion experiments

(Table S1). The results demonstrate that the apo- and holo-

form of WD4 is monomeric at both salt conditions. The relative

standard deviation between the four measurements reported in

Table S1 is similar to the experimental uncertainties, and

suggests that the diameter of W4 does not change between apo

and holo states, or upon addition of salt. The diffusion coefficient

of an ideal sphere diffusing under Stokes-Einstein conditions is

expected to decrease by ,26% upon dimerization. Using the

Cd-(Atox1)2 structure (1fe0.pdb) we computed a diffusion

coefficient of 5.7*10-11 m2/s for an Atox1 dimer, this value is

23% smaller than the value found in the experiments and well

below the uncertainty in D. Thus, we conclude that WD4 elutes

as a monomer but that other factors such as surface charge alters

its elution volume.

SEC of a mixture of Cu-Atox1 and apo-WD4 results in a

different elution profile with two overlapping bands near the

position of the individual WD4 band in addition to the Atox1

band (Figure 3D). De-convolution of the absorption profile at

280 nm reveals the presence of two Gaussian-shaped bands (for

Atox1 and WD4) as well as a new feature that is asymmetrical that

is proposed to correspond to the hetero-complex (Figure 3D).

Asymmetrical band broadening has been noted in SEC examina-

tions of dimer-monomer equilibria [26]. Analysis of the Atox1

band reveals that there is a lower Atox1 concentration in this peak

than expected based on elution of the protein alone (or when

mixing the two apo forms). This suggests that the missing Atox1 is

engaged in a hetero-complex that elutes at a different volume than

the monomer. To confirm that the new absorption feature is due

to a hetero-complex, the peak content was analyzed by mass

spectrometry. As expected, we find both Atox1 and WD4 in the

early elution samples (Figure S2A). Moreover, native gel analysis

Figure 1. Illustration of Scheme 1. Upon mixing Cu-loaded Atox1 (purple) and apo-WD (green), the proteins interact and form a hetero-complex,
Atox1-Cu-WD4 (shown with Cu coordinating one Cys in Atox1 and both Cys in WD4; however, there are other possible Cu coordinations in the
hetero-complex [17]), and also products, apo-Atox1 and Cu-WD4, according to the equilibrium constants K1 and K2.
doi:10.1371/journal.pone.0036102.g001
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of this mixture directly visualizes the existence of a stable protein-

protein complex in the presence of Cu (Figure S2B). In

agreement with thermodynamic expectations, mixing of higher

concentrations of proteins results in a larger fraction of the hetero-

complex peak (Figure S3).

Equilibrium Constants from SEC Data
Assuming that scheme 1 is correct and that equilibrium is

established on the SEC column, we can use the information in the

Atox1 peak to reveal the concentrations of all five species in scheme

1. First, the Atox1 peak itself determines the concentration of apo

and Cu forms of Atox1 in the mixture (from the 280/254

absorption ratio). The remaining fraction of Atox1 must then be

found in the Atox1-Cu-WD4 heterocomplex. This value dictates

how much Cu is left (i.e., not in Cu-Atox1 or in the

heterocomplex) and that defines the concentration of Cu-WD4.

The remaining amount of WD4, not found in the hetero-complex

or in Cu-WD4, is used to derive the concentration of apo-WD4.

With this, the concentration of each species is determined and

these can be used to calculate the equilibrium constants K1 and

K2. This analysis was performed at three different starting

concentrations of 1-to-1 Cu-Atox1:apo-WD4 mixtures (Figure
S3) and the results are reported in Table 1. Importantly, when we

analyzed a mixture of Cu-WD4 and apo-Atox1, the same SEC

profile was found as when starting with Cu-Atox1 and apo-WD4

(Figure S3). This assures that equilibrium is established in the

loaded solution during the filtration experiments. Moreover,

analysis of mixing of Cu-Atox1 and apo-WD4 at one specific

concentration but at varying salt (50, 100, 150 and 200 mM) no

significant differences or trends are noted (data not shown). This

suggests that in this range of salt concentrations, that include

physiological conditions, the reaction occurs and, if charge-charge

interactions are present in the complex they are not abolished by

200 mM salt. This was supported by comparing near-UV CD

spectra at high and low salt (Figure S4). The average K1 and K2

values are 0.4*106 M–1 (1/K1 = 2 mM) and 2.6*10–5 M (26 mM)

which results in a metal exchange factor, K1*K2 of 11. This means

that step 1 corresponds to a DG change of –30 kJ/mol and step 2

of+25 kJ/mol; resulting in an overall driving force for vectorial

transfer towards WD4 of –5 kJ/mol.

Using the K1 and K2 values determined from the SEC

experiments we return to Figure S1 and estimate the amount

of all species in the mixture. With this, we can subtract the

contributions from the individual proteins and obtain an

extinction coefficient for the pure hetero-complex of 9945 M-

1cm-1 at 280 nm. For comparison, extinction coefficient for Cu2+

in azurin is 6500 M–1cm–1 at 530 nm [27] and for a multi-Cu

cluster (with 6 to 8 Cu ions) in a metallothionine it is about

110,000 M–1cm–1 at 270 nm [28]. Using the derived extinction

coefficient we analyzed the data in Figure 3C and checked if the

de-convoluted peak for the hetero-complex corresponds to the

amount of protein that was calculated from the Atox1 peak

(Table 1). A good agreement between the two ways of estimating

the hetero-complex concentration was found (610%), showing

that our analysis of SEC is robust.

With defined K1 and K2, the population of species in the

mixture in Figure 2B can also be determined. The contributions

from the apo- and holo-forms of the two proteins could be

subtracted from the measured CD signal to reveal the CD profile

for pure hetero-complex. The dotted line in Figure 2B is the

estimated CD spectrum for pure hetero-complex scaled to the

same concentration as in the mixture in Figure 2B.

Enthalpic Contributions from ITC Data
Isothermal titration calorimetry (ITC) was used to deduce the

enthalpic and entropic contributions of the two steps in scheme 1.

Titration of Cu-Atox1 into a solution of apo-WD results in

negative reaction enthalpies (Figure 4A). As expected, when apo

proteins (Figure 4B) are titrated into each other, no reaction

heats are observed. To analyze the ITC data we need to relate the

Figure 2. CD reveals ternary complex. A. Near-UV CD of apo and holo-forms of Atox1 and WD4. B. Near-UV CD of a 1-to-1 mixture of Cu-Atox1
and apo-WD. For comparison the theoretical CD signal derived for no reaction (i.e., sum of Cu-Atox1 and apo-WD4 signals) and for 100% reaction (i.e.,
signals for apo-Atox1 and holo-WD4) are also shown. The dotted line is the calculated CD signal for 100% pure heterocomplex at the same
concentration (see text).
doi:10.1371/journal.pone.0036102.g002

Thermodynamics of Copper Transfer
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Figure 3. SEC probed at 2 wavelengths is used to separate equilibrium species in Scheme 1. A. SEC analysis of a mixture of the two apo
proteins (300 mM each) at 280 and 254 nm. B. SEC analysis of holo Atox1 (300 mM) at 280 and 254 nm. C. SEC analysis at 280 nm of a mixture of
300 mM Cu-Atox1 and 300 mM apo-WD4. For comparison, the 280 nm elution trace for the mixture of the two apo-proteins is shown. D. SEC analysis
at 280 nm and 254 nm of a mixture of 300 mM Cu-Atox1 and 300 mM apo-WD4. E. De-convolution of the underlying peaks in the elution trace of the
Cu-Atox1+apo-WD4 mixture.
doi:10.1371/journal.pone.0036102.g003

Table 1. SEC analysis of concentrations of species.

Starting 1:1:1
concentration

Cu-Atox1
(mM)

ApoWD4
(mM)

Complex
(mM)

ApoAtox1
(mM) Cu-WD4 (mM)

% complex
of total Cu K1(M–1) K2(M) K1*K2

75 mM 1.59 4.19 1.88 6.26 6.26 9.3 0.28*106 20.9*10–6 6

75 mM (opposite) 1.45 4.04 2.32 5.96 5.96 12 0.39*106 15.4*10–6 6

150 mM 2.43 5.2 5.3 12.79 12.79 14 0.42*106 30.8*10–6 13

150 mM 2.72 4.8 6.95 13.93 13.93 16 0.53*106 27.9*10–6 15

300 mM 4.62 10.75 18.38 23.5 23.5 23 0.37*106 30.0*10–6 11

Average 0.42*106 26.1*10–6 11

Concentrations of the five species in scheme 1 determined from SEC measurements as described in the text using different initial concentrations (1:1:1 of Atox1:Cu:WD4)
as indicated. Also, the % of the total copper found in hetero-complex is reported. The equilibrium concentrations established are used to derive K1 and K2 and from this
the copper exchange factor K1*K2 is calculated. Two experiments with 150 mM starting concentrations are reported. For 75 mM, also the opposite reaction, mixing Cu-
WD4 with apo-Atox1 was performed.
doi:10.1371/journal.pone.0036102.t001

Thermodynamics of Copper Transfer
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heat data to steps 1 and 2 in the equilibrium in scheme 1. This can

be done considering what happens in each of the injections in

Figure 4A. For instance, with the first injection of Cu-Atox1

(4 mM) to a fixed amount of apo-WD4 (52 mM), the equilibrium in

scheme 1 is shifted to the right. The first equilibrium is in essence

completely shifted towards the hetero-complex as the concentra-

tions are above 1/K1 and apo-WD4 is in excess. Thus, the

distribution of equilibrium species after this injection will be

dictated by K2 and the amount of added Cu-Atox1. We can use

the K2 established in the SEC analysis (Table 1) to calculate the

extent of step 2 at this condition and it corresponds to 89% (i.e.,

most of the hetero-complex dissociates as K2 is higher than the

current concentrations). The integrated enthalpy change per mol

(DHa) detected after the 1st injection thus equals

100%*DH1+89%*DH2 (i.e., all molecules goes through step 1

and 89% of these continue to products).

Similar reasoning can be made for every point in the titration

resulting in an extensive equation system with two unknown

parameters (DH1 and DH2). Due to the presence of experimental

errors in each data point, this problem is best solved numerically

via a computer algorithm that fit all points simultaneously. This

task was facilitated by a program written in Matlab (see Data S1).

Using the values of K1 and K2 derived from SEC we computed

the variations of concentrations of the five species in scheme 1

during the experimental titration in Figure 4A (Figure 5A). It

emerges that apo-Atox1 and Cu-WD4 builds up more quickly

than the hetero-complex. At the end of the titration there are

roughly similar amounts of apo-Atox1, Cu-WD4 and hetero-

complex and almost no apo-WD4.

We then incorporated the algorithm for computing concentra-

tions (described above) into a program which allows direct fitting

of the ITC data in order to derive enthalpy changes and

equilibrium constants (Data S1). The program accounts for the

linked equilibria, the enthalpy change for each step, and the

dilution of all concentrations with each injection. In Figure 5B,

we show the best fit to the ITC data with K1, K2, DH1 and DH2 as

floating parameters. In support of an appropriate reaction

mechanism, the features of the experimental data are reproduced

in the fit.

While the optimal K1 and K2 from the least-squares procedure

did not exactly match the values derived from SEC, the value of

K2 was identical to that obtained from the SEC analysis and the

value of K1 differed by less than a factor of four (which can be

considered within the experimental uncertainty). The output

values of DH1 and DH2 from this fit are –25 kJ/mol and+14 kJ/

mol, respectively. Thus, formation of the hetero-complex involves

favorable (exothermic) enthalpy changes whereas dissociation into

products is an endothermic reaction. Combining the DG (from

SEC data) and DH (from ITC data) values, the size of TDS for

each step was calculated (Table 2). Hetero-complex formation is

accompanied by a small favorable (positive) entropy change

whereas disassembly into products involves negative entropy

changes. The overall transfer of Cu from Atox1 to WD4 is

facilitated by an overall favorable enthalpy change but an overall

unfavorable entropy change.

Figure 4. ITC reveals interaction energetics. A. A solution of 666 mM Cu-Atox1 (in the syringe) is titrated into a solution of 52 mM apoWD4 (in
the reaction chamber) at 3uC. B. A solution of 666 mM apo-Atox1 (in the syringe) is titrated into a solution of 62 mM apoWD4 (in the reaction chamber)
at 3uC. The top plots are the raw data of heats versus time and the bottom plots are integrated heats as a function of molar ratio of Atox1/WD4. Noise
estimation based on the data in B predicts uncertainties for individual ITC points of 0.03 kcal/mol.
doi:10.1371/journal.pone.0036102.g004

Thermodynamics of Copper Transfer
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Discussion

Many processes in living systems occur through transient, often

weak, interactions among proteins. In these cases, the interaction

is often associated with a small, negative change in free energy. If

the free energy change was large and negative, the complex would

be stable and non-transient, whereas if it were positive no

interaction would occur. To understand mechanisms of biological

activity, studies of the thermodynamics and kinetics of weak,

transient protein-protein and protein-ligand interactions are

crucial.

Metal homoeostasis in cells is a process involving many transient

protein-metal and protein-protein interactions. Cu homoeostasis

and trafficking occur through Cu-mediated protein-protein

interactions where Cu is bound to ligands from both proteins of

the complex. The free energy of formation of Cu-mediated

protein-protein complexes is the outcome of the balance of the

metal-donor(s) bond energies, of the hydrophobic and hydrophilic

interaction energies at the interface, and of the entropic

implications of these interactions. Additional factors to consider

are solvent effects, both at the metal site and the protein-protein

interface, the de-protonation of ligand side chains, and intra-

protein structural rearrangements. To avoid protein-protein

interactions in absence of metal, the contribution to the change

in free energy resulting from protein-protein interactions alone

must be positive. Thus, the determining energetic contribution

leading to formation of detectable amounts of complex in the

presence of metal results from the involvement of amino acid side

chains from both proteins in the coordination sphere of Cu. Here,

for the first time, the energetic (enthalpic and entropic) contribu-

tions for the two elementary steps resulting in Cu transfer from the

human chaperone Atox1 to the fourth metal-binding domain of

the Wilson disease protein, WD4, have been dissected.

We used SEC as a new approach to derive the equilibrium

constants for scheme 1. Because WD4 elution is atypical, it was

possible to separate the Atox1 peak (which using dual wavelengths

for detection can be resolved in apo and holo fractions) from those

of WD4 and the hetero-complex. With values on apo- and holo-

Atox1 concentrations, the concentrations of all other species could

be calculated and thereby K1 and K2 were defined. We note that

in this analysis, it is essential to have concentrations well above the

individual KD values for both Cu-Atox1 and Cu-WD4, as we

assume that added metal is bound stoichiometrically in a 1:1 ratio

(demonstrated in Figure S5). Cu affinities for Atox1 (and

homologs in other organisms), MKs and WDs are high; at pH 7

or higher, values of 1010 M–1 to 1018 M–1 have been reported

[29]. In our SEC experiments, the lowest levels of species present

are in the low mM range, thus still 10000-fold above 10–10 M.

Our K1*K2 = Kex value of ,10 is in good agreement with a

published Kex value for Atox1 and WD4 of ,5 extracted from

NMR [20]. Moreover, Kex values for Atox1 and MK2/MK5 are

5–10 [19]. The Kex factor in the yeast system (Atx1 to Ccc2) was

reported to be 1.4; i.e., the vectorial gradient is shallower [30]. A

K1 value of 105, i.e. similar to our result, was reported for Atox1-

Cu-MK1 although this value may truly be a combination of K1

and 1/K2 [16]. K2 values (which may truly be combinations with

1/K1) of 0.5*10–6 for CopZ-Cu-CopA interactions [31] and of 1–

19*10–6 for Atox1-Cu-MK interactions [32] in Biacore experi-

ments have been reported. Despite minor variations, it appears

that making and breaking the Cu-bridged hetero-complex is

achieved via affinities in the mM range.

Calorimetry analysis resolved enthalpic contributions of each

individual step in scheme 1. We found that hetero-complex

Figure 5. Computer simulations mimic ITC titration. A. Concentrations of the five species as a function of progress of the titration experiment
shown in Figure 4A using the K values that were derived from the SEC data. B. ITC experimental data (from Figure 4A) together with the best fit to
the data (see Supplement for details).
doi:10.1371/journal.pone.0036102.g005

Table 2. Thermodynamic parameters for steps 1 and 2, and
overall reaction.

Step 1 Step 2 Overall

DH (kJ/mol) –25.1 +14.0 –11.1

T*DS (kJ/mol) 5.0 –10.6 –5.6

DG (kJ/mol) –30.1 +24.6 –5.5

K 0.42*106 M–1 26.1*10–6 M 11

The parameters are based on scheme 1 and equilibrium constants from SEC
(Table 1) and ITC data, as described in the text.
doi:10.1371/journal.pone.0036102.t002

Thermodynamics of Copper Transfer
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formation involves negative enthalpy and positive entropy

changes. One may speculate that the negative enthalpy comes

from favorable (but weak) interactions at the protein-protein

surface that forms when Cu interactions bring the two proteins

close. Based on data for the Atox1-Ccc2 and Atox1-MK1

complexes, the protein-protein interface in the hetero-complex is

relatively small and involves amino acids not normally found at

interfaces [16]. A number of favorable electrostatic interactions

across the interface have been identified [16,30]. Increased

entropy upon hetero-complex formation may result from struc-

tural changes in the target domain. It was reported that when

Ccc2 and MK1 formed hetero-complexes with their respective

chaperones, helix 1 (which participates in the interface between

the proteins) in both Ccc2 and MK1 unwinded [16,30]. In accord,

we found WD4 to be particularly flexible and helix 1 unfolded and

refolded during our previous MD simulations of the individual

domain [33].

WD4 binds Cu with a ,5 kJ/mol lower free energy (higher

affinity) than Atox1. The increased affinity of WD4 for Cu over

Atox1 is due to a more negative enthalpy change of Cu binding in

WD4 that is counteracted only in part by a more negative entropy

change for Cu binding in WD4. These differences indicate that,

apart from the Cu-Cys interactions, there are additional changes

upon Cu binding in WD4 that are not found when Cu binds

Atox1. In agreement, our earlier computations have demonstrated

that since WD4 exhibits more structural dynamics in the apo form

as compared to apo-Atox1, Cu binding to WD4 results in more

changes in the protein interaction network and reduced structural

dynamics as compared to upon Cu binding to Atox1 [33,34].

In the Atox1-WD4 system, the Cu-bridged hetero-complex is

thermodynamically more stable than the isolated proteins

(reactants and substrates), which suggest a weakly trapped

intermediate. Formation of a long-lived intermediate in vivo may

be instrumental to determining rearrangements of inter-domain

interactions in the ATPase. Such rearrangements of domains

during the catalytic cycle appear important for the enzymatic

function and for determining the intracellular localization of the

ATPase [35,36]. It is also possible that in vivo, ATP hydrolysis may

speed up the reaction and change the thermodynamics of the Cu

transfer steps from chaperone to target.

Materials and Methods

Protein Production
For WD4, residues 356 to 429 in the UniProt entry P35670

(ATP7B_HUMAN) were cloned into a pET24d vector and

transformed it into Rosetta 2 cells (Novagen). The cells were

grown to OD600 of 2, induced with 1 mM IPTG and harvested

after 2.5 hours. The cells were lysed using sonication, the lysate

run over a HiTrap Q FF column (GE Healthcare) in 25 mM MES

buffer at pH 5.7. The WD4 fractions were concentrated and run

over a Sephadex S30 column in 40 mM TrisHCl, 50 mM NaCl at

pH 7.6. Atox1 was expressed from a pET21 vector transformed

into Rosetta 2 cells [37]. The cells were grown to OD600 of 2,

induced with 1 mM IPTG and harvested after 4 hours. The cells

were lysed using sonication, the lysate run over a HiTrap SP FF

column (GE Healthcare) in 25 mM MES buffer at pH 5.7. The

Atox1 fractions were concentrated and run over a Sephadex S30

in 40 mM TrisHCl, 50 mM NaCl pH 7.6. All purification steps

were performed in presence of 2 mM DTT; both proteins elute as

apo proteins. Protein purity was confirmed by single bands on

SDS-PAGE and mass spectrometry. Concentrations were deter-

mined using e280 of 1,500 and 2,980 M–1cm–1 (based on amino

acid sequence) for WD4 and Atox1, respectively. For holo-protein

experiments, both Atox1 and WD4 were loaded with stoichio-

metric amounts of Cu in presence of a 5-fold excess of DTT over

Cu to assure reduction of the Cu ion. Stoichiometric 1:1 binding of

Cu to Atox1 and to WD4 was confirmed by near-UV CD and

absorption titrations.

CD
Near-UV CD spectra were collected in a 10 mm quartz cell

between 250–380 nm at 20uC (J-810 spectropolarimeter, Jasco).

Protein concentration was 50 mM (thus, 50+50 mM in total when

the proteins were mixed) in 40 mM TrisHCl, 50 mM NaCl,

500 mM DTT at pH 7.6. Protein mixtures were incubated for 10

minutes at 20uC before analysis (no change in CD was found upon

longer incubation times).

SEC
SEC was performed with a Superdex 75 10/300 analytical

column (volume of 24 ml) on an ÄKTA purifier (GE Healthcare)

at 4uC. The column was pre-equilibrated with 40 mM TrisHCl,

50 mM NaCl, no DTT at pH 7.6. The protein samples were

prepared in the same buffer with the addition of 2mM DTT.

Sample was injected with a Hamilton SYN50018P syringe and a

100 ml injection loop. The elution profiles of protein samples were

monitored using dual-channel absorption detection at 254 nm and

280 nm. The identity of the proteins found in some elution

fractions was assessed by MALDI-MS using a Voyager STR-DE

instrument (AB Sciex) and sinapinic acid as matrix (Umeå Protein

Analysis Facility, Umeå University). A range of experiments were

performed (as described in detail in the text), such as mixture of

apo proteins, individual holo-proteins, reaction mixtures at salt

concentrations between 50 to 200 mM. Initial protein concentra-

tions ranged from 75 mM to 150 and 300 mM.

ITC
ITC experiments were performed with an ITC200 (MicroCal).

In a typical run, 35 automated injections of 1.11 ml with 200–300 s

breaks in between injections were made at 3uC and 500 rpm

stirring speed in low feedback mode. The cellular protein (apo-

WD4) concentrations were varied between 40 and 70 mM while

the protein concentration in the syringe (Cu-Atox1; and in control

experiments apo-Atox1) was 666 mM for all runs. The buffer was

40 mM TrisHCl, 50 mM NaCl and 2 mM DTT at pH 7.6. Five

similar experiments were performed with identical results (within

5%).

NMR
NMR samples were prepared by dilution of protein stock into a

D2O-based buffer (40 mM TrisHCl, 50 mM NaCl, 2 mM DTT

at pH 7.6). Diffusion coefficients were measured at 6.4oC using a

DRX600 NMR instrument (Bruker, Inc.) fitted with a triple-

resonance 5-mm probe with a z-axis gradient system. A PFG BP-

STE sequence from the Bruker library was used with a diffusion

delay of 200 ms, bipolar gradient pulses of 4 ms (262 ms) and

gradient amplitude varying linearly between 7.4 and 33.7 G/cm

in 14 steps. All initial data handling was performed in Bruker

Topspin 2.0. Linear baseline corrections and integrations of the

aliphatic region of interest were performed with scripts in Matlab

6.5 (The MathWorks Inc.). Non-linear least-squares fits with single

exponential functions to the integrated protein resonances were

executed with the Levenberg-Marquardt algorithm.

Data Analysis and Simulation
Details in Data S1.
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Supporting Information

Figure S1 Absorption of heterocomplex. Absorption spec-

tra of individual solutions of 50 mM apo- and holo-forms of WD4

and Atox1, together with the absorption spectrum for a mixture of

50 mM Cu-Atox1 and 50 mM apo-WD4. The absorption is higher

at 254 nm for the Cu- versus the apo-forms while the extinction

coefficient is unchanged at 280 nm. Using the determined K1 and

K2 values, the amount of each species in the mixture is calculated

and from this the contributions to the absorption spectrum of the

mixture from the individual proteins are subtracted. The

remaining absorption can be used to derive an extinction

coefficient for the hetero-complex at 280 of 9945 M–1cm–1.

(TIF)

Figure S2 Analysis of heterocomplex. A. Mass spectrom-

etry was used to analyze the content of SEC elution peaks. The

two peaks in the elution profile for a mixture of apo proteins are

confirmed to contain only WD4 and Atox1, respectively (black

trace, black mass values). When Cu-Atox1 is mixed with apo WD4

(red trace, red mass values) the first peak, which can be

decomposed into two underlying peaks, contains both WD4 and

Atox1, whereas the second large peak contains only Atox1. (It is

not possible to detect Cu forms and hetero-complexes directly via

mass spectrometry as these complexes fall apart during the

experiment.) For each of Atox1 and WD4 there are two masses

corresponding to each protein: one with and one without the first

Met residue (131 Da). The error in the detected masses is 62 Da.

B. The Atox1-Cu-WD4 hetero-complex was visualized on a

native gel. Different combinations of Atox1 (pI 6.7), WD4 (pI 4.0)

and Cu were analyzed on a pH 8.8 Tris-Tricine 3–20% native

gradient gel. Lane 1. Apo-WND4. Lane 2. Apo-Atox1. Lane 3. 1:1

mixture of apo-Atox1 and apo-WND4. Lane 4. 1:1:0.5 mixture of

apo-Atox1 and apo-WD4 and Cu. Lane 5. 1:1:1 mixture of apo-

Atox1 and apo-WD4 and Cu. The position of Atox1, WD4 and

the hetero-complex are indicated. As expected, since the complex

will have an average pI, the hetero-complex is found in between

the positions of the individual proteins. Individual samples of holo-

Atox1 and holo-WD4 are found at the same positions as the

corresponding apo proteins (data not shown). The smear in lane 5,

and the absence of a detectable amount of hetero-complex in lane

4, may be explained by the different forces acting on the two

proteins in the hetero-complex due to their different pIs causing

some complex dissociation when running on the gel.

(TIF)

Figure S3 SEC analysis as a function of concentration.
SEC of mixtures of 75 (top), 150 (center) and 300 (bottom) mM

Atox1 and equal amounts of WD4 in apo- or Cu-loaded forms as

indicated. For each starting concentration, one experiment with

only apo proteins and one experiment with a mixture Cu-Atox1

and apo-WD4 were analyzed. For the lowest protein concentra-

tion, an additional experiment with apo-Atox1 and Cu-WD4 (i.e.

opposite reaction) was also investigated (light blue, top panel).

(TIF)

Figure S4 CD spectra of heterocpomplex. Near-UV CD

spectra of 1:1 mixtures of Cu-Atox1 (50 mM) and WD4 (50 mM) at

three different NaCl concentrations (50, 100 and 400 mM). In

agreement with the reported SEC data, the amount of hetero-

complex (i.e., Atox1-Cu-WD4) detected (based on its CD

characteristics) is independent of the salt concentration. For

comparison the theoretical CD signal derived for no reaction (i.e.,

sum of Cu-Atox1 and apo-WD4 signals) and for 100% reaction

(i.e., sum of signals for apo-Atox1 and holo-WD4) are also shown.

(TIF)

Figure S5 Probing protein:Cu stoichiometries using
absorption. A number of mixtures of a fixed amount of Atox1

(or WD4) and various amounts of Cu between 0 and 1.5 times the

protein concentration were purified from unbound Cu individually

via SEC. The absorption of the resulting protein peak was

analyzed at 254 and 280 nm. Whereas the protein absorbs at

280 nm, bound Cu absorbs at 254 nm (see Figure S1). Below, the

254/280 nm absorption ratio is plotted as a function of mixing

ratio of Cu-to-protein (A. Atox1; B. WD4). For both proteins, the

absorption increases in essence linearly until a stoichiometry of 1:1

is reached. This confirms stoichiomteric 1:1 binding with a high

affinity. The use of SEC prior to analysis enables elimination of

DTT-Cu complexes that may be present in samples where the

protein is saturated with metal; these complexes also absorb at

254 nm, which complicates the analysis.

(TIF)

Table S1 Probing WD4 by NMR. Diffusion coefficients

estimated from NMR measurements for apo- and holo-WD4 at

low and high salt concentrations. The expected diffusion

coefficient, calculated from first principles using Hydropro7.C

(Biophys. J. 78, 719–730 (2000)) using the crystal structure of

Atox1 is 7.4*10–11 m2/s at the temperature of measurement

(6.4uC). Reported uncertainties are standard deviations from non-

linear fits to the data.

(DOCX)

Data S1 Data analysis and simulation details.
(DOCX)
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