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Weighted gene co-expression network analysis reveals that 
CXCL10, IRF7, MX1, RSAD2, and STAT1 are related to the chronic 
stage of spinal cord injury
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Background: The process of spinal cord injury involves acute, subacute, and chronic stages; however, the 
specific pathological mechanism remains unclear. In this study, weighted gene co-expression network analysis 
(WGCNA) was used to clarify specific modules and hub genes that associated with SCI. 
Methods: The gene expression profiles GEO Series (GSE)45006 and GEO Series (GSE)2599 were 
downloaded, and the co-expression network modules were identified by the WGCNA package. The protein-
protein interaction (PPI) network and Venn diagram were constructed to identify hub genes. Quantitative 
real-time polymerase chain reaction (QRT-PCR) was used to quantify the degree of the top five candidate 
genes. Correlation analysis was also carried out between hub genes and immune infiltration.
Results: In total, 14,402 genes and seven modules were identified. The brown module was considered to 
be the most critical module for the chronic stage of SCI, which contained 775 genes that were primarily 
associated with various biological processes, including extracellular structure organization, lysosome, 
isoprenoid biosynthesis, response to nutrients, response to wounding, sulfur compound metabolic process, 
cofactor metabolic process, and ossification. Furthermore, C-X-C motif chemokine ligand 10 (CXCL10), 
myxovirus (influenza virus) resistance 1 (MX1), signal transducer and activator of transcription 1 (STAT1), 
interferon regulatory factor 7 (IRF7) and radical S-adenosyl methionine domain containing 2 (RSAD2) 
were identified as the hub genes in the PPI and Venn diagram network, and verified by qRT-PCR. Immune 
infiltration analysis revealed that CD8+ T cells, macrophages, neutrophils, plasmacytoid dendritic cells, 
helper T cells, Th2 cells, and tumor-infiltrating lymphocytes may be involved in the SCI process.
Conclusions: There were significant differences among the five hub genes (CXCL10, IRF7, MX1, RSAD2, 
and STAT1) of the brown module, which may be potential diagnostic and prognostic markers of SCI, and 
immune cell infiltration may play an important role in the chronic stage of SCI.
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Introduction

In terms of self-healing ability, the central nervous system 
(CNS) is the most deficient system. As an important part 
of the CNS, spinal cord injury (SCI) is a common cause of 
disability. Severe injury to the spinal cord is accompanied 
by serious conduction obstacles of up and down pathways. 
With the development of transportation and the prevalence 
of extreme sports, the incidence of SCI continues to increase. 
According to the latest statistics, SCI affects more than 
27.04 million people worldwide (1). Physical injury leads to 
hemorrhage and swelling of the injured spinal cord, ischemia, 
anoxia, and necrosis of neurons and glial cells. With the 
development of spinal cord edema and inflammation, 
necrosis and apoptosis of neurons and glial cells spread to 
tissues outside the injury center. The formation of glial scars 
can stabilize the spread of secondary injury, but also prevents 
the regeneration of axons (2-6). Inflammatory reaction, 
edema, ischemia, hypoxia, excitotoxicity, free radical injury, 
lipid peroxidation, apoptosis, formation of glial scars, and 
other secondary injuries (7,8) seriously affect the plasticity 
and functional recovery of nerves.

At present, a large number of experimental studies have 
shown that genes are up-regulated or down regulated 
after SCI, including interleukin-10, tropomyosin 4, B-cell 
lymphoma-2 associated X protein, B-cell lymphoma-2, 
vascular endothelial growth factor, caspase-3, aquaporin 4, 
etc. (9,10). However, most of these studies mainly focused 
on the relationship between single gene or protein and the 
changes in inflammation, apoptosis, and edema after SCI.

With the popularization of high-throughput sequencing 
technology, such as gene chip and RNA sequencing, 
analysis via comprehensive mining of public databases by 
bioinformatics emerged. Weighted gene co-expression 
network analysis (WGCNA) is a method for analyzing 
gene expression patterns in multiple samples. Genes are 
clustered through similar gene expression patterns to form 
modules that are analyzed for their relationship to specific 
characteristics, such as clinical information about patients 
(11,12). These modules and their key genes can be used to 
identify candidate biomarkers or therapeutic targets (13). 
Therefore, WGCNA is expected to be a powerful tool to 
reveal the possible pathological mechanism of SCI from the 
perspective of gene regulation.

In this study, we first time used the WCGA to mine 
the gene expression data that downloaded from Gene 
Expression Omnibus (GEO) database of the National 
Center for Biotechnology Information (NCBI). The 
weighted gene co-expression network (WGCN) system 

of SCI was explored to identify relevant modules and key 
regulatory genes. At the same time, biological methods 
were used for functional annotation and functional analysis 
of gene modules and key genes. We present the following 
article in accordance with the STREGA reporting checklist 
(available at https://dx.doi.org/10.21037/atm-21-3586).

Methods

Microarray data sources and processing

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

The aneurysm clip compression model of animal SCI 
mimics the main mechanism of human SCI, namely, acute 
shock and continuous compression. Also, its histopathology 
and behavioral results are very similar to human SCI. 
To understand the unique molecular events behind this 
injury model, we used the microarray gene chip method 
to analysis the overall genetic expression in the acute, 
subacute, and chronic phases of the spinal cord of moderate 
to severe injury rats. The series matrix file GSE45006 was 
downloaded from the NCBI GEO public database. There 
were 24 groups of transcriptional group data, including 
sham operation control groups (n=4), 1 day after SCI (n=4), 
3 days after SCI (n=4), 1 week after SCI (n=4), 2 weeks 
after SCI (n=4), and 8 weeks after SCI (n=4) groups for the 
WGCNA co-expression network construction. The series 
matrix file data GSE2599 were also downloaded from the 
NCBI GEO public database. There were six transcriptional 
groups data, including 35 days after SCI groups (n=3) 
and uninjured control groups (n=3), which were used for 
subsequent model validation.

WGCNA

The R package ‘WGCNA’  was used to build the co-
expression network of all genes in the GSE45006 data set. The 
top 5,000 genes were identified by this algorithm for further 
studies. The weighted adjacency matrix was transformed into 
the topological overlap matrix (TOM) to examine the network 
interaction, and used the hierarchical clustering method to 
create a cluster tree structure of the TOM matrix.

Functional enrichment analysis of gene modules

In order to obtain the biological functions and signal 
pathways involved in the WGCNA interest module, we 
used the Metascape database (www.metascape.org) to 
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annotate and visualize genes in the specific module. The 
Gene Ontology (GO) analysis and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) pathway analysis were 
carried out. The minimum overlap was ≥3, and P≤0.01 was 
considered statistically significant.

Identification of key genes in functional modules

All of the interest module genes were extracted, and a 
protein-protein interaction (PPI) network was constructed 
using the PPI networks functional enrichment analysis 
database (version 11.0, https://string-db.org), which was 
pictured using Cytoscape software v3.7.2 (http://www.
cytoscape.org/). The degree of each gene was calculated, 
and the top five degree overlapping genes between 
GSE45006 and GSE2599 were selected as the hub genes. 
The classical t-test was conducted to compare and identify 
some differences between the hub gene expressions of 
these two groups of GSE45006, with a P<0.05 indicating 
statistical significance. Moreover, we used the ggplot2 
package of R  (http://www.bioconductor.org) to draw the 
bar plots of hub gene expression.

SCI

A total of 30 adult female Wistar rats weighing 250±25 g 
(10-week-old) were purchased from Gempharmatech Co. 
Ltd and were housed in a humidity- and temperature-

controlled environment. Experiments were performed 
under a project license (IRM-DWLL-2019039) granted 
by  the Ethics Committee of the Institute of Radiation 
Medicine, Chinese Academy of Medical Science & Peking 
Union Medical College (CAMS & PUMC), in compliance 
with National Institutes of Health in the Guide for the Care 
and Use of Laboratory Animals. The contusion SCI model 
was established using a New York University Impactor 
device (NYU, New York, USA) as previously described. 

Quantitative real-time polymerase chain reaction  
(qRT-PCR) verification

Briefly, Total RNA was isolated from the rats using 
TRIZOL reagent (Invitrogen Corp, Carlsbad, CA), and was 
polyadenylated and reverse-transcribed with a poly(T) adapter  
into cDNA according to the manufacturer’s instructions. Real-
time PCR was performed using SYBR green (Takara) dye  in 
a thermal cycler  with the following parameters: an initial 
denaturation step at 95 ℃ for 30 min; 40 cycles at 95 ℃ for  
5 seconds; and 60 ℃ for 30 seconds. The complete 
experimental process was performed for each sample in 
triplicate. The mRNA- specific primers are in Table 1.

Correlation analysis between hub genes and immune 
infiltration

To analyze correlation of hub genes and infiltrating immune 

Table 1 mRNA-specific primers of hub genes

Gene Primer Sequence (5'-3') PCR products

b-actin Forward  CACGATGGAGGGGCCGGACTCATC 240 bp

Reverse  TAAAGACCTCTATGCCAACACAGT

Rat MX1 Forward AGTATGAGGAGAAGGTGCGG 222 bp

Reverse CTCCCTGCTTCAGTTGCTTC

Rat IRF7 Forward CTGCTTTCTGGTGATGCTGG 161 bp

Reverse GTAGCTTCCATCTGCCATGC

Rat RSAD2 Forward ATGTTCTCATTGGTCGTGGC 182 bp

Reverse GAAAACCTTCCAGCGGACAG

Rat STAT1 Forward AGAGCGACCAGAAACAGGAA 171 bp

Reverse CACTCTGCTGTCTTCGCTTC

Rat CXCl10 Forward CAAGTGCTGCTGTCGTTCTC 177 bp

Reverse TCTCAACATGCGGACAGGAT

https://string-db.org
http://www.cytoscape.org/
http://www.cytoscape.org/
http://www.bioconductor.org
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cells, the “ggstatsplot” package (https://github.com/
IndrajeetPatil/ggstatsplot) was used and visualize the results.

Flow cytometric analysis 

The Central epicenters of injured spinal cord were 
separated and placed in Hank’s Balanced Salt Solution 
(GIBCO, NY). The tissue samples were filtered by 70 μm 
filter and the cell concentration was adjusted to 2×106/mL. 
Cells were immobilized with paraformalin (4%, W/V) in 
PBS, permeated with 0.1% saponin at room temperature, 
and finally supplemented with CD4, CD19 antibodies in 
the dark, and evaluated by flow cytometry (BD Biosciences, 
SAN Jose, CA, USA).

Statistical analysis

All data were shown as mean ± standard error of the mean 
(SEM). GraphPad Prism 6.0 (GraphPad Software, Inc., La 
Jolla, CA, USA) was used for statistical analysis and image 
construction. Comparisons among multiple groups were 
performed with a one-way analysis of variance (ANOVA) 
followed by a Bonferroni correction. Significant differences 
in behavioural results were analyzed with a repeated-
measures 2-way ANOVA and Tukey’s post hoc test. A P value 
<0.05 was considered statistically significant.

Results

Data processing

After normalization, the median lines of the box plot of 
GSE45006 datasets were at the same level. Successful 
normalization is shown in Figure 1. All filtered 14,402 
probes were used for WGCNA.

Screening gene modules 

The expression matrix of the first 5,000 differentially 
expressed genes was extracted, which was used as input 
data for network construction. The weighting coefficient 
β was selected according to the scale-free network rule. 
According to the rules of the scale-free network, the 
larger the correlation coefficient, the more significant the 
scale-free characteristic of the network. Therefore, the 
correlation coefficient between the log (k) of the number 
of connected nodes k and the log (p[k]) of the probability 
of occurrence of the node was calculated under different 
β conditions. When the correlation coefficient was 0.55, 
β=18 was selected as the standard for module identification  
(Figure 2A). At the same time, the mean connectivity was 1, 
which indicated that the gene modules were built according 
to the closely approximate scale-free topology standard 
(Figure 2B).

Figure 1 The box plots of gene expression in sham and spinal cord injury specimens. The x axis is the sample and the y axis is the gene 
expression level. The black line in the middle is the median of the expressed values.
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WGCNA analysis 

After the weighting coefficient β was determined, the 
expression matrix of differential genes was transformed into 
an adjacency matrix, topological matrix, and dissimilarity 
matrix between genes. Based on the TOM, gene clustering 
was conducted via the hierarchical clustering method, 
and identifying modules of the system cluster tree was 
conducted via the dynamic cutting algorithm. Seven 
different co-expression modules were obtained and 
represented in different colors when the criteria of the 

correlation coefficient square of eigengene was >0.9, the 
soft threshold power was 18, the number of genes was above 
100, and the cut height was equal to 0.95 (Figure 3). These 
modules were classified from smallest to the largest number 
of gene involved. The result is displayed in Table 2. 

Gene co-expression modules corresponded to clinic traits

We plotted the interactions among the identified modules, 
and the heat map described the TOM of all included 
genes in the analysis (Figure 4). The light color indicated 

Figure 2 The topology network analysis under various soft threshold power. (A) The scale-free fitting index as a function of soft threshold 
power. (B) The connectivity as a function of soft threshold power.
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low overlap, and a darker red color indicated increased 
overlap. The results revealed that gene expression was 
relatively independent among the modules. We associated 
the modules with clinical features and looked for the 
most significant associations. The results showed that the 

relationship between the brown module and the chronic 
stage of SCI was the most significant (r=−0.79, P=5E-06,  
Figure 5). In this study, the hub genes that referred to the 
brown module were considered to be the genes most related 
to the chronic stage of SCI. The correlation analysis of 
module membership and gene significance showed that 
the selected module genes had a good correlation with the 
brown module (cor=0.6, P=5.8E-77, Figure 6). 

Functional enrichment analysis

A GO and KEGG bioinformatics analysis of genes in the 
brown module was conducted (Figure 7), and the results 
exhibited that, in terms of the cellular components, these 
genes were primarily expressed in cholesterol biosynthesis. 
As for biological processes, these genes were mainly 
expressed in extracellular structure organization, lysosome, 
isoprenoid biosynthesis, response to nutrients, response to 
wounding, sulfur compound metabolic process, cofactor 

Table 2 The number of genes in the 7 modules

Module colors Number

Blue 1,285

Brown 775

Green 84

Grey 248

Red 52

Turquoise 2,003

Yellow 553

Figure 4 The heatmap plot of gene networks.

Network heatmap plot, selected genes
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metabolic process, and ossification. Finally, the molecular 
function results indicated that the genes were mainly 
enriched in negative regulation of cell proliferation, as well 
as the regulation of cartilage development, regulation of 
steroid metabolic process, regulation of response to external 
stimuli, regulation of response to wound, urogenital 
system development, regulation of hemopoiesis, positive 
regulation of cell-substrate adhesion, membranous septum 
morphogenesis, positive regulation of lipid transport, and 
positive erythrocyte differentiation.

KEGG pathway enrichment analysis of key genes 
showed that signaling pathways regulating the pluripotency 

of stem cells and glycosphingolipid biosynthesis, as well as 
the mitogen-activated protein kinase (MAPK), Toll-like 
receptor (TLR), and calcium signaling pathways were the 
most over-represented pathways.

PPI analysis of genes in interested modules

In order to study the interaction among these first 400 
genes in the important brown module, a PPI network 
was constructed. The PPI network was composed of 367 
interactions and 102 genes, and the hub genes in the brown 
module were bold with yellow (Figure 8).

Figure 5 Module-trait associations. Each row corresponds to a module trait gene, and each column corresponds to a trait.
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Identification of hub genes

The GSE 2599 series matrix file data was downloaded 
from the GEO public database, and 1,394 differentially 
expressed genes were identified. These different genes 
were intersected with the hub genes of the brown module 
of GSE45006. Finally, 153 key candidate genes related 
to the chronic stage of SCI were confirmed in the Venn 
diagram (Figure 9). The overlapping genes were defined 
as key genes. The top five degrees intersected genes in 
the Vsenn diagram including C-X-C motif chemokine 
ligand 10 (CXCL10), interferon regulatory factor 7 (IRF7), 
myxovirus (influenza virus) resistance 1 (MX1), radical 
S-adenosyl methionine domain containing 2 (RSAD2), and 
signal transducer and activator of transcription 1 (STAT1), 

were displayed in Figure 10. In addition, to validate the 
bioinformatic chip analysis results, qRT-PCR was used to 
quantify the top five degree intersected genes (Figure 11), 
including CXCL10, IRF7, MX1, RSAD2, and STAT1 
detected by qRT-PCR were significantly correlated with 
the corresponding gene alteration of the microarray data, 
and the mRNA expression levels of CXCL10, IRF7, MX1, 
RSAD2, and STAT1 were up-regulated in the chronic phases 
of the SCI groups compared with those in the normal spinal 
cord groups (P<0.05).

Correlation analysis between hub genes and immune 
infiltration

Immune infiltration analysis found that cluster of 

Figure 8 The PPI network of the brown module. The circles represent the hub genes in the modules, and the lines show the interaction 
between the hub genes. The different colors represent the different clustering genes. The thicker line represents higher connection 
strengths. PPI, protein-protein interaction.
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Figure 9 Venn diagram analysis of hub genes between GSE2599 and GSE45006.
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Figure 10 The expression levels of five key candidate genes based on PPI network data. The mRNA expression patterns of CXCl10, IRF7, 
MX1, RSAD2, and STAT1 genes based on the PPI count data. PPI, protein-protein interaction.

differentiation (CD)8+ T cells, macrophages, neutrophils, 
plasmacytoid dendritic cells (pDCs), helper T cells, T 
helper (Th)2 cells, and tumor-infiltrating lymphocyte (TILs) 
may be involved in the SCI process. Correlation analysis 
showed the following: (I) CXCL10 was positively correlated 
with the promotion of inflammation (cor=0.953913043, 
P=1.78E-06, Figure 12A); (II) interfern regulation factor 

(IRF)7 was positively correlated with type I (interfern 
regulation factor) IFN  response (cor=0.968695652, 
P=1.43E-06, Figure 12B);  (III) MX Dynamin Like 
GTPase 1 (MX1) was positively correlated with pDCs 
(cor=0.931304348, P=2.29E-06, Figure 12C); (IV) RSAD2 
was positively correlated with type I IFN response 
(cor=0.972173913, P=1.34E-06, Figure 12D); and (V) 
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Figure 11 qRT-PCR validation. qRT-PCR verification of five candidate genes in three pairs of the chronic phases of SCI samples of rats 
and normal spinal cord samples of rats. Expression of spinal cord injury vs. normal samples was analyzed using qRT-PCR, and summarized 
as mean average ± SE with P<0.05. qRT-PCR, quantitative real-time polymerase chain reaction; SCI, spinal cord injury; SE, standard error.

STAT1 was positively correlated with the promotion of 
inflammation (cor=0.951304348, P=1.85E-06, Figure 12E).

Infiltration immune cells in animal model of SCI 

The number of infiltration immune cells were detected by 
flow cytometric analysis. As the results shown in Figure 13,  
the CD4+ T cells and CD19+ B cells were all increased 
significantly in SCI rats.

Discussion

After SCI, primary and secondary injuries lead to sensory 
and motor dysfunction, which seriously affects the quality 
of life of families. Therefore, studying and treating SCI 
is crucial (14,15). In this study, seven co-expression 
modules were constructed using 5,000 genes from 24 sham 
operation control and SCI rat samples by WGCNA to 
test the relationship between the clinical traits of SCI and 
transcriptome data. Compared to other bioinformatics 
methods, WGCNA has many obvious advantages, since 
the analysis focuses on the relationship between clinical 

traits and co-expression modules, and thus the results are 
more complete, and have a higher reliability and biological 
significance (16,17). Genes in the same module are 
considered to be interrelated in function. Therefore, this 
analysis can identify biologically relevant modules and hub 
genes that could eventually be used as biomarkers for the 
detection or treatment of SCI.

In particular, in the chronic repair period after spinal 
cord injury, glial scars formed by cells such as astrocytes in 
the damaged area secretes a series of inhibitory proteins and 
cytokines , such as the Chondroitin Sulfate Proteoglycan 
(NG) 2 glycoprotein, to inhibit axon regeneration (18,19). 
Moreover, microglia in the damaged area remain active 
for weeks or even months, resulting in local chronic 
inflammation (20). Thus, the treatment of chronic SCI 
is more difficult. Our WGCNA analysis showed that the 
brown module was considered the module most related 
to the chronic stage of SCI (8 weeks). The results of 
GO enrichment analysis showed that the interaction 
between different modules varied, which was related to 
their distinct regulatory functions. Therefore, the brown 
module was found to be mainly related to the negative 
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Figure 12 Correlation analysis between hub genes and infiltrating immune cells. CXCL10 (A), IRF7 (B), MX1 (C), RSAD2 (D), STAT1 (E) 
and infiltrating cells.
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Figure 13 The number of lymphocytes in the center of spinal cord injury of Rats. CD4+ cells (A), CD19+ cells (B). ***P<0.001. SCI, spinal 
cord injury.
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regulation of cell proliferation, as well as regulation of 
the response to wound and external stimuli, which were 
important molecular functions during SCI. Signaling 
pathways regulating the pluripotency of stem cells and 
glycosphingolipid biosynthesis, as well as the MAPK, 
TLR, and calcium signaling pathways were the most 
over-represented pathways related to the hub genes. 
The MAPK signaling pathway, as one of the important 
pathways regulating cell proliferation and apoptosis, can 
be activated by inflammatory cytokines and oxidative stress 
products released by SCI damage area, and participate in 
the proliferation and apoptosis of damaged local cells (21).  
Previous studies have shown that the p38 MAPK signaling 
pathway may participate in the regulation and conduction 
of apoptosis- and inflammatory response-related signals, 
which might be involved in the formation of local 
superoxide after SCI, thereby further aggravating SCI. 
However, it had also been demonstrated that maintaining 
p38 MAPK activity after SCI was beneficial to the recovery 
of neural function (22-24). It can be seen that the function 
of this kind of signaling pathway is complex, and the 
related signaling pathway network requires further study. 
Our results showed that the TLR signaling pathway had 
four associated genes, including our hub genes CXCL10, 
IRF7, and STAT1. TLRs can detect tissue damage (such 
as SCI) and induce an aseptic inflammatory response in 
neurons and glial subtypes (including microglia, astrocytes, 
and oligodendrocytes) in the CNS via the binding of 
endogenous ligands released by stress or damaged cells. In 
rats with persistent compressive SCI, the gene expression 
profile showed that TLR expression increased through the 
chronic phase of SCI (25); in particular, TLR2 and TLR4 
play some neuroprotective roles in SCI (26). Furthermore, 

Wan et al. showed that miR-129-5p could inhibit apoptosis 
and the inflammatory response via the TLR4 pathway and 
reduce SCI in mice (27). Church et al. also reported new 
roles for TLR4 in repairing endogenous SCI, and showed 
that TLR supported the preservation of oligodendrocyte 
cell lines, long-term replacement of oligodendrocyte and 
oligodendrocyte progenitor cells, and chronic functional 
recovery of SCI (28).

One co-expression module was constructed, and the 
hub genes CXCL10, IRF7, MX1, RSAD2, and STAT1 
related to the chronic stage of SCI were identified. Part 
of the inflammatory response is caused by the rapid influx 
of immune cells, including inflammatory monocytes and 
neutrophils, through the ruptured blood-spinal barrier. 
These cells infiltrate the site of injury within hours and 
secrete pro-inflammatory cytokines, reactive oxygen 
species, and nitric oxide, all of which may cause additional 
neuron cell death, axonal demyelination, and functional 
deficits following spinal cord injury (29,30). Neutrophils 
are the first peripheral immune cells to be recruited to 
SCI lesion sites (31), and macrophages play a beneficial 
role in creating a supportive environment for regrowing 
axons by phagocytosing myelin and axonal debris after 
SCI (32). However, the mechanisms by which these cells 
are modulated in the injured spinal cord remain unclear. 
To further explain the role of immune cell infiltration and 
hub genes in the chronic spinal cord injury, we conducted 
a comprehensive correlation analysis between hub genes 
and immune infiltration. Immune infiltration analysis 
found that CD8+ T cells, macrophages, neutrophils, pDCs, 
helper T cells, Th2 cells, and TILs may be involved in the 
chronic phase of the SCI process. Additionally, MX1 was 
significantly associated with pDCs. 
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CXCL10, namely interferon γ-inducible protein 10, 
belongs to the non-Glu-Leu-Arg (ELR) category of the 
CXC chemokine superfamily. Current research indicates 
that CXCL10 is involved in the immune regulation 
of various diseases. It mainly mediates the Thl-type 
inflammatory response, as well as the chemotaxis of 
monocytes and T cells, which can strengthen the process 
of Thl response and destroy the process of Th2 response. 
CXCL10 chemotactically accumulates leukocytes to the site 
of inflammation, and also plays an important role in tumor 
growth, angiogenesis, and organ sclerosis (33). Mordillo-
Mateos et al. reported that there is a link between changes 
in circulating chemokine profiles during subacute traumatic 
SCI and pain development, as well as the severity of more 
chronic stages. In the early stage of the subacute phase, 
the levels of CXCL10 and C-C Motif Chemokine Ligand 
2 (CCL2) in patients with pain were higher than those in 
patients without pain, and CXCL10 exhibits a downward 
trend over time (34). Gonzalez et al. demonstrated that 
CXCL10 aggravates secondary degeneration by blocking 
the function of CXCL10 before SCI, which suggests that 
an anti-CXCL10 antibody is a feasible treatment strategy 
for SCI (35). In addition, anti-CXCL10 antibody therapy 
provided an environment to reduce apoptosis and increase 
axonal sprouting following adult SCI (36). 

IRF7 is a part of the interferon regulatory transcription 
factor family. IRFs participate in the regulation of various 
biological functions, such as the immune response, 
inflammation, and apoptosis response (37). Cohen  
et al. found that the ability of pro-inflammatory to anti-
inflammatory (M1-to-M2) phenotype transformation 
of macrophages is controlled by IRF7, which is down-
regulated by the Transforming Growth Factor Beta 1 
(TGFB1) pathway. In vivo induction of the expression of 
IRF7 in microglia can reduce its pro-inflammatory activity 
after SCI (37).

STAT1 is the first member of the STAT family to 
be discovered. It is a conserved C-terminal activation 
region that is activated by tyrosine kinase and mitogen-
activated protein kinase. Amino acid and serine residues are 
phosphorylated to form a dimer and translocate into the 
nucleus to regulate target genes. It primarily plays a role in 
promoting apoptosis, inhibiting cell proliferation, negatively 
dividing the cell cycle, inhibiting tumor angiogenesis, 
attenuating tumor migration and invasion ability, etc. (38). 
Osuka et al. showed that neuronal death after cerebral 
ischemia is related to STAT1, and STAT3 was found to 
regulate cell survival, which suggests that regulating the 

functional balance of STAT1 and STAT3 may determine 
the survival situation of neurons after SCI (38). Wu  
et al.’s results indicated that selective STAT1 inhibition can 
reduce the injury of nerve tissue and locomotor dysfunction 
by regulating the inflammatory response and possible  
apoptosis (39). Wu et al. also believed that STAT1 inhibitors 
reduced SCI by reducing apoptosis (40).

In conclusion, the brown module was considered to be 
the most critical module for the chronic stage of SCI. There 
were significant differences among the five hub genes, 
including CXCL10, IRF7, MX1, RSAD2, and STAT1, of 
the brown module, which may be potential diagnostic and 
prognostic markers of SCI. Immune cell infiltration may 
also play an important role in the chronic stage of SCI.
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