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Abstract

In-vitro studies with different Fanconi anemia (FA) cell lines and FANC gene silenced cell

lines indicating involvement of mitochondria function in pathogenesis of FA have been

reported. However, in-vivo studies have not been studied so far to understand the role of

mitochondrial markers in pathogenesis of FA. We have carried out a systematic set of bio-

marker studies for elucidating involvement of mitochondrial dysfunction in disease patho-

genesis for Indian FA patients. We report changes in the mtDNA number in 59% of FA

patients studied, a high frequency of mtDNA variations (37.5% of non-synonymous varia-

tions and 62.5% synonymous variations) and downregulation of mtDNA complex-I and com-

plex-III encoding genes of OXPHOS (p<0.05) as strong biomarkers for impairment of

mitochondrial functions in FA. Deregulation of expression of mitophagy genes (ATG;

p>0.05, Beclin-1; p>0.05, and MAP1-LC3, p<0.05) has also been observed, suggesting

inability of FA cells to clear off impaired mitochondria. We hypothesize that accumulation of

such impaired mitochondria in FA cells therefore may be the principal cause for bone mar-

row failure (BMF) and a plausible effect of inefficient clearance of impaired mitochondria in

FA.

Introduction

Mitochondria are powerhouse of cells and generate energy in the form of ATP through oxida-

tive phosphorylation process. Mitochondria are also source of reactive oxygen species (ROS)

production. Thus mitochondrial dysfunction is detrimental to the organism [1]. Previous stud-

ies have established link between mitochondrial functions and oxygen metabolism in FA.

There is also an evidence of involvement of FA proteins in mitochondrial dysfunctions.

Mukhopadhyay et al., 2006 found that the FANCG protein is localized in mitochondria and

interacts with the mitochondrial peroxidase peroxiredoxin3 (PRDX3). In turn, cells from

FA-A and FA-C subtypes also had PRDX3 cleavage and decreased peroxidase activity. These

findings further supported the idea of mitochondrial involvement in the pathogenesis of FA

[2]. Kumari et al., 2013 have demonstrated decrease of mitochondrial membrane potential,

low ATP production, impaired oxygen consumption rate and pathological changes in the
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morphology of FA mitochondria. The study also showed inactivation of the enzymes responsi-

ble for energy production, detoxification of ROS and over sensitivity to DNA cross-linkers by

the overproduction of ROS [3,4].

Ravera et al., 2013 have analysed the respiratory fluxes in FANCA primary fibroblasts, lym-

phocytes and lymphoblasts. Their study revealed that FANCA mutants show defective respira-

tion through Complex I, diminished ATP production and metabolic sufferance with an

increased AMP/ATP ratio. Treatment with N-acetyl cysteine (NAC) restored oxygen con-

sumption to normal level [5]. Recently it was also shown that genetic deletion of Fancc blocks

the autophagic clearance of viruses (virophagy) and increases susceptibility to lethal viral

encephalitis. FANCC protein interacts with Parkin, is required in vitro and in vivo for clear-

ance of damaged mitochondria, and decreases mitochondrial ROS production and inflamma-

some activation, ultimately leading to phenotypes such as BMF, cancers, and aging associated

with mutations in FA pathway genes [6,7].

Despite of experimental evidences on FA cell lines or FANC gene silenced cells for accumu-

lation of impaired mitochondrial activities and deregulated mitophagy, there has been no bio-

marker study done to elucidate involvement of mitochondrial dysfunction in FA pathogenesis.

Here, we present study of mitochondrial dysfunction and impaired mitophagy in ex-vivo stud-

ies on mononuclear cells derived from peripheral blood of FA patients and also mitochondrial

DNA (mtDNA) variations to understand the genetic basis of mitochondrial DNA pathogenesis

in FA.

Patients and materials and methods

Patients, specimen collection and ethical clearance

Seventy FA subjects including 42 males and 28 females with a mean age of 8 years were

included in the study (March, 2012 to June, 2017). The peripheral blood samples were col-

lected in heparin (7cc) and EDTA (4cc) vacutainers from the patients and 33 age-matched

healthy controls (non-FA or individuals without history of haematological abnormalities that

are found in FA) with the written consent of parents (in case of minors) and adult patients and

controls. The study protocols were approved by Institutional Ethics Committee for human

subjects of National Institute of Immunohaematology, Parel, Mumbai. The diagnosis for FA

was confirmed with the clinical examination and methods described in our previous publica-

tions for investigations like chromosomal breakage [8], FANCD2 immunoblotting [8] and

complementation group determination using direct sequencing [8] and targeted exome

sequencing (TES). Molecular investigation for FANC genes for a few patients was carried at

MedGenome Pvt. Ltd., Karnataka, India and with collaboration with Dr. Minoru Takata’s Lab

at Radiation Biology Center, Kyoto University, Kyoto, Japan. It was done by targeted gene cap-

ture using a custom capture kit. The libraries were sequenced on Illumina sequencing platform

(mean coverage >80 to 100X). The identified mutations were confirmed by direct sequencing.

qPCR based mtDNA copy number change

Genomic DNA (gDNA) was used for mtDNA copy number study. The genomic DNA was

extracted from peripheral blood collected in EDTA vacutainers using QIAamp DNA Blood

Midi Kit (Qiagen, cat.# 51183) according to the manufacturer’s instructions. TaqMan Univer-

sal PCR mastermix (Thermo Fisher Scientific cat.# 4304437) was used with final concentration

of 200nM probe and 900nM of forward and reverse primers. A series of 10 fold dilution of

standard DNA was prepared for standard curve and 15ng of gDNA was added in sample wells.

An initial 10 minutes denaturation at 95˚C followed by 40 cycles of 95˚C and combined

annealing-extension at 60˚C was standardized as run program on ABI StepOne machine.
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Formula used for copy number change = 2– (mtDNA CT–gDNA CT). A set of primers and probes

was used to study mtDNA copy number change, and β2-microglobulin primers and probes

for nuclear genome as described by Malik Sahani et al., 2011 [9].

OXPHOS enzymes and TFAM expression using qPCR

RNA was extracted from EDTA peripheral blood using QIAamp RNA Blood Mini Kit (Qia-

gen, cat.#52304) according to the manufacturer’s instructions. The concentrations of RNA

were determined on nanodrop spectrophotometer. 1μg of RNA was reverse transcribed to

first-strand cDNA by using RevertAid H minus First Strand cDNA Synthesis Kit (Thermo Sci-

entific, cat.#K1632). For OXPHOS enzyme expression profiling was done by Real time PCR

primers designed so as to amplify transcripts encoding OXPHOS enzymes (Complex I:

NADH-coenzyme Q reductase, Complex III: CoenzymeQ—Cytochrome c reductase and

TFAM were used (S1 Table). Kapa SYBR FAST qPCR Master Mix (2X) Green (cat# KM4103)

was used to quantify transcripts on ABI StepOne machine.

Study of mtDNA variations of OXPHOS Complex-I subunits and

Complex-III encoding genes

Genomic DNA was extracted from peripheral blood stored in EDTA vacutainer using

QIAamp blood midi kit (Qiagen, cat.# 51183) and was used for study of mtDNA variations.

Primers for amplifying Complex-I subunits and Complex-III encoding genes were designed as

given by Rieder et al., 1998 [10] and processed for direct sequencing to screen the variations as

described in [8]. Mitomap database was used to compare the obtained sequence data (https://

www.mitomap.org/).

Mitophagy associated gene expression using qPCR

Relative quantification of mitophagy associated genes (ATG12, BECLIN1, and MAP1-LC3)

was carried out with standard melt-curve protocol. The transcripts used were same as

described in OXPHOS enzyme expression using qPCR section of methodology. The primers for

ATG12, BECLIN1, and MAP1-LC3 were used at 250nM, 300nM and 300nM respectively, with

Kapa SYBR FAST qPCR Master Mix Green (Kapa Biosystems, cat.# KM4103) to quantify tran-

scripts on ABI StepOne machine in 20μl reaction mixture. Primer sequences were designed as

described by Cotan et al., 2011 [11].

Statistical analysis

Statistical analysis was carried out using Graph Pad InStat 2 software (Graph Pad Software

Inc., La Jolla, CA, U.S.A.). Statistical significance of different experiments performed for the

study was determined either using Student’s t-test or using Chi-square test. A p-value�0.05

was considered statistically significant.

Results

mtDNA copy number change

Patients with positive chromosomal breakage investigation were screened using FANCD2

immunoblot to locate upstream or downstream complex defect (S2–S7 Tables). Based on

defect in the pathway, complementation groups were assigned to the patients by molecular

investigations such as direct sequencing and TES (S2–S6 Tables). Of the 70 FA patients studied

for mitochondrial DNA (mtDNA) copy number change, 29(41%) patients showed no signifi-

cant change in mtDNA copy number compared to controls and 41(59%) patients showed
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significant change in mtDNA copy number– 11 (16%) patients with low mtDNA copy number

or decrease in mtDNA copy number and 30 (43%) with high copy number or increase in copy

number (Fig 1A). The mean copy number changes of mtDNA were found to be 502

(p = 0.068), 404 (p = 0.057) and 573 (0.0092) for FA-A, FA-G and FA-L group patients respec-

tively (Table 1, Fig 1B). The mean values of high and low copy number changes among

patients of different complementation groups were found to be statistically significant

(p<0.05) (Table 2, Fig 1C).

Study of mtDNA variations for OXPHOS complex-I and complex-III

encoding genes

A total of 184 (115 synonymous and 69 non-synonymous) mtDNA variations of complex I

subunits and complex III encoding genes of OXPHOS were detected in our study (Fig 2). Of

184 mtDNA variations, 138 (76%) were different variants and only 46 (24%) of variations were

found to be frequently occurring among the FA patients. Majority of variations were results of

transition changes (177/184, 96%) in the bases of DNA and a very few were transversion

changes (7/184, 4%) (Table 3). Some of the frequently occurring synonymous and non-synon-

ymous mtDNA variations observed in the study were screened to analyse if their occurrence is

statistically significant compared to controls (Tables 4 and 5).

Mitophagy associated gene expression profiling

A significant (p = 0.02019) fold change (2.9 fold change) was observed in MAP1-LC3 gene

expression of FA patients compared to controls. However, there was no significant difference

Fig 1. mtDNA copy number change study. (a) Frequency distribution of mtDNA copy number change among FA

patients (%), (b) Whisker and box plot for mtDNA copy number change among different FA complementation group

patients. Dashed line represents mean mtDNA copy number (Pts.: Patients), and (c) mtDNA copy number change

(Low and High) among patients of different FA complementation groups (ns: not significant, �: p<0.05, ��: p< 0.01,

and ���: p<0.00001).

https://doi.org/10.1371/journal.pone.0227603.g001

Table 1. mtDNA copy number of FA patients from different complementation groups.

Complementation group Mean Std Dev Std Err t-value p-value

FA-A (n = 36) 501.9504 426 74 1.51833 0.068

FA-G (n = 12) 404.3956 130 39 1.64734 0.057

FA-L (n = 8) 573.3908 331 125 2.58287 0.0092

Non-FA-A, -G, and -L (n = 14) 443.52 297 68 1.64378 0.055

Controls (n = 33) 323 115 31

https://doi.org/10.1371/journal.pone.0227603.t001
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in gene expression fold change (p>0.05) of Beclin1 and ATG12 genes of FA patients compared

to controls (S8 Table and Fig 3A). Expression of ATG12 and Beclin1 genes among different FA

complementation groups showed no significant (p>0.05) expression fold change (Fig 3B and

S8 Table). Analysis of mitophagy expression according to distribution of patients among dif-

ferent complementation groups revealed a significant expression fold changes for MAP1-LC3
gene in FA-L group patients (3.6 fold change, p<0.05) compared to FA-A (~2.6 fold change,

p = 0.082) and FA-G group patients (3.3 fold change, p = 0.074) (Fig 3B and S9 Table).

OXPHOS enzyme encoding genes and TFAM gene expression

Fig 4 and S10 Table are showing the expression of OXPHOS complex-I subunits (ND1, ND2,

ND3, ND4, ND4L, ND5, and ND6) and Complex-III (CYTB) encoding genes. The study

revealed significant downregulation in expression compared to controls (ND1, p = 0.0132;

ND2, p = 0.0072; ND3, p = 0.02268; ND4, p = 0.01765; ND4L, p = 0.00914; ND5, p = 0.04515;

ND6, p = 0.02335; CYTB, p = 0.01538) (Fig 4A and S10 Table). However, no specific trend was

observed in expression change of genes encoding OXPHOS complex-I subunits and complex-

III encoding genes of FA patients among different complementation groups (Fig 4B and S11

Table). Expression study for TFAM gene in FA patients showed ~7.66 fold increase in levels

compared to controls (S1 Fig). Complementation group-wise cross-sectional analysis showed

significant upregulation in expression of TFAM gene in FA-A, FA-G and FA-L complementa-

tion groups (S1 Fig).

Discussion and conclusions

FA is a rare genetic disorder and presented with spectrum of clinical features [12]. Molecular

studies have identified 22 genes associated with FA phenotype [13]. The bone marrow failure

is one of the major clinical presentations in FA. However there have been several experimental

Table 2. mtDNA copy number change (Low and High) among patients of different FA complementation groups.

mtDNA copy number Mean StdDev Std. Err t-value p-value

FA-A High (n = 13) 874.02 466.06 129.26 4.2894 0.000117

Low (n = 5) 311 44.64 16.87 -3.9697 0.00041

FA-G High (n = 7) 475.54 80.27 30.34 3.11507 0.00285

Low (n = 1) 136 0 0 -2.2287 0.02136

FA-L High (n = 4) 806.67 222.08 111.04 6.01901 <0.00001

Low (n = 2) 233 0 0 -1.0748 0.15033

Non-FA-A,

FA-G, and FA-L

High (n = 6) 736.08 314.19 128.27 4.39719 0.000174

Low (n = 3) 354 59.58 42.13 -1.7897 0.04758

https://doi.org/10.1371/journal.pone.0227603.t002

Fig 2. Types and frequency of mtDNA variations detected in Complex-I subunits and Complex-III encoding

genes of OXPHOS.

https://doi.org/10.1371/journal.pone.0227603.g002
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proofs with no consensus result for one molecular mechanism cause underlying the BMF.

Mitochondrial DNA (mtDNA) is known to be constantly challenged with ROS generated dur-

ing electron transport reactions in oxidative phosphorylation event. Additionally, mtDNA

lack histones and DNA damage repair system for mtDNA are not as much evolved as nuclear

DNA. mtDNA copy number change has been known to be affected in many mitochondrial

dysfunction syndromes and cancer conditions [14–17]. In our study, the mtDNA copy num-

ber change was observed in 59% of the FA patients where majority of them showed high copy

number changes than low copy number change which suggests mitochondrial dysfunction in

FA. We also carried out expression study for TFAM gene (Transcription factor A for mito-

chondria), a key regulator that drives mitochondrial DNA replication and transcription), to

understand mitochondrial biogenesis controlling factor has any role to play [18]. We found

that expression of TFAM gene was significantly upregulated in FA patients (S1 Fig). This

implies that high copy number changes could be the plausible effect of compensatory mecha-

nism of cells to cope up with energy requirement [9]. Correlation of mtDNA copy number

changes with FA complementation groups suggests more significant change in copy number

in FA-L group patients than FA-A and FA-G group patients. Further evaluation of same sam-

ple size of each complementation groups can lead us to understand relevance of variations in

the significance of mtDNA copy number change among FA patients from different comple-

mentation group.

Mitochondrial dysfunction syndrome studies have been carried out using study of mtDNA

variations especially OXPHOS reaction complex-I (NADH dehydrogenase) and complex-III

(Cytochrome b) which pump electrons across inner mitochondrial membrane and generate

proton gradient, the potential gradient generated is then used by ATPase-6 complex to gener-

ate energy in the form of ATP. mtDNA variations of genes encoding OXPHOS complexes

have been studied and reported to form molecular pathology underlying the mitochondrial

dysfunction [19, 20]. In our study, 62.5% of synonymous and 37.5% of non-synonymous

changes have been observed in Complex-I subunits (ND1-ND6) and complex-III (CYTB)

encoding genes. These are studied for molecular changes in FA patients and majority of the

variations were result of transition changes in the nucleoside triphosphates (purine to purine

or pyrimidine to pyrimidine). mtDNA variations T4216C and 10398A allele in FA patients

suggest their association with mitochondrial dysfunction, as observed in other pathological

diseases [21, 22]. Various mitochondrial dysfunction diseases have been shown to have

impaired regulation in expression of mitochondrial Complex-I and Complex-III of OXPHOS

Table 3. Frequency (%) of transitions and transversions observed in different types of mtDNA variations.

Synonymous changes (n = 115) Non-synonymous changes (n = 69)

Transitions 112 (97.54%) 65 (94.20%)

Transversions 3 (2.46%) 4 (5.80%)

https://doi.org/10.1371/journal.pone.0227603.t003

Table 4. mtDNA non-synonymous variations of OXPHOS complex-I subunits and complex-III encoding genes.

Non-synonymous changes GENES AMINO ACID CHANGE Transition/ Transversion Frequency (%) X2 score p-value

4216 T>C ND1 Y-H Transition 14 4.7107 0.029976

4225 A>G ND1 M-V Transition 3 4.0313 0.044664

4917 A>G ND2 N-D Transition 2 5.6738 0.017221

5319 A>G ND2 T-S Transition 2 2.1978 0.138208

10398 A>G ND3 T-A Transition 44 4.5816 0.032317

14323 G>A ND6 N-I Transition 2 60 <0.05

https://doi.org/10.1371/journal.pone.0227603.t004
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genes [23, 24]. Gene expression study of OXPHOS complex-I and complex-III by real-time

PCR suggests significant downregulation of complex-I subunits (ND1 to ND6) encoding genes

and complex-III encoding genes. Various biochemical studies have been carried out for mito-

chondrial OXPHOS complex-I activity and have shown that the activity of complex-I is ham-

pered in FA-A group patients [5]. Thus mtDNA copy number changes together with

variations detected in mtDNA and qPCR study OXPHOS complex-I subunits and complex-III

encoding genes should be considered as mitochondrial dysfunction biomarkers to track deteri-

oration of mitochondrial associated phenotypes in FA patients.

Mitophagy is specific clearance of impaired mitochondria when cells are facing crisis. Cells

prefer to clear off impaired mitochondria rather than being submissive to the cellular crisis

and undergoing apoptotic cell deaths. Inefficient clearance of mitophagy events and accumula-

tion of impaired mitochondria have been studied in FA cell lines [25].We have observed no

significant changes in the expression of ATG12 and BECLIN1 genes. However, expression of

MAP1-LC3 gene was found to be upregulated by ~3-fold in FA patients compared to age

matched controls. The upregulated MAP1-LC3 (a useful autophagosomal marker) indicates

initiation of autophagy of impaired mitochondria but inadequate expression of ATG12 protein

(produces vesicle extension and completion in phagophore formation during mitophagy) and

BECLIN1 (plays a significant role in cellular homeostasis and cross-regulation between apo-

ptosis and autophagy) suggest incomplete clearance of dysfunctional mitochondria [26]. This

Table 5. mtDNA synonymous variations of OXPHOS complex-I subunits and complex-III encoding genes.

Synonymous changes Gene Amino acid change Transition/ Transversion Frequency (%) X2 score p-value

4769 A>G ND2 M-M Transition 9 131.2331 <0.05

10400 C>T ND3 T-T Transition 43 15.7051 0.000074

10873 T>C ND4 P-P Transition 25 52.0252 <0.05

11083 A>G ND4 M-M Transition 2 52.0252 <0.05

11467 A>G ND4 L-L Transition 5 1.8018 0.179495

11812 A>G ND4 L-L Transition 2 5.6738 0.017221

12007 G>A ND5 W-W Transition 7 0.5786 0.446865

12372 G>A ND5 L-L Transition 2 5.6738 0.017221

12705 C>T ND5 I-I Transition 7 108.4122 <0.05

14905 G>A CYTB M-M Transition 2 5.6738 0.017221

15043 G>A CYTB G-G Transition 16 82.0513 <0.05

15301 G>A CYTB L-L Transition 32 46.7532 <0.05

11251 A>G CYTB L-L Transition 2 5.6738 0.017221

https://doi.org/10.1371/journal.pone.0227603.t005

Fig 3. Study of mitophagy gene expression profiling. (a) Gene expression for ATG12, Beclin1 and MAP1-LC3 genes

(Refer S8 Table for p-values), (b) Expression fold change for mitophagy genes (ATG12, BECLIN1 and MAP1-LC3)

among FA patients of different complementation group (Refer S9 Table for p-values).

https://doi.org/10.1371/journal.pone.0227603.g003
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could be a reason for accumulation of impaired mitochondria in FA cells. No specific trend

was observed in expression of ATG12, Beclin1 and MAP1-LC3 genes in patients from different

complementation group, suggesting inefficient mitophagy to be a generalized event rather

than be associated with specific FA complementation group.

Changes in the mtDNA number (in 59% of FA patients), a high frequency of mtDNA varia-

tions (37.5% of non-synonymous variations and 62.5% synonymous variations) and downre-

gulation of mtDNA complex-I and complex-III encoding genes of OXPHOS (p<0.05) are

strong biomarkers for impairment of mitochondrial functions in FA. Deregulation of mito-

phagy genes (MAP1-LC3, p<0.05) suggests inability of FA cells to clear off impaired mito-

chondria. Accumulation of such impaired mitochondria in FA cells therefore may be the

principal cause for BMF and a plausible effect of inefficient clearance of impaired mitochon-

dria. In-vitro study of FA cell lines with mitophagy related gene silencing would strengthen the

basis of this hypothesis. Together these results shed light on involvement of impaired mito-

chondria and deregulated mitophagy in FA pathogenesis. This signifies the need of inclusion

of mitochondrial nutrients in the management strategies for FA patients.

Supporting information
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encoding and TFAM genes.
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Fig 4. Expression profiling study for OXPHOS complex-I subunits and complex-III encoding genes. (a) Gene

expression profiling for OXPHOS complex-I subunits and complex-III encoding genes in FA patients (Refer S10 Table

for p-values), (b) OXPHOS complex-I subunits and complex-III encoding gene expression in FA patients of different

complementation groups (Refer S11 Table for p-values).
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