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Summary

We studied the interactive effects of dissolved
organic matter (DOM) and solar radiation on the acti-
vity and community structure of bacteria from an
alpine lake. Activity was assessed both at the com-
munity level as leucine incorporation rates and at the
single-cell level by microautoradiography. Fluores-
cent in situ hybridization and signal amplification
by catalysed reporter deposition (CARD-FISH) was
used to track changes in the bacterial community
composition. Bacteria-free filtrates of different DOM
sources (lake, algae or soil) were incubated either in
the dark or exposed to solar radiation. Afterwards, the
natural bacterial assemblage was inoculated and the
cultures incubated in the dark for 24–48 h. Bacterial
activity was enhanced in the first 24 h in the soil and
algal DOM amendments kept in the dark. After 48 h,
the enhancement effect was greatly reduced. The
initial bacterial community was dominated by Beta-
proteobacteria followed by Actinobacteria. The rela-
tive abundance (expressed as a percentage of DAPI-
stained cells) of Betaproteobacteria increased first
in dark incubated DOM amendments, but after 48 h
no significant differences were detected among
treatments. In contrast, the relative abundance of
Actinobacteria increased in pre-irradiated DOM
treatments. Although Betaproteobacteria dominated
at the end of the experiment, the relative abundance
of their R-BT subgroup differed among treatments.
Changes in bacterial community activity were signifi-
cantly correlated with those of the relative abundance
and activity of Betaproteobacteria, whereas the con-

tribution of Actinobacteria to the bulk activity was
very modest. Our results indicate a negative effect of
DOM photoalteration on the bulk bacterial activity.
The magnitude of this effect was time-dependent and
related to rapid changes in the bacterial assemblage
composition.

Introduction

There is substantial evidence that dissolved organic
matter (DOM) exhibits photoreactive properties particu-
larly, when exposed to radiation in the UV-B (280–
320 nm) and UV-A (320–400 nm) range. Photoproducts
derived from DOM upon sunlight exposure can both
enhance (Reitner et al., 1997; De Lange et al., 2003) and
inhibit bacterioplankton activity (Tranvik and Kokalj, 1998;
Pausz and Herndl, 1999), depending on the age and
source of the DOM (Benner and Biddanda, 1998; Ober-
nosterer et al., 1999; Tranvik and Bertilsson, 2001).

In aquatic ecosystems, the DOM fuelling bacterial
metabolism can be classified according to its origin as
autochthonous or allochthonous. Autochthonous DOM is
by definition produced within the system and derives
largely from primary producers, whereas allochthonous
DOM originates externally mainly in the surrounding ter-
restrial ecosystem. These two DOM types differ in their
chemical and optical characteristics (McKnight et al.,
1994; 2001; Benner, 2002), upon which depend their fate
when exposed to solar radiation. Although recent studies
have shown that the DOM quality influences the compo-
sition and possibly the functioning of the bacterial assem-
blage (Judd et al., 2006; Kritzberg et al., 2006; Pérez and
Sommaruga, 2006), there is no information available on
how photochemically altered DOM affects the structure of
the bacterial community and the activity of particular bac-
terial groups.

Typically, Betaproteobacteria numerically dominate the
heterotrophic bacterial assemblage in freshwater ecosys-
tems, followed by Actinobacteria (Glöckner et al., 2000;
Burkert et al., 2003; Hahn et al., 2003), which are particu-
larly abundant in alpine lakes at high altitude (Warnecke
et al., 2005). The Cytophaga-like bacteria are numerically
important in both freshwater and marine bacterial commu-
nities (Kirchman, 2002). Among the marine bacterial
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assemblage it has been shown that different phylogenetic
groups differ in their ability to utilize specific dissolved
organic compounds (Cottrell and Kirchman, 2000; Elifantz
et al., 2005; Malmstrom et al., 2005). Although no similar
study has been performed in freshwater ecosystems,
these results suggest that changes in the DOM composi-
tion (i.e. related to its origin or due to photochemical
transformation) might affect the bacterial community
structure and/or activity.

Alpine lakes (i.e. located above the treeline) are relevant
ecosystems to study DOM and solar radiation interactions
because they receive higher instantaneous solar UV fluxes
than lowland ones due to the increase of UV radiation with
altitude and are highly transparent to this radiation (Laurion
et al., 2000; Sommaruga and Augustin, 2006).

The pronounced air warming in the Alps (Beniston,
2000) might lead to shorter ice-cover periods at times of
intense solar radiation, but might as well trigger a change
in the quality of substrates fuelling the microbial compart-
ment of the lake by enhancing the development of ve-
getation and soils in the catchment (Hauer et al., 1997).

In this study, we present results from two experiments
conducted to test the combined effects of DOM and solar
radiation on the composition and activity of the bacterial
assemblage from the alpine lake Gossenköllesee (GKS).
For this test, we used DOM derived from three different
sources: the lake (control), an algal lysate and a soil
extract (from GKS catchment), as respective autochtho-
nous and allochthonous DOM surrogates. Because the
simulation of the natural solar spectrum is challenging, the
different DOM sources were either exposed to natural
(first experiment) or simulated solar radiation (second
experiment) to compare the response of the DOM to both
radiation sources. Furthermore, in the first experiment we
assessed changes in bulk bacterial activity, whereas in
the second one, we additionally followed changes in the
structure of the bacterial community and in the activity of
specific bacterial groups.

Results

DOM characteristics

The elemental composition of the DOM used as a control
(i.e. lake water) as well as that of the algal and soil
amendments is summarized in Table 1. This table includes
data from the second experiment, but it is representative of
the first experiment as well, as the same algal and soil
extracts were used in both experiments and the lake DOM,
used as control, did not exhibit any substantial change
between both experiments. The DOC concentration in
both DOM amendments was ~2.5-fold that of the control
treatment. The different DOM sources were relatively
similar in their C : N molar ratio, although the lowest ratio

corresponded to the algal-derived DOM. The C : P ratio in
the algal treatment was between 4.8 and 3.4 times lower
than the one of the control and the soil amended treat-
ment. In both experiments, the a250 : a365 ratio increased in
all treatments upon irradiation (Table 2), indicating an
increase of the relative proportion of low molecular size
material. The absorption coefficient at 254 nm (a254)
increased upon irradiation in all treatments, whereas the
absorption coefficient at 320 nm (a320) did only increase in
the pre-irradiated control DOM from experiment 2. The
DOC-specific absorption coefficients at 254 nm (a*254)
ranged from 0.010 to 0.014 l mmol DOC-1 m-1 in dark
samples, except for the dark control (0.022 l mmol
DOC-1 m-1) from experiment 1. Upon irradiation, the a*254

increased by 1.5- to 2.5-fold depending on the DOM type
and experiment considered (data not shown).

Bacterial abundance

Bacterial abundance in the initial samples ranged from
2.58 to 3.61 ¥ 104 cells ml-1 depending on the experiment
considered (Fig. 1, top). After 24 h, bacterial abundance
slightly increased in all dark samples, whereas it did not
change or slightly decreased in the pre-irradiated ones. In
the second experiment after 48 h, bacterial numbers in
the algal- and soil-DOM amendments kept in the dark
increased approximately fourfold, whereas they remained
close to their initial value in the pre-irradiated treatments.

Leucine incorporation and bacteria active

Within 24 h, no significant differences in bacterial activity
(expressed as either bulk leucine incorporation or active
bacteria estimated by microautoradiography) were
detected between the dark and pre-irradiated control in
both experiments (Fig. 1). Leucine incorporation was only
significantly enhanced in the pre-irradiated control at 48 h
in the second experiment. During the initial 24 h, leucine
incorporation and the percentage of active bacteria were
significantly enhanced in the dark samples of both DOM
amendments (soil and algal) as compared with the control

Table 1. Elemental composition and molar ratios of the DOM in the
original lake water (control), and in the algal- and soil-derived DOM
immediately after their addition.

Treatment
TDP
(mM)

DON
(mM)

DOC
(mM)

C : N
(molar)

C : P
(molar)

Control 0.05 6.15 57.4 9.35 1188
Algal 0.61 21.1 152.5 7.23 249
Soil 0.17 11.0 143.3 13.0 843

TDP, total dissolved phosphorus; DON, dissolved organic nitrogen.
Please note that the C : P ratio is based on TDP concentrations that
include a not determined fraction of inorganic phosphorus. Nutrient
analyses were performed as described by Psenner (1989).
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and their respective pre-irradiated counterparts. In the
second experiment, the enhancement factor for both
leucine incorporation and the amount of active bacteria
was greatly reduced at 48 h.

Community structure and activity of specific bacterial
groups

Between 82% and 96% of the DAPI-stained cells were
detected with probe EUB338 throughout the experiment.
The filtration used to set up the experiment did not affect
the relative abundance of Betaproteobacteria and Actino-
bacteria, but reduced the amount of filaments belonging
to the Cytophaga-like bacteria, which were anyway
present in very low proportion (1–2% of DAPI-stained
cells). The bacterial community structure at the beginning
of the experiment was dominated by Betaproteobacteria
(~50% of DAPI-stained cells), followed by Actinobacteria
(~27% of DAPI counts). The R-BT subgroup of Betapro-
teobacteria represented ~20% of DAPI counts. Results
with the probe CF319a targeting the Cytophaga-like bac-
teria were not included because it detected < 1% of DAPI-
stained cells and thus, the relative abundance of this
group could not be estimated accurately.

The relative abundance of Betaproteobacteria de-
creased in both control samples after 24 h (Fig. 2, top),
whereas it remained high or even increased in both DOM
amendments regardless of the exposure conditions.
However, within a DOM amendment, Betaproteobacteria
relative abundance was significantly higher in the
samples kept in the dark as compared with the pre-
irradiated ones. After 48 h, no significant differences in the
relative abundance of this group neither due to the DOM
type nor to the exposure conditions were detected.

Immediately after inoculation (0.5 h), the proportion of
active Betaproteobacteria in the control was low (Fig. 2,
top). A significant effect of the DOM exposure conditions
on Betaproteobacteria activity was observed, and higher
relative abundances were found in both DOM amend-
ments kept in the dark as compared with the pre-
irradiated ones. This pattern was still observed at 24 h
and was particularly pronounced in the soil DOM
amendment. At 48 h, the relative abundance of active
Betaproteobacteria was high in all treatments and in the
pre-irradiated control significantly higher as in its dark
counterpart.

The relative abundance of the R-BT subgroup of Beta-
proteobacteria (Fig. 2, middle) did slightly decrease after
24 h in the dark and pre-irradiated control, whereas it
increased in the treatments amended with either the algal-
or soil-derived DOM. No significant differences in the rela-
tive abundance of this subgroup were found between the
dark and pre-irradiated samples, regardless of the DOM
type. However, there was a significant effect of the DOMTa
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Fig. 1. Temporal changes in bacterial abundance (top), bulk leucine incorporation (middle) and active bacteria (bottom) during the experiment
with natural (left) and simulated solar radiation (right). Activity parameters are expressed as enhancement factor (EF = leucine incorporation
rates or percentage of active cells in a given treatment versus leucine incorporation rates or percentage of active cells in the dark control).
The first letter in the legend code corresponds to the DOM type: C is control, A is algal-derived DOM and S is soil-derived DOM, whereas the
last two letters refer to the exposure conditions, either dark (DK) or pre-irradiated (IR). The number and letter code above the bars
summarizes the results of the post hoc all pairwise multiple comparison test used to detect significant differences among DOM types and
exposure conditions. The number indicates a significant (1) or non-significant (0) difference between exposure conditions for a given DOM
type, whereas a different letter indicates a significant difference among DOM types at a given exposure condition. Comparisons were
performed by the Holm–Sidak method with an overall significance level of 0.05. Values are mean of three replicates � 1 SD.
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Fig. 2. Temporal changes in the relative abundance (left) and single-cell activity (right) of Betaproteobacteria (top), the R-BT subgroup of
Betaproteobacteria (middle) and Actinobacteria (bottom) during experiment 2. The first letter in the legend code corresponds to the DOM type:
C is control, A is algal-derived DOM and S is soil-derived DOM, whereas the last two letters refer to the exposure conditions, either dark (DK)
or pre-irradiated (IR). The number and letter code above the bars summarizes the results of the post hoc all pairwise multiple comparison test
used to detect significant differences among DOM types and exposure conditions. The number indicates a significant (1) or non-significant (0)
difference between exposure conditions for a given DOM type, whereas a different letter indicates a significant difference among DOM types
at a given exposure condition. Comparisons were performed by the Holm–Sidak method with an overall significance level of 0.05. Values are
mean of three replicates � 1 SD.
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source on the R-BT subgroup that resulted in higher rela-
tive abundances in the algal-derived DOM, as compared
with the soil-derived DOM and the control. At 48 h, the
relative abundance of R-BT bacteria was always signifi-
cantly higher in the dark samples as compared with the
pre-irradiated ones, not only in the DOM amendments but
also in the control. Furthermore, at 48 h pre-irradiated
algal-derived DOM had a significant positive effect on the
relative abundance of R-BT bacteria as compared with the
pre-irradiated control.

At the beginning of the experiment, the percentage of
active R-BT cells (Fig. 2, middle) was low in the control
samples. Both dark incubated DOM amendments had a
significant positive effect on the activity of the R-BT
subgroup. The relative abundance of active R-BT cells in
pre-irradiated algal-derived DOM was significantly higher
than in the pre-irradiated control and soil-derived DOM. At
24 h, the proportion of active R-BT bacteria significantly
increased in algal-derived DOM-amended samples.
Dissolved organic matter amendments incubated in the
dark sustained a higher fraction of active R-BT bacteria
than their irradiated counterparts. The same trend was
observed at 48 h, but the differences between dark and
pre-irradiated samples were more pronounced.

Actinobacteria represented ~27% of the DAPI counts
(Fig. 2, bottom) at the beginning of the experiment. After
24 h, the relative abundance of this group significantly
differed between the dark and pre-irradiated samples in
the control as well as in both DOM amendments. The
relative abundance of Actinobacteria remained at their
initial level or even increased in pre-irradiated DOM,
whereas it decreased in the soil- and algal-derived DOM
amendments incubated in the dark. At 48 h, a decrease in
the relative abundance of Actinobacteria was apparent in
all treatments. Actinobacteria contributed very modestly
to total activity (data not shown) with < 2% of total counts
corresponding to active cells at the beginning of the
incubation.

Discussion

Our work confirms the results of some previous studies on
photochemically induced changes in DOM and their sub-
sequent effects for bacterial growth, but it also provides a
novel insight on how the bacterial community composition
and the activity of particular bacterial groups is affected.

Photoalteration of the DOM and its effects on bacterial
activity

Results from previous studies suggest that the effects of
solar radiation on DOM availability for bacteria depend to
a larger extent on DOM characteristics such as its age
and origin (Benner and Biddanda, 1998; Obernosterer

et al., 1999; Tranvik and Bertilsson, 2001). Thus, it has
been argued that freshly produced or autochthonous
DOM is likely to become more recalcitrant for bacteria
upon sunlight exposure (Tranvik and Kokalj, 1998; Pausz
and Herndl, 1999), whereas in contrast, old or allochtho-
nous DOM enhances bacterial growth upon irradiation
(Benner and Biddanda, 1998; Anesio and Granéli, 2003).
In our experiments, however, both DOM types (algal and
soil) led to a decrease of the bulk bacterial activity and of
the percentage of active bacteria when pre-exposed to
natural or simulated solar radiation. Whereas a negative
effect on bacterial activity was expected in the treatment
receiving pre-irradiated algal-derived DOM, the decrease
of bacterial activity in pre-irradiated soil-derived DOM was
not. Terrestrially derived DOM is generally considered
refractory to bacterial degradation (Del Giorgio and Davis,
2003) because of its high content in humic substances
and structural polysaccharides (Benner, 2002; 2003).
Thus, it is supposed to become more bioavailable upon
sunlight exposure (Smith and Benner, 2005). However,
the initial optical characteristics of algal- and soil-derived
DOM (Table 2) were very similar and both DOM types
behaved in an analogous way after exposure to solar
radiation. Particularly, the calculation of the DOC-specific
absorption coefficient at 254 nm (a*254), which is used as
a proxy for the degree of aromaticity of organic matter
(Weishaar et al., 2003), indicated a low degree of aroma-
ticity in both DOM types, which was comparable to that of
the lake DOM. Size-exclusion gel chromatography of
DOM from GKS has revealed that the largest DOC frac-
tion in this alpine lake does not significantly absorb UV
radiation (Sommaruga and Augustin 2006). The increase
in a*254 upon irradiation of all DOM treatments suggested
a humification process. Absorption coefficients at 254 nm
in irradiated DOM samples were often double as high as
those measured in DOM kept in the dark, whereas the
DOC concentrations remained fairly stable. Brisco and
Ziegler (2004) proposed a similar process to explain the
observed decrease in the bioavailability of relatively
refractory organic matter following exposure to solar
radiation.

One plausible explanation for the unexpected ‘lability’ of
the soil extract could lay in the procedure we used to
obtain it (Kablitz et al., 2003; Pérez and Sommaruga,
2006). Basically, we simulated the effects of runoff and,
therefore, extracted the soil organic matter (SOM) in
Milli-Q water at in situ temperature. By doing so, it is very
likely that only the more labile fraction of SOM was
extracted, as the extraction of humic acids needs a certain
degree of alkalinity. Moreover, it is arguable that SOM
from alpine catchments located at high altitude that under-
goes low microbial degradation because of low tempera-
tures (Leifeld et al., 2005) has still a substantial labile
organic fraction available.
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Effects on the bacterial community structure and the
activity of bacterial groups

We proved that the photoalteration of DOM not only
affected its subsequent utilization by bacteria, but it also
translated into changes in the bacterial community
structure. Different bacterial groups showed a distinct
response to the different substrates offered. Moreover, we
observed a contrasting effect on bacterial activity param-
eters depending on the incubation time considered.
Effects on leucine incorporation and on the relative abun-
dance of active bacteria were noticeable immediately
after inoculation (0.5 h) of the bacterial assemblage. It is
remarkable that the activation of possibly ‘starved’ bacte-
ria (Morita, 1982) took place almost instantaneously and
when an appropriate substrate was offered the relative
abundance of active bacteria increased from 4% to 32%
in only half an hour. The enhancement of bacterial activity
in the dark treatments was maintained at 24 h; however,
after 48 h this effect was reduced or in some cases even
reversed. Bertilsson and colleagues (2004) found an
initial decrease in bacterial production in irradiated South
Ocean water that was not detectable in a longer
incubation. These authors hypothesized that either the
pool of the most rapidly available compounds was photo-
chemically transformed into biorecalcitrant material or
photochemical processes have a minor impact on bacte-
rial activity at low temperatures. We cannot rely on the
second hypothesis because our experiments were run at
14°C which is at the upper water temperature limit in GKS.
However, changes in DOM optical characteristics indicat-
ing a humification process favoured the first hypothesis.
Besides that, in our experiments, the contrasting effect on
bacterial activity was accompanied by changes in the
relative abundance of particular bacterial groups. After
24 h, there was a distinct effect on the bacterial commu-
nity composition. On one hand the Betaproteobacteria
were stimulated in both DOM amendments kept in the
dark. On the other hand, the relative abundance of Acti-
nobacteria increased in the pre-irradiated DOM and
decreased sharply in the algal- and soil-derived DOM kept
in the dark as compared with the dark control (lake DOM).
The contrasting behaviour of these two bacterial groups
was supported by a highly significant negative relation-
ship (r 2 = 0.52; P < 0.0001), when data from all treatments
were pooled. Such a strong negative relationship between
these two groups has already been found during an
experimental manipulation of the bacterial assemblage of
GKS (Pérez and Sommaruga, 2006) and that of Lake
Fuchskuhle, Germany (Burkert et al., 2003). This negative
relationship is also in agreement with the finding that in
GKS there is a temporal segregation in the maximum
abundance of these two groups (Glöckner et al., 2000).
Thus, we suggest that these two bacterial groups occupy

similar niches, but Actinobacteria are easily outcompeted
by Betaproteobacteria. There is to our knowledge no
similar study in which the response of bacterial groups to
photoaltered DOM has been assessed, but our data
suggest that Actinobacteria could be favoured under
those circumstances. In fact, the percentage of Actino-
bacteria has been found to increase within the bacterial
community of mountain lakes, particularly of those located
at high altitude (Warnecke et al., 2005), where DOM pho-
toalteration could be an important process.

The abundance of the R-BT subgroup of Betaproteo-
bacteria was not affected by the exposure conditions at
24 h, but only by the origin of the DOM, and showed a
marked preference for algal-derived DOM. A similar posi-
tive effect of algal-derived DOM on the R-BT subgroup
was observed in our previous work (Pérez and
Sommaruga, 2006) but also in the mesotrophic Øimov
Reservoir, Czech Republic, when microcosms were
manipulated with inorganic nutrients (Šimek et al., 2005).

In terms of activity, the pattern observed for the whole
bacterial community was mainly driven by the response of
Betaproteobacteria. Highly significant correlations were
found between the relative abundance of this particular
group and the activity parameters (r 2 = 0.53 with leucine
incorporation rates and r 2 = 0.72 with percentage of active
bacteria; for both P < 0.0001). Theses correlations were
even stronger when we considered only the fraction of
active Betaproteobacteria (r 2 = 0.74 and r 2 = 0.98 for
leucine incorporation rates and percentage of active bac-
teria, respectively; for both P < 0.0001). Although Actino-
bacteria was the second numerically important bacterial
group, their contribution to activity was generally < 2%
total counts. Their modest contribution to activity might be
partly due to the method used to assess the percentage of
active bacteria in our experiments. As explained in the
Experimental procedures, we performed microautoradio-
graphy using leucine as substrate and incubated our
samples for 1 h. Whereas a short incubation is appropri-
ate to determine the relative contribution of different
groups to the leucine incorporation rates we measured, it
might bias the number of active bacteria for bacterial
groups with a lower maximum velocity (vmax). In fact, in a
previous study (Pérez and Sommaruga, 2006) a larger
contribution of Actinobacteria to the total activity was
detected using a longer incubation period.

At the end of the experiment, Betaproteobacteria domi-
nated all treatments coinciding with an attenuation of dif-
ferences in bacterial activity in the different DOM types.
Nevertheless, different Betaproteobacteria subgroups
grew in the different treatments as indicated by the vari-
able contribution of the R-BT bacteria. This subgroup
represented > 50% of DAPI counts in the algal-derived
DOM kept in the dark, whereas in the pre-irradiated lake
water and soil-derived DOM treatment, their contribution
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was < 10% DAPI-stained cells. As previously stated, the
R-BT subgroup was favoured in algal DOM kept in the
dark, whereas one or several unknown Betaproteobacte-
ria phylotypes were stimulated in photoaltered DOM.
These unknown Betaproteobacteria did not belong to the
Beta II lineage of limnic Betaproteobacteria (Bet2-870;
M.T. Pérez, pers. obs.) described by Burkert and col-
leagues (2003). In mountain lakes, the fraction of Beta-
proteobacteria that are not targeted by currently available
probes is not negligible (Warnecke et al., 2005).

In summary, our experiments showed that the effects of
DOM photoalteration on the activity of the bacterial
assemblage depend on the type of DOM present and are
not always easily predictable from simple criteria as its
origin. Photochemically induced changes in DOM had an
effect on the bacterial community as a whole, but also
affected individual bacterial groups. The magnitude of this
effect was time-dependent and related to rapid changes in
bacterial community composition.

Experimental procedures

Study site

Gossenköllesee is a small (area: 0.017 km2) alpine lake
located at 2417 m above sea level in the Austrian Alps
(47°13′N, 11°01′E). Gossenköllesee is a dimictic and holo-
mictic lake covered by ice for about 7–8 months per year. The
catchment area is composed of crystalline bedrock and
covered with a poor soil layer and sparse patches of alpine
rankers. Background information on DOM dynamics, chemi-
cal composition and other variables is found elsewhere
(Sommaruga and Augustin, 2006).

Experimental design

Two experiments were conducted during August 2005 using
lake water collected from GKS at 2 m depth. The lake water
was gently filtered first through a pre-combusted glass-fibre
filter (AP 40, Millipore) and subsequently through a 0.22 mm
polycarbonate membrane (GTTP, Millipore) to eliminate
bacteria. Filtered water was then distributed among three
sets of six replicate quartz tubes (250 ml; diameter: 5 cm).
The first set of tubes was not further manipulated and served
as control. The lake water in the second set of tubes was
amended with a soil extract (soil-derived DOM treatment),
whereas the third set received an algal lysate to enrich the
autochthonous fraction of DOM (algal treatment). The soil
extract was obtained according to Kablitz and colleagues
(2003) using surface soil (upper 3–4 cm) collected from the
catchment area of GKS. The lysate was obtained from a
batch culture of the planktonic green algae Chlorella minu-
tissima grown in Woods Hole medium (at 17°C, 8:16
light : dark cycle) and harvested in the early stationary phase,
in order to allow the inorganic nutrients to be mostly incorpo-
rated by the algae. Prior to use, both extracts were filtered
through a 0.22 mm polycarbonate membrane to eliminate
bacteria and debris. Soil and algal DOM amendments

enriched by a factor of 2–3 the DOC concentration as com-
pared with the control. Then, half of the quartz tubes were
wrapped in a double layer of aluminum foil, whereas the other
half was not. During the first experiment, the tubes were
exposed horizontally at the surface of GKS during 3 sunny
days. For the second experiment, the exposure took place
during 6 h in a walk-in room set at 14°C. Simulated solar UVR
(8.60 W m-2 UVA and 2.47 W m-2 UVB) was provided by four
aged (100 h) fluorescent lamps (UVA 340, Q-panel, Cleve-
land, OH) and two visible fluorescent lamps (cool white L36/
W20, Osram) emitting 80 mmol m-2s-1 of PAR. A spectrum of
the combination of lamps is found in Sommaruga and
colleagues (1996).

Subsamples for DOC and absorbance were collected
before and after exposure from all treatments. The samples
were immediately filtered through a pre-combusted (4 h at
450°C) GF/F filter (Whatman), placed on a stainless steel
syringe holder. Absorbance was measured in a spectropho-
tometer (double-beam Hitachi U-2000) from 250 nm to
750 nm using a 10 cm quartz cuvette (Suprasil I). Absorption
coefficients at specific wavelengths (al) were calculated as
al = (2.303*Dl)/L, where Dl is the absorbance at the wave-
length considered and L the path length (m) of the cuvette.
The coefficients were corrected for the effect of scattering by
colloids using a long reference wavelength (740 nm).

DOC was measured by high temperature catalytic oxida-
tion with a Shimadzu TOC analyser Model 5000. The instru-
ment was equipped with a Shimadzu platinized-quartz
catalyst for high sensitivity analysis. Three to five injections
were analysed for every sample and blanks (Milli-Q water).

After exposure, the lake bacterial assemblage was inocu-
lated in all treatments following a 1:10 dilution by filtering lake
water collected at 2 m depth through a 0.8 mm polycarbonate
membrane (ATTP, Millipore). The resulting bacterial cultures
were incubated in the dark at 14°C for either 24 h (first experi-
ment) or 48 h (second experiment). Subsamples for bacterial
activity and abundance were collected at time 0 (0.5 h after
the inoculation of the bacterial assemblage) and then every
24 h. During the second experiment, additional samples were
removed to perform microautoradiography combined with
fluorescent in situ hybridization and signal amplification by
catalysed reporter deposition (MICRO-CARD-FISH).

Incubation for microautoradiography

Subsamples were incubated with [3H]-L-leucine (Amersham,
specific activity = 2331 GBq mmol-1; 20 nmol l-1 final concen-
tration) at in situ temperature for 1 h. Incubation was ended
by adding formaldehyde at a final concentration of 2%.
Samples were fixed overnight at 4°C and filtered on the next
day onto 0.22 mm polycarbonate white filters that were sub-
sequently rinsed twice with 5 ml of particle-free Milli-Q water.
Afterwards, filters were stored frozen (-20°C) until further
processing.

Bulk leucine incorporation

Leucine incorporation rates were estimated according to
Simon and Azam (1989) in duplicate samples and one
formaldehyde-killed control incubated with 20 nmol l-1 (final
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concentration) of [3H]-L-leucine (specific activity as previously
stated). Samples (15–30 ml) were incubated at in situ tem-
perature in the dark for 1 h. Incubations were terminated by
adding formaldehyde at 2% final concentration. Subse-
quently, the samples were filtered through 0.22 mm Millipore
GTTP filters and rinsed twice with 5 ml of 5% TCA for 5 min.
The radioactivity of the filters was assessed after 15 h.

Bacterial abundance

Bacterial numbers were assessed by flow cytometry. Sub-
samples of 450 ml were stained adding 25 ml of a 50 mmol l-1

SYTO 13 solution (Molecular Probes). Counts were made
with a MoFlo (DakoCytomation) equipped with a water cooled
argon-ion laser tuned at 488 nm (200 mW). Bacteria were
detected by their signatures in a plot of orthogonal side
scatter (SSC) versus green fluorescence (FL1).

Hybridization and tyramide signal amplification

Fluorescent in situ hybridization with horseradish peroxidase
(HRP)-labelled probes was carried out on filter sections
according to Pernthaler and colleagues (2002), using a modi-
fied permeabilization protocol for freshwater bacteria (Sekar
et al., 2003). Five different group-specific oligonucleotide
probes (ThermoHybrid, Germany) were targeted to the
domain Bacteria (EUB338; Amann et al., 1990), to Betapro-
teobacteria (BET42a; Manz et al., 1992) and its subgroup
R-BT (R-BT065; Šimek et al., 2001), to Cytophaga-like
bacteria (CF319a; Manz et al., 1996) and to the class Actino-
bacteria (HGC69a; Roller et al., 1994). The formamide con-
centration in the hybridization buffer was always 55% except-
ing for probe HGC69a which required 35% formamide.

Microautoradiography

The procedure we used is described in detail elsewhere
(Teira et al., 2004). Briefly, hybridized filter sections were
transferred onto slides coated with a molten Kodak NTB
emulsion. Subsequently, slides were placed on a cold plate
for a few minutes until the emulsion hardened. Slides expo-
sure was carried out at 4°C for 24 h in light-tight boxes
containing a drying agent. Optimum exposure time was
determined empirically in a preliminary experiment. Devel-
opment and fixation of the slides were performed according
to the specifications of the manufacturer. Afterwards cells
were stained with an antifading solution containing DAPI to
a final concentration of 1 mg ml-1 and the slides examined
using a Zeiss Axioplan microscope equipped with a
100 W Hg lamp. Silver grains around bacterial cells were
observed using the transmission mode of the instrument.
Cells were counted in at least 20 randomly selected micro-
scopic fields and for every field four different counts were
recorded: (i) DAPI-positive cells, (ii) probe-specific positive
cells, (iii) DAPI+ autoradiography positive cells and (iv)
probe-specific + autoradiography-positive cells. At least 350
DAPI-stained cells were counted per sample.

Statistical analysis

A two-way analysis of variance (factor A: exposure condi-
tions, and factor B: type of DOM) was used to detect changes

in the proportions of different bacterial groups (expressed as
a percentage of DAPI-stained cells) present in the different
cultures. This statistical analysis was also applied to detect
differences in leucine incorporation rates and in the propor-
tion of active cells in the different samples. The pertinent post
hoc comparisons were made by the Holm–Sidak method with
an overall significance level of 0.05.
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