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Reinforcement learning is a prominent computational approach for goal-directed learning and decision making, and exploration
plays an important role in improving the agent’s performance in reinforcement learning. In low-dimensional Markov decision
processes, table reinforcement learning incorporated within count-based exploration works well for states of the Markov decision
processes that can be easily exhausted. It is generally accepted that count-based exploration strategies turn inefficient when applied
to high-dimensional Markov decision processes (generally high-dimensional state spaces, continuous action spaces, or both) since
most states occur only once in deep reinforcement learning. Exploration methods widely applied in deep reinforcement learning
rely on heuristic intrinsic motivation to explore unseen states or unreached parts of one state. The episodic memory module
simulates the performance of hippocampus in human brain. This is exactly the memory of past experience. It seems logical to use
episodic memory to count the situations encountered. Therefore, we use the contextual memory module to remember the states
that the agent has encountered, as a count of states, and the purpose of exploration is to reduce the probability of encountering
these states again. The purpose of exploration is to counter the episodic memory. In this article, we try to take advantage of the
episodic memory module to estimate the number of states experienced, so as to counter the episodic memory. We conducted
experiments on the OpenAI platform and found that counting accuracy of state is higher than that of the CTS model. At the same
time, this method is used in high-dimensional object detection and tracking, also achieving good results.

1. Introduction

Reinforcement learning, widely used in terms of the optimal
control of Markov decision processes (MDPs) such as games
and robotics, is a prominent computational approach for
goal-directed learning and decision making [1].

The agent in reinforcement learning interacts with an
environment, rather than just accepts a supervised signal,
learning to map situations of a trajectory (or for some sit-
uations an episode) to actions to achieve a maximum ex-
pected cumulative reward.

When meeting high-dimensional situations, approximate
solution methods were required. Deep Q-network (DQN)
[2, 3] first attempted to apply reinforcement learning to high-
dimensional problems by combining Q-learning with deep
convolutional neural networks (CNN) as parameterized
function approximators. However, this gives rise to more
uncertainty of the reinforcement learning process.

All the time, in both low and high dimensions, tradeoff
between exploration and exploitation is a great challenge
arising in reinforcement learning for the agents interacting
with unknown environments [1].

Hyperopic exploration, a main challenge in reinforce-
ment learning, is essential for the extensively used gradient
based reinforcement learning algorithms being sensitive to
the initial policy, flat or deceptive gradient, and also for the
uncertainty of action values estimation, to make sure that the
agent is not trapped into local optimization.

In terms of the difficulty of exploration, [4] roughly
classified Atari 2600 games in Arcade Learning Environment
(ALE) into three taxa: easy exploration (this taxon can be
divided into two according to the final scores), hard ex-
ploration with dense reward, and hard exploration with
sparse reward. It is obvious that, for the above traps, different
exploration strategies work. Just few strategies such as
pseudocount-based exploration [4] are valid for the
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well-known hard exploration Montezuma’s Revenge, while
most strategies can surpass human optimum in easy ex-
ploration game Pong. Environments such as robotics and
real scenarios can be more complex than Atari. The rein-
forcement learning environment is commonly equipped
with sparse reward, deceptive reward, confused state,
complex state distribution, etc.; all these traps may bring
oscillatory output or local optimum; however, most existing
exploration methods just concentrate on one trap. We will
focus on the combination of them in this article.

Existing tremendous exploration methods are sponta-
neously divided into two categories: endogenous exploration
and exogenous exploration, in terms of the generation of
exploration’s action derived from intrinsic factors of the
environment or not, such as states and goals.

Representative endogenous exploration focuses on the
guidance “explore what surprises you” [1], such as curiosity-
driven/intrinsic motivation/novelty-based methods [5–13].

State-based intrinsic exploration strategies use various
indicators such as prediction error and information gain to
describe the intrinsic reward signal. Exploration based on
the variation in agent prediction error or learning progress is
a typical method.

Following the strong representation ability of neural
networks, state-of-the-art literature focuses on learning the
intrinsic reward/exploration bonus from the state/state-
action pairs, rather than applying the predefined indicators.
References [5, 9] experiment on ignoring the extrinsic re-
ward to keep away from getting stuck in the deceptive re-
ward problems.

For most of the “real scenarios,” this hypothesis is
reasonable, and the intrinsic reward motivated by the final
goal is actual existence; that is to say, the goal of the learning
phase is observable. The computed intrinsic reward may
not encourage the agent to explore in a high-return di-
rection. However, for the environments whose goals/high
reward states cannot be observed or inferred from state,
these curiosity-driven methods may be powerless. A typical
example in OpenAI Gym [14] is the benchmark Mountain
Car environment; its states are continuous and actions are
discrete. This game guides an underpowered car to reach
goal on the top of a mountain. Horizontal position and
velocity compose the state space, and their values are
continuous. Legal actions are {−1, 0, 1} which represent a
scalar acceleration. The agent may be trapped into local
optimization if the car does not reach the mountaintop goal
as quickly as possible.

State of this environment has no indistinctive features to
depict a goal, although the rendered frame shows a red flag
to the programmer during training and testing procedures.
Things will change if the state feed to the agent is the raw
observation of the screenshot we can see; distance between
the position of the car and the target flag can be extracted as
the feature of the current state.

Other exploration algorithms, to a certain degree, can
jump out of the trap. For endogenous exploration such as
count-based methods, evolutionary computation tech-
niques, and hindsight experience replay, taking the states
of the whole trajectory/episode into consideration may be

efficient. Exogenous exploration, which has no rela-
tionship to the inner model of the environment, may not
face this dilemma.

Exogenous exploration suffers from more outlier ef-
fectiveness such as action perturbation [2, 3, 15, 16],
Bayesian uncertainty estimation [17–20], parameter space
noise [21], or specified reward [22].

Action perturbation exploration [23], alias of so-
phisticated/dithering exploration strategies, executes
exploration process relying on dithering strategy, such as
a random selection of the valid actions decided by a
probability ϵ at the current step in the case of DQN [2, 3].
In the case of deep deterministic policy gradient (DDPG)
[15, 16], the agent executes exploration by adding limited
noise (maybe Gaussian noise or the more advanced
Ornstein–Uhlenbeck noise) to action, which leads to an
optimal state-action value at certain step. These strategies
suffer inefficient performance in the case of RL problems
with multidimensional continuous actions. Gaussian
noises or OU noise may be suboptimal, and in practice,
however, the hyperparameters which greatly affect the
results are difficult to tune. Bayesian uncertainty esti-
mation [17–20] utilized the bootstrap with random ini-
tialization, evaluated the uncertainty of neural networks
with low computational cost, and made further im-
provement on deep exploration.

Exogenous exploration strategies act more universally, as
they do not rely on the properties of the environments, while
the endogenous exploration strategies need more specific
design to adapt the environment to be confronted.

In this paper, we introduce amore general frame tomake
the best of both endogenous exploration and exogenous
exploration, which encourage the agent to explore efficiently
through the intrinsic reward signal produced by states and
encourage the reward signal coming from the diverse goal
imagination inspired by the goal exploration processes
[23, 24] to interact with a trap group that may be en-
countered in environment.

2. Related Work

Evolutionary computation techniques, focusing on the ex-
ploration phase that can be archived to episode-based in-
trinsic exploration, have emerged as a convincing competitor
of deep RL in the continuous action domain [23, 25–28].

Due to more attention to exploration, evolutionary
computation techniques search policy directly in the policy
parameter space, which results in a good performance in
hard exploration situations such as rare reward environment
or deceptive reward environment. Compare to SGD-based
methods, the evolutionary computation techniques are
generally less sample efficient as they lack gradient
computations.

Pseudocount-based method, drawing inspiration from
the intrinsic motivation literature, combined a mixed
Monte Carlo update with a generated exploration bonus to
achieve state-of-the-art on the notorious Montezuma’s
Revenge at that time [4]. The critical pseudocount was
derived from an arbitrary density model, which is a
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generated model to measure the uncertainty of the input
state and is utilized by the pleasant theoretical guarantees of
count-based exploration methods. Proof was given to
demonstrate the close relationship between pseudocounts
and information gain, which is widely applied to calculate
novelty or curiosity. By introducing an information/pre-
diction gain to measure the log-probability’s delta value of
two assignments, the authors consequently set informa-
tion/prediction gain as intrinsic reward to perform count-
based exploration.

Exploration with Exemplar (EX2) Models algorithm
assessed how simple it is to discriminate between current
state and states seen previously and evaluated states’ novelty
by the simplicity [29].

Reference [6] applied the misprediction error of a
learned representation of states to estimate states’ novelty.
The agent was given exploration bonuses for visiting novel
states. In this setting, the agent trained a dynamics model
through the learned representation.

3. Preliminaries

Consider a Markov decision process (MDP), defined by the
tuple (S, A, T, R, c). S represents state spaces; A represents
action spaces. T: S × A × S⟶ [0; 1] represents the tran-
sition distribution which is unknown in the reinforcement
learning setting; reward function R: S × A × S⟶ R is
unknown, and the value at each time step can be queried
through the agent-environment interaction; c is the discount
factor to control the importance of future versus immediate
rewards.

In reinforcement learning, the agent learns to maximize
the expected sum of discounted rewards,
π∗ � argmaxπEτ∼π[􏽐

T
t�0 ctR(st, at)], where τ denotes a tra-

jectory (s0, a0, . . . , sT, aT) and π∗ is the optimal policy.
Deep deterministic policy gradient (DDPG) is policy-

based reinforcement learning. Unlike the value-based DQN
agent which chooses action relying on value estimation, the
DDPG agent’s action is directly computed by a policy π,
mapping states to a probability distribution over the actions
π: S⟶ P(A). The action-value function Qπ(st, at) � Eπ
[Rt|st, at] depicts the expected return of (st, at) under policy
π. The DDPG agent consists of an actor function μ(s|θμ)

(acting as a policy) and a critic function Q(s, a) (acting as a
value estimator). Parameterized actor function μ(s|θμ) maps
states to a specific action under the current parameterized
policy and makes updates according to the chain rule with
respect to the actor parameters.

∇μ � Eμ′ ∇aQ s, a|θQ
􏼐 􏼑|s�st,a�μ(st)∇θμμ s|θμ( 􏼁|s�st.􏽨 (1)

The critic function Q(s, a) is updated according to
Bellman equation as in deep Q-learning. Unlike widely used
ϵ-greedy strategy, in this work exploration policy is defined
as μ′(st) � μ(st|θ) + N, adding noise sampled from a noise
process N to the actor policy.

4. Count-Based Exploration and
Episodic Memory

In low-dimensional Markov decision processes, table rein-
forcement learning incorporated within count-based ex-
ploration works well for states of the Markov decision
processes [30] that can be easily exhausted. It is generally
accepted that count-based exploration strategies turn inef-
ficient when applied to high-dimensional Markov decision
processes (generally high-dimensional state spaces, con-
tinuous action spaces, or both) since most states occur only
once in deep reinforcement learning. Exploration methods
widely applied in deep reinforcement learning rely on
heuristic intrinsic motivation to explore unseen states or
unreached parts of one state [30].

It is verified that the hippocampus together with the
related internal temporal lobe structure in brain supports
fast learning. The laboratory rat may be lost in navigation
task due to its lesioned hippocampus or temporal lobe.
Learning mechanism of the hippocampus is generally rec-
ognized as instance-based, while the cortex learns to gen-
eralize the representation of input distribution relatively.

The episodic memory module simulates the work of the
hippocampus in the human brain. This is exactly the
memory of past experience. It seems naturally and logically
to apply episodic memory to count the situations encoun-
tered. Therefore, we use the contextual memory module to
remember the states that the agent has encountered, as a
count of states, and the purpose of exploration is to reduce
the probability of encountering these states again. The
purpose of exploration is to counter the episodic memory.

Inspired by model-free episodic control [31], we set the
reward of the last state of one rollout as 1, Rc(T) � 1; when
discount factor c � 1, state value of each state experienced in
the rollout can be C(si) � 1, i � 1...T; in other words, the
count value of each state is 1, Ccount(si) � 1. The C value is
updated as follows:

Ccount st, at( 􏼁←
Rct, if st, at( 􏼁 ∉ Ccount,

max Ccount st, at( 􏼁, Rct􏼈 􏼉, otherwise.
􏼨

(2)

When encountering a state that has never been seen
before, the Ct value is assigned to Rc(t).

Ccount(s, a) �

1
k

􏽘
k

i�1Ccount s
(i)

, a􏼐 􏼑, if(s, a) ∉ Ccount,

Ccount(s, a), otherwise.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(3)

A critical process is to make decisions on when to ex-
plore and when to exploit; an indicator is designed to
measure the exploration degree of current state, which is set
to the ratio of delta between the maximum and the mini-
mum counter; the agent explores when indicator is greater
than the previously set threshold value; otherwise it exploits.

maxCcount st( 􏼁 − minCcount st( 􏼁

maxCcount st( 􏼁
≤ ζ. (4)
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We attach state counter to episodic memory, benefiting
from the mechanism of episodic control algorithm. During
the process of searching and updating, there is no need to
establish another tree structure or to occupy other extra
computing resources or memory.

5. Experiments

To verify in practice whether CounterEM learns more data
efficiently, Atari Learning Environment [32, 33] which
consists of various reward structures and exploration levels
was chosen as a problem domain. We test our approach on
Atari games that contain a series of interesting tasks such as
sparse rewards and scores across different games. Pervious
work had done a lot to apply the commonly used algorithms
such as DQN and A3C and their variants in Atari Learning
Environment and can be taken as baselines.

Reference [34] reproduces taxonomy of games in Atari
Learning Environment on the basis of their exploration
difficulty. Rough taxonomy of the games of Atari is “sparse”
or “dense” rewards which depict the game’s reward structure
qualitatively. Limited by computing resources, we chose the
seven notorious “sparse” rewards hard exploration games:
Freeway, Gravitar, Montezuma’s Revenge, Pitfall!, Private
Eye, Solaris, and Venture; ten “dense” rewards hard ex-
ploration games: Alien, Amidar, Bank Heist, Frostbite,
HERO, Ms. Pac-Man, Q∗ bert, Surround, Wizard of Wor,
and Zaxxon; and ten easy exploration games: Bowling,
Breakout, Pong, Space Invaders, Boxing, Seaquest, Skiing,
Demon Attack, Enduro, Gopher.

5.1. Experimental Parameters. For A3C, we run 100 rollout
steps before being trained with 50 random batches of
samples from the replay buffer.The cycle is repeated 20 times
(2000 steps in the environment) before A3C is evaluated
offline on 10000 steps (10 episodes). Replay buffer is a sliding
window of size 106.

20 different seeds were used to reduce the variance of
statistically different results.The inverse model first maps the
input state (st) to a feature vector ϕ(st) using a series of two
hidden layers of size (128, 128). For the inverse model, ϕ(st)

and ϕ(st+1) are concatenated into a single feature vector and
passed as inputs into a fully connected layer of 64 units. The
forwardmodel is constructed by concatenatingΦ(st) with at
and passing them into a sequence of two fully connected
layers with 64 and 128 units, respectively.The value of β is set
to 0.2, while λ is set to 0.1. The batch size is set to 64, the
discount factor is set to 0.99, and the actor and critic net-
works are designed with the same structure of two hidden
layers of size (64, 64) with RELU activation functions. What
is different is their output layer activation function; actor
network output layer activation function is tanh while the
critic network is linear.

The learning rates are 10−4 and 10−3, respectively, and
Adam is used to optimize the loss function. The OU noise
used in the A3C and the variant DQN algorithms linearly
decreased from 0.9 at the first step to 0.1 at the final step.The
performance was reported over 100 evaluation episodes of

the best policy found during training process; each episode is
set to 500 steps on the games.

5.2. Results. Table 1 summarizes the experimental results and
data efficiency. CounterEM (NEC) and CounterEM (MFEC)
significantly outperformed all other algorithms at small
training step (less than 10 million frames). The gap is espe-
cially observed before 20 million frames (Algorithms 1 and 2).

Equipped with CounterEM,MFEC and NEC have a clear
advantage in the initial learning stage, especially before 4
million frames. With the increase of training frames,
CounterEM’s efficiency gradually decreases. However, it is
worth noting that CounterEM (NEC) outperformed the
other baseline algorithms, training 40million frames at its 10
million frames, which means more than 100 hours of
training time.

In most of the Atari games, CounterEM (NEC) out-
performed CounterEM (MFEC) on average, and both
learned significantly faster in the initial phase than other
baseline algorithms (see Table 2). At 2 million frames,
CounterEM (MFEC) outperformed NEC. MFEC and NEC
without CounterEM applied inefficient random explora-
tion, which becomes even less efficient as the number of
actions increases. Thanks to proven count-based explora-
tion methods, CounterEM directs agents to explore unseen
or rare-seen states to obtain high rewards quickly. How-
ever, when the training step increases up to a certain
threshold, which may be positively correlated to the di-
mensions of states and actions, the superiority of Coun-
terEM may weaken.

It is worth noting that, in order to ensure the stability of
training, the baseline algorithms A3C and DQN and related
variant algorithms need to crop the reward to the range of
[−1, 1] [2, 3]. NEC and MFEC do not need reward clips, and
therefore CounterEM (NEC) and CounterEM (MFEC) do
not require reward clips. This resulted in quality changes in
behavior and better performance than other games that
required editing (such as Alien, Frostbite, Pac-Man, Bowl-
ing, and HERO).The counter estimator is naturally set to the
[−1, 1] range, but this does not affect the agent’s learning
efficiency in these games because we do not use the counter
estimator directly in the Q calculation.

5.3. Experiment for Object Detection. To test our module in
high dimensions, we turn to object localization/object de-
tection which plays an important role in the computer vision
field. RL-based target detection and target tracking usually
use the standard A3C algorithm, and they pay more at-
tention to the design of the framework and network
structure, while action disturbance is used for exploration.
As a very important link in RL, exploration also plays an
important role in this application field. Its goal is to place
bounding boxes in a given image around the instances of
predefined object class, such as faces, ships, and desktops.
During localization process, detectors analyze the scanning
windows of the input image, while the transformation of
windows is guided by scales and locations. Most state-of-the-
art solutions for object detection are bottom-up region
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Table 1: Median across games of human-normalized scores for listed algorithms at different training frames.

Frames (M) Nature DQN (%) Retrace(λ) (%) A3C (%) MFEC (%) CounterEM (MFEC) (%) NEC (%) CounterEM (NEC) (%)
1 −0.7 −0.4 0.4 12.8 20.1 16.7 29.6
2 0.0 0.2 0.9 16.7 29.1 27.8 37.6
4 2.4 3.3 1.9 26.6 36.2 36.0 48.4
10 15.7 17.3 3.6 45.4 52.5 54.6 69.3
20 26.8 30.4 7.9 55.9 66.1 72.0 77.6
40 36.7 60.5 18.4 61.9 70.0 83.3 84.5

Table 2: Mean human-normalized scores for listed algorithms at different training frames.

Frames (M) Nature DQN (%) Retrace(λ) (%) A3C (%) MFEC (%) CounterEM (MFEC) (%) NEC (%) CounterEM (NEC) (%)
1 −10.5 −10.5 5.2 28.4 40.8 45.6 61.7
2 −5.8 −5.4 8.0 39.4 68.3 58.3 84.9
4 8.8 6.2 11.8 53.4 88.4 73.3 97.3
10 51.3 52.7 22.3 85.0 100.1 99.8 115.4
20 94.5 237.7 59.7 113.6 117.9 121.5 122.8
40 151.2 386.5 255.4 142.2 148.1 144.8 150.0

(1) for episode� 1 to S do
(2) for t� 1 to T do
(3) Obtain observation st from the environment
(4) Let st � ϕ(ot)

(5) Estimate Ccount and Q for each action a via (3)
(6) if Satisfy (4) then
(7) Choose at � argminaCcount(st, at)

(8) else
(9) Choose at � argmaxaQEC(st, a)

(10) end if
(11) Execute action at, and receive reward rt + 1
(12) end for
(13) for t� T to 1 do
(14) Update QEC(st, at) and 􏽤Ccount(s, a) according to (2)
(15) end for
(16) end for

ALGORITHM 1: Exploration for countering model-free episodic control.

(1) Initialize replay memory D

(2) Initialize a DND Ma for each action a
(3) Initialize N for horizon of the N-step Q rule
(4) for episode� 1 to S do
(5) for t� 1 to T do
(6) Obtain observation st from the environment with embedding
(7) Estimate Q(st, a) for each action a via (2) from Ma

(8) if Satisfy (4) then
(9) Choose at � argminaCcount(st, at)

(10) else
(11) Choose at � argmaxaQEC(st, a)

(12) end if
(13) Execute action at, and receive reward rt + 1
(14) Append (h, Q(N)(st, at), C

(N)
count(st, at)) to Mat

(15) Append (st, at, Q(N)(st, at), C
(N)
count(st, at)) to D

(16) Train a random minibatch in D

(17) end for
(18) end for

ALGORITHM 2: Exploration for countering neural episodic control.
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proposals [35, 36]; thousands of windows were selected and
evaluated one by one. These bottom-up methods were
accelerated by the advancement of convolutional neural
networks (CNNs) and parallel computing benefits from
rapid expansion of graphic processing unit (GPU) [37–40].

Current active search methods, reformulated for
learning a navigation strategy, based on the DQN frame,
artificially designed several actions (horizontal/vertical
moves in fixed pixels, scale changes in fixed scale related to
the pixels, aspect ratio changes in fixed ratio related to the
pixels, trigger) to form an action set [41–47]. Agent selected
action (a) that generates the max estimated action value
(Q); that is to say, the policy π � P(a|s) would not exist
independently of the action-value estimation, which leadd to
continuous action space situation beyond the off-policy
algorithm as maximum action value is not easy to figure out.

5.3.1. State. The state of the MDP consists of the whole
image feature vector, current time step window feature
vector, and history of performed actions in current episode.

These three elements are simply concatenated into a new
vector to represent the state. The features are extracted using
a pretrained VGG-16 model [48] for both the whole image
and current window. Feature vector of layer fc6 rt + 1 was
applied in our experiments, and the VGG-16 was pretrained
on ImageNet.

5.3.2. Action. An action space A(s) defines the legal action
in any given state s ∈ S; at each time step, the agent performs
action to deploy the box which surrounds the object. In the
2D object detection application, four possible actions, up,
down, left, and right, allow for pixel-wise movement being
universal solution.

5.3.3. Reward Function. The agent receives a new visual
observation of the environment st+1 and a reward signal rt+1
when performing the action obtained from the agent.

The agent makes decision to maximize the sum of the
reward signal R � 􏽐iri, while in application fields, it is
usually very sparse and hysteric.
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Figure 1: Sum reward in computer vision applications.
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To simulate the common situation, in our object de-
tection experiment, we set rT � 1 only when object is
classified correctly and 0 otherwise.

5.3.4. Results. Figure 1 is an experimental comparison di-
agram of several applications in the CV field. We use the
three different exploration methods of OU noise [15, 16],
GEP [23], and Reachable [34, 49–53] for comparison with
our CounterEM method, in pedestrian tracking and face
detection. Experiments show that CounterEM can get good
rewards quickly.

6. Conclusions

Episodic memory can be used for episodic control and can
achieve good results in some RL application situations. In the
case of relatively easy exploration or nonsparse reward, the
agent can find the path of high reward very smoothly, even
when reward is sparse. The problems of reward and hard
exploration are dependentmore on the strategy of exploration.
In this article, we modified the episodic memory module to
pseudocount state, so as to realize a pseudocount-based ex-
ploration strategy. The experiment shows that our algorithm
can achieve good results in OpenAI games as well as computer
vision applications such as object detection and object
tracking. In the next step, we plan to expand the counter
episodic memory to continuous episodic control. Dual net-
works seem to be a feasible solution, because their inputs are
all the states at certain time, and their embeddings are
consistent.

Data Availability

The game data used to support the findings of this study are
included within the article.
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