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Abstract: Copper-containing coordination compounds attract wide attention due to the redox
activity and biogenicity of copper ions, providing multiple pathways of biological activity.
The pharmacological properties of metal complexes can be fine-tuned by varying the nature of the
ligand and donor atoms. Copper-containing coordination compounds are effective antitumor agents,
constituting a less expensive and safer alternative to classical platinum-containing chemotherapy,
and are also effective as antimicrobial, antituberculosis, antimalarial, antifugal, and anti-inflammatory
drugs. 64Cu-labeled coordination compounds are promising PET imaging agents for diagnosing
malignant pathologies, including head and neck cancer, as well as the hallmark of Alzheimer’s
disease amyloid-β (Aβ). In this review article, we summarize different strategies for possible use of
coordination compounds in the treatment and diagnosis of various diseases, and also various studies
of the mechanisms of antitumor and antimicrobial action.

Keywords: copper coordination compounds; antitumor drug; antibacterial agents; PET imagining
agents; mycobacterium tuberculosis; Alzheimer’s disease

1. Introduction

Metal-containing therapeutic agents comprise a fundamental class of drugs for treating tumors.
Although many metal-containing drugs based on gold, ruthenium, gallium, titanium, and iron are in
preclinical and clinical trials phases I and II [1], cisplatin and also second- and third-generation platinum
coordination compounds (carboplatin, oxalyplatin, and picoplatin) are still the most effective antitumor
agents used in clinical practice [2]. The clinical use of platinum-based drugs entails many severe side
effects, such as nephrotoxicity [3], neurotoxicity [4], and also ototoxicity and myelosuppression [5].

It is assumed that antitumor drugs based on endogenous metals (Co, Cu, Zn, and Fe) are less
toxic as compared with platinum analogues [6]. Copper-containing coordination compounds were
found to be promising antitumor therapeutic agents that act by various mechanisms such as inhibition
of proteasome activity [7,8], telomerase activity [9], reactive oxygen species (ROS) formation [10,11],
DNA degradation [12], DNA intercalation [13], paraptosis [14], and others.

Copper is an element of fundamental importance for the formation and functioning of several
enzymes and proteins, such as cytochrome C oxidase and Cu/Zn superoxide dismutase, which are
involved in the processes of respiration, energy metabolism, and DNA synthesis [15]. Most Cu(II)
coordination compounds quickly form adducts with glutathione in the cell medium, which leads to
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the formation of a coordination compound of monovalent Cu(I) capable of generating a superoxide
anion, which can induce ROS formation in a fenton-like reaction [16]. Due to high redox activity,
the therapeutic efficacy of copper coordination compounds is not limited to antiproliferative action.
Copper coordination compounds can be highly effective in treating viral infections [17], inflammatory
diseases [18], and microbial infections [19] by multiple mechanisms of action. A Cu(II) coordination
compound based on indomethacin is currently used in veterinary practice as an anti-inflammatory
drug [20].

Malignant and inflamed tissues metabolize an increased amount of copper as compared with
healthy tissues [21], which gives copper-containing coordination compounds an additional advantage
over other metal-containing drugs. Various delivery systems for copper-based therapeutic agents and
also for copper and chelating ligand separate delivery have been developed to enhance their delivery
into tumor tissues [22,23].

Development of novel copper coordination compounds with antitumor activity is a promising and
relevant area of medical chemistry [24–27]. A number of copper/Disulfiram-based drug combinations
are in recruiting clinical trials as inexpensive and highly effective antitumor agents for metastatic breast
cancer therapy and as diagnostic tools [28]. Their clinical success has triggered the development of
delivery and controlled release systems for copper coordination compounds, as well as a search for
novel copper-containing anticancer agents [29,30]. A brief and clear summary of promising in vivo
anticancer activity of this type of drugs, along with relevant and current clinical trials was reported by
Tabti1 et al. [31], but rapid development of copper-based therapy has caused rapid changes in clinical
data. In a search for methods to overcome the poor water solubility of copper complexes, Wehbe et al.
briefly summarized the use of copper complexes as antineoplastic agents [32]. However, after the
publication of a detailed high-quality review by Santini et al. [33], a small number of works examined,
in detail, the latest biological aspects of the use of copper complexes as therapeutic agents. Recently,
Ong et al. reported a metal application in tropical diseases treatment, expanding the understanding of
the applications of copper-containing coordination compounds [34].

In this review we provide a summary of different publications of recent years, paying attention to
the variety of biological studies on the therapeutic and diagnostic potential of copper coordination
compounds. We have emphasized the most abundant methods used to assess the mechanism of
antitumor action and other therapeutic effects. This review could be useful to researchers engaged
in medicinal application of copper-containing agents, affecting various uses of copper coordination
compounds such as anticancer, antituberculosis, antimicrobial, anti-inflammatory, antibacterial agents,
as well as PET-imaging agents for the diagnosis of malignant neoplasms and Alzheimer’s disease.

2. Copper Coordination Compounds Based on Ligands with Various Donor Atoms

2.1. N- and O-Donor Ligands

Casiopeínas comprise a family of copper coordination compounds with promising results for
treating colorectal cancer and acute myeloid leukemia. Several Casiopeínas compounds have shown
significant therapeutic efficacy, and two of them, Casiopeina III-ia 1 and Casiopeina II Gly 2 (Figure 1),
have underwent a number of clinical trials as drugs for the treatment of leukemia [35].
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Figure 1. Chemical structures of Casiopeina II-gly 1 and Casiopeina-III-ia 2.

Several hypotheses have been developed regarding the mechanism of action of Casiopeinas,
including ROS formation, phosphate hydrolysis, DNA damage, and DNA intercalation [36]. In addition,
one of the latest studies [37] of coordination compounds of the Casiopeínas class has shown an
antiproliferative effect in Giardia intestinalis trophozoite cultures, a pathogen causing an infectious
disease that affects residents of developing countries. The antiproliferative effect of coordination
compounds is explained by their ability to interact with the cell membrane and increase the ROS
concentration in the parasite from the first hours of exposure (2–6 h). It was found that these compounds
caused the death of trophozoite cells as a result of apoptosis. Guillermo de Anda-Jáuregui et al. recently
constructed a network with deregulated biological pathways featuring links between pathways that
crosstalk with each other. Through this approach, the following three features of Casiopeina treatment
were identified: (a) perturbation of signaling pathways related to apoptosis induction, (b) perturbation
of metabolic pathways, and (c) activation of immune responses [38].

Copper coordination compounds 3–5 with Schiff bases as ligands were obtained by condensation
of 5-dimethylcyclohexane-1,3-dione and a hydrazine derivative by Shoair et al. [39] (Figure 2).
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Figure 2. Ligand synthesis scheme and chemical structures of coordination compounds 3–5.

Coordination compounds 3–5 showed the ability to intercalate calf thymus DNA and also showed
cytotoxic activity on the cell lines of liver cancer HepG-2 (human liver cancer cell line of hepatocellular
carcinoma) and breast cancer MCF-7 (breast cancer cell line of invasive breast ductal carcinoma)
(Table 1). The toxicity of the ligands and their corresponding coordination compounds is comparable.
Complex 4 showed the greatest cytotoxic activity on MCF-7 cell lines.

The antimicrobial activity of ligands L3–L5 and Cu(II) complexes 3–5 were tested against bacteria
and fungi. All ligands and complexes were found to have antibacterial activity against Gram-negative
Escherichia coli (except 3), Gram-positive Staphylococcus aureus, and Candida albicans (Table 2).
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Table 1. MTT data of coordination compounds 3–5 and ligands L3–L5 after 72 h of incubation [39].

IC50, µM ± S.D.

Compound HepG-2 MCF-7 Compound HepG-2 MCF-7

L3 6.88 ± 0.5 27.19 ± 2.3 3 41.77 ± 2.7 26.57 ± 1.9
L4 7.60 ± 0.9 14.65 ± 1.5 4 11.80 ± 1.3 9.38 ± 1.0
L5 58.10 ± 3.4 63.13 ± 3.6 5 67.66 ± 3.8 46.75 ± 3.1

Table 2. Antibacterial and antifungal activities data of ligands L3–L5 and Cu(II) coordination
compounds 3–5 [39].

E. Coli S. Aureus C. Albicans

Compound
Diameter of
Inhibition
Zone (Mm)

%
Activity

Index

Diameter of
Inhibition
Zone (Mm)

%
Activity

Index

Diameter of
Inhibition
Zone (Mm)

%
Activity

Index

L3 13 52.0 18 78.3 21 80.8
L4 8 32.0 11 47.8 16 61.5
L5 6 24.0 5 21.7 8 30.8
3 3 12.0 8 34.8 14 53.8
4 9 36.0 16 69.6 19 73.1
5 NA —- 2 8.7 10 38.5

Ampicillin 25 100 23 100 NA —-
Cloitrimazole NA —- NA —- 26 100

Copper-containing antitumor agents, with Schiff-base ligands based on hydrazone with a
pyridine coligand, were investigated by QingYou Mo et al. [40]. Introducing N-containing coligands
such as imidazole, pyridine, quinoline, phenanthroline, and their derivatives can affect the
hydrophobicity, the geometry of the coordination compound, and consequently, the antitumor activity.
Copper coordination compounds 6–8 with Schiff-base ligands and also coordination compounds 9–11
containing pyridine as a ligand were obtained (Figure 3). Studies of antiproliferative activity showed
that introducing a pyridine coligand into the structure of the coordination compound increases
cytotoxic activity as expected. Coordination compounds 9–11 containing a pyridine coligand exhibit
antiproliferative activity in vitro with an IC50 ranging from 1.12 to 6.31 µM (MCF-7 breast cancer cells),
while non-coligand analogues 6–8 have an IC50 in the range from 3.66 to 18.61 µM (MCF-7 breast
cancer cell line of invasive breast ductal carcinoma).
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For coordination compounds 9–11, cytotoxicity studies were also conducted on cisplatin-resistant
lung cancer cell lines (A549cisR cisplatin-resistant lung cancer cell line of adenocarcinomic human
alveolar basal epithelial cells). High toxicity was shown with an IC50 in the range of 3.77 to 6.03 µM
(IC50 > 50 µM for cisplatin). Studies of the mechanism of the cytotoxic effect of coordination compound
11 showed that the drug causes DNA degradation, which triggers the mechanism of ROS-mediated
apoptosis of mitochondrial dysfunction.

D. Anu et al. reported tetra-nuclear mixed-valence copper (I/II) coordination compound 12 with
promising antitumor activity [41] (Figure 4). The structure of the obtained coordination compound
was confirmed by X-ray diffraction.
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A spectrophotometric study of DNA intercalation by ligand L12 and coordination compound
12 was performed by titration of a calf thymus DNA solution with the solutions of coordination
compound 12. The binding constants of L12 and coordination compound 12 were, respectively,
(2.34 ± 0.60) × 105 M−1 and (3.50 ± 0.73) × 105 M−1, indicating a weak interaction with the secondary
structure of DNA. BSA protein binding was confirmed by fluorescence titration. The antioxidant
activity of coordination compound 12 was proven by the ability to decrease the reduction of Mo(VI) to
Mo(V) and by, subsequent, formation of a complex at acidic pH. The ability of L12 and coordination
compound 12 to cause apoptosis in MCF-7 cells was proven by the acridine orange/ethidium bromide
(AO/EtBr) staining method.

Studies of antiproliferative activity on breast cancer cells MCF-7 and lung cancer cells A-549
showed an IC50 of 32 ± 1.0 µM (MCF-7 breast cancer cell line of invasive breast ductal carcinoma),
15 ± 1.5 µM (A-549 lung cancer cell line of adenocarcinomic human alveolar basal epithelial) for ligand
L12 and 25 ± 1.0 µM (MCF-7) and 12 ± 1.0 µM (A-549) for coordination compound 12.

2.2. N- and S-Donor Ligands

Elesclomol is an injectable chemotherapeutic agent ligand L13 with low molecular weight (Figure 5),
which demonstrated clinical efficacy in acute myeloid leukemia [42]. This drug is also at the first
stage of clinical trials as a therapeutic agent for leukemia [43]. Elesclomol has been proven to exert an
antitumor effect by forming a Cu(II) coordination compound in situ, and the corresponding coordination
compound causes oxidative stress inside the malignant cell. The redox reaction Cu(II)/Cu(I) disrupts
mitochondrial respiration and causes ROS formation. Ultimately, coordination of copper with the
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elesclomol ligand disrupts the production and metabolism of cellular energy and triggers the path of
mitochondrial apoptosis in tumor cells, leading to their death [44].
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An antitumor activity of the redox-active copper coordination compound was also confirmed in [45],
where the potential effectiveness of elesclomol in treating ovarian cancer was shown. The elesclomol
ligand showed antiproliferative activity on six cell lines of gynecological cancer with an IC50 of 0.173 µM
and an IC90 of 0.283 µM (tests were performed with Cu-preincubated cell lines).

Due to redox properties, copper coordination compounds not only are effective redox-active
antitumor agents but also are effective in treating bacterial and fungal infections. Tuberculosis (TB)
caused by Mycobacterium tuberculosis (Mtb) is an infection causing more deaths than acquired
immunodeficiency syndrome. First-line drugs, such as rifampicin, successfully coped with bacterial
pneumonia, but drug resistance requires seeking new chemotherapeutic agents. A new triple-drug
combination for treating TB is a combination of oxidant [46] and redox-active drugs [47] coupled with a
third drug with a different mode of action. Therefore, the redox activity of copper ions coupled with the
fact that the immune system uses copper to eliminate bacterial infections makes copper coordination
compounds promising antibacterial, and in particular, antituberculosis chemotherapeutic agents.

Recent studies by Ngwane et al. [48] demonstrated that elesclomol is relatively potent against Mtb
H37Rv with a minimum inhibitory concentration of 10 µM (4 mg/L). In addition, against multidrug
resistant clinical isolates of Mtb, it displays additive interactions with known tuberculosis drugs such as
isoniazid and ethambutol, and a synergistic interaction with rifampicin.

Controlled supplementation of elesclomol with copper leading to the formation of compound 13
in culture medium increased Mtb sensitivity by >65-fold. (Table 3)

Table 3. Effect of copper on antimycobacterial activity of ligand L13 against Mtb H37Rv [48].

Medium Used MIC (mg/L)

Middlebrook 7H9 * 4
Middlebrooks 7H12 * 4
HdB without CuSO4 >32

HdB (CuSO4 at 2 mg/L) 0.5

* amount of copper in medium was approximately 1 mg/L.

Cu-ATSM 14 is a biologically active copper coordination compound based on thiosemicarbazides
(Figure 6). This drug labeled with the radioactive isotopes 64Cu, 62Cu, and 60Cu was used as a PET
hypoxia imaging agent in head and neck cancer [49]. It demonstrated better results in clinical trials
than the 18-fluorodeoxyglucose used in clinical practice [50,51].

Drug accumulation in hypoxic areas is associated with redox transitions of Cu(II)/Cu(I).
Labeled with a radionuclide tag, Cu-ATSM 14 penetrated into cells by passive diffusion and underwent
glutathione reduction. Under normoxic conditions, the labile coordination compound Cu(I) is oxidized
by intracellular oxygen to the coordination compound Cu(II) and leaves the cell. In contrast, under
hypoxic conditions, the Cu(I) coordination compound dissociates into a ligand and a metal ion,
which binds to intracellular chaperone proteins leading to the accumulation of a radionuclide in
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hypoxic regions of tumors. The oxidation process of Cu(I) is so fast that a noticeable intracellular
reduction of Cu(II) ATSM occurs only in hypoxic (tumor) cells, while the drug leaves healthy cells
without any changes [52] (Figure 6).
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Coordination Cu-ATSM 14 also proved to be an effective drug capable of slowing the progression
of amyotrophic lateral sclerosis (ALS) disease and improving the respiratory and cognitive function of
patients. Currently, the drug Cu(II)-ATSM is undergoing clinical trials as a drug for the treatment of
ALS. Patient registration for phase III clinical trials of the treatment of this disease began in November
2019 in Australia [53].

Anjum et al. recently reported eight thiosemicarbazido-based Cu(II) complexes, Cu-ATSM
analogues 15–22, with promising antitumor activity [54] (Figure 7).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 38 
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The toxicity of Cu(II) complexes 15–22 could be decreased by co-incubation with the nontoxic Cu
chelator tetramolibdate (TM) or the antioxidant N-acetylcysteine (NAC), suggesting a mechanism of
Cu-induced oxidative stress. The redox behavior of Cu(II) complexes was also of interest. Depending on
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electron-donating effects of the di-substitutions on the diimine backbone, the Cu(II/I) redox potential
itself was changed, and the cytotoxicity changed as a result. The Cu(II/I) redox potential was also
proposed to govern the hypoxia selectivity of coordination compounds, but no selective toxicity under
hypoxic conditions was shown.

The ability of copper coordination compounds to successfully penetrate the blood-brain barrier
has inspired some researchers to create copper-based preparations for visualizing pathological changes
in Alzheimer’s disease. One of the major pathological hallmarks of the disease is the presence
of extracellular senile plaques in the brain, consisting of an insoluble aggregated peptide called
amyloid-β (Aβ), a 39−43 amino acid peptide [55]. Clinically used derivatives of benzothiazole, stilbene,
and stripylpyridine labeled with 18-fluorine or 11-carbon are used for PET imaging of plaques by
binding to a hydrophobic pocket of the peptide [56,57]. In addition, Zn2+ and Cu2+ cations have been
proven to promote aggregation of amyloid plaques, which provides them with an advantage in binding
to amyloid due to the increased consumption of these metals by amyloids [58,59].

A standard approach in developing Aβ PET imaging drugs is to modify a Cu-ATCM drug
with a benzothiazole/stilbene moiety, which ensures the binding of the drug to the amyloid plaque.
This developmental approach has been used by some Australian researchers (Figure 8).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 9 of 38 
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Hickey et al. [60] succeeded in designing a copper radiopharmaceutical Cu(II)-ATSM with
an appended stilbene functional group for Aβ plaque imaging. Binding of compounds 24 and 25
(coordination compound 23 was quite insoluble) to Aβ plaques was clearly evident as demonstrated
by epi-fluorescent microscopy. Aβ-specific 1E8 antibody was used as a control.

The biodistribution of coordination compounds 24 and 25 radiolabeled with 64Cu in wild-type mice
after intravenous tail injection (∼13MBq) displayed good brain uptake of coordination compound 25
(1.11% ID/g) at 2 min after injection, dropping to 0.38% ID/g at 30 min. This indicates that coordination
compound 25 can rapidly cross the blood-brain barrier of normal mice with a highly desirable fast
washout from the brain as anticipated with no Aβ plaques to trap the imaging agent. Micro-PET images
of pre-injected wild-type mice were also obtained.

The biodistribution of coordination compounds 27–30 radiolabeled with 64Cu in wild-type mice
showed the best brain uptake results for coordination compound 30 (1.54% ID/g at 2 min after injection,
dropping to 0.77% ID/g at 30 min). TEM images of Aβ1−42 model fibrils treated with compound 28 or
30 demonstrated dramatic changes in the structural morphology.

An alternative methodology is based on elemental mapping using laser ablation inductively
coupled plasma mass spectrometry LA-ICP-MS. A sample of nonradioactive isotopically enriched
65Cu-30 was used. Coordination compound 24 was used as a control. The benzofuran containing
complex 65Cu-30 appeared to bind with improved differentiation when compared with the
styryl-pyridine containing complex 65Cu-24 and potentially offered better sensitivity for amyloid.

On the basis of these results, radiolabeled copper coordination compound could be used to assess
amyloid pathology in AD patients using PET. The redox properties of copper ions, the ability to reduce
intracellularly, selective accumulation in hypoxic areas, blood-brain barrier penetration, and stability
in a blood flow provides copper-containing therapeutic agents features for use as not only therapeutic
but also diagnostic and theranostic agents.

2.3. N/N-Donor Ligands

Because pathogens with multidrug resistance are emerging and new effective antibiotics against
them are lacking, metal-containing coordination compounds have become of interest as antibacterial
agents. The effectiveness of copper coordination compounds in the treatment of bacterial and fungal
infections was mentioned above (coordination compounds 3 and 5 with antibacterial and antifungal
activity [39] and Escimolol-based coordination compound 13 in Mtb treatment [48]). A copper-based
coordination compound 31 with antimalarial activity against Plasmodium falciparum was developed
by [63] (Figure 9). The antimalarial activities in vitro of compound 31 and its ligand were respectively
estimated as ED50 = 0.13 and >30 mg / ml for coordination compound 31 and ligand L31.
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Beeton et al. reported nine copper coordination compounds 32–39 based on 1,10-phenanthroline
and also their platinum and palladium analogues compounds 40 and 41 with antimicrobial and
antibiofilm activity [64] (Figure 10).Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 11 of 38 
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The resulting coordination compounds showed higher antimicrobial activity as compared with free
ligands against Gram-positive and Gram-negative bacterial strains and also increased antibiotic activity
as compared with the standard preparation vancomycin against the clinical strain of methicillin-resistant
Staphylococcus aureus (MRSA) (Table 4).

Table 4. Minimal inhibitory concentrations and hemolitic activity of coordination compounds 32–41 [64].

Compound S. Aureus S. Aureus E. Jaecalis E. Coli P. Aeruginosa % Lysis Rbcs

MRSA252 MSSA209 NCTC775 NCTC86 ATCC27853 +/− (SD)

32 32 32 32 64 >128 2.0 (0.4)
33 32 32 8 64 >128 2.1 (0.1)
34 88 16 4 32 >128 2.6 (0.3)
35 8 4 2 32 >128 2.2 (0.7)
36 4 4 4 16 >128 2.5 (0.3)
37 4 4 4 16 >128 2.0 (0.3)
38 2 2 2 16 >128 3.1 (0.2)
39 2 2 2 16 >128 ND
40 128 32 4 16 >128 ND
41 64 64 16 32 >128 ND

Vancomycin 0.25 0.5 0.5 ND ND 2.6(0.2)
Chloramphenicol IG 16 4 2 128 ND

CuCl2*2H2O >128 >128 >128 >128 >128 2.0 (0.3)

The authors associated the action mechanism of coordination compounds 32–41 with interactions
with the bacterial chromosome, which led to a decrease in bacterial reproduction. The redox activity
of copper ions is dependent on the presence of reducing agents. This thiol is glutathione in most
Gram-negative bacteria and bacillithiol in several Gram-positive bacteria [65]. Coordination compounds
40 and 41 based on Pt and Pd do not show significant antimicrobial activity, which also indicates that
the antibacterial activity is associated with the redox/nuclease activity of copper ions.

Cu(II) coordination compounds 32–41 are less active than vancomycin on planktonic cells (Table 4)
and are relatively much more active on biofilms. Copper-induced DNA damage can lead to death
irrespective of the physiological state or growth rate of the bacterial cells.

Hence, copper coordination compounds can not only be effective synthetic antibacterial agents but
also more effective as compared with classical antibiotic therapy because of their mechanism of action.
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Brandão et al. reported Cu(II) coordination compounds based on thiochrome, the oxidized form of
vitamin B1, with promising cytotoxic activity [66]. The ligand was obtained by oxidizing thiamine with
copper (II) chloride. The resulting coordination compounds crystallize in the form of two structures,
compounds 42 and 43 (Figure 11). Biological studies on human colon adenocarcinoma cells Caco-2
showed that both compounds reduce the viability of these cells more than thiamine or thiochrome.
To investigate the mechanism responsible for the cytotoxic effect of compounds 42 and 43, the authors
tested the alleged involvement of changes in oxidative stress levels. By adding N-acetylcysteine, they
ruled out ROS formation, which ultimately showed no change in the cytotoxic effect of compound 42
and only a slight decrease in the cytotoxicity of compound 43. Therefore, oxidative stress does not seem
to play an important role in the mechanism of biological action of these compounds, which indicates
that the ability to generate ROS is important but is not always the main mechanism of the cytotoxic
action of copper coordination compounds. A comparison of the cytotoxic activity of these compounds
on cell lines (IC50 = 146 µM for compound 42 and IC50 = 191 µM for compound 43) with cisplatin
(IC50 = 274 µM) shows that these copper coordination compounds are more effective on human colon
adenocarcinoma cell line of heterogeneous human epithelial colorectal adenocarcinoma Caco-2.
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Krasnovskaya et al. [67] reported a Cu(II) coordination compound 44 based on 2-aminoimidazolone
with promising antitumor activity (Figure 12). Coordination compound 44 showed antiproliferative
activity higher than cisplatin (IC50 MCF-7 13.67 ± 0.81 µM).
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Figure 12. Chemical structure of coordination compound 44.

Three copper complexes with potential anticancer and nonsteroidal anti-inflammatory
activity were reported by Hussain et al. [68] (Figure 13). Coordination compounds 45–47 with
benzimidazole-derived scaffolds were synthesized in accordance with the following scheme. In addition
to antitumor activity, the compounds were proposed as potential candidates for NSAIDs.
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Figure 13. Ligand synthesis scheme and chemical structure of coordination compounds 45–47.

Human serum albumin (HAS) binding of compounds 45–47 was evaluated using HAS fluorescence
quenching in the presence of coordination compounds. The results showed that the KSV values (slope of
the Stern–Volmer plots) were of the order of 105, thus indicating strong quenching.

An Annexin/FITC assay showed that the three complexes 45–47 exhibited an increase in apoptotic
cells to a significant level followed by necrosis. Glutathione depletion along with ROS formation in
MCF-7 cells after treatment with coordination compounds 45–47 was also shown. The interaction of
complexes with COX-2 inhibitor was also confirmed, which can be a mechanism of action of these
potential NSAIDs. Coordination compounds 45–47 were tested in vivo on albino rats and mice for
anti-inflammatory, antipyretic, and analgesic activities. The results showed that 45 and 47 have
significant dose-dependent anti-inflammatory and analgesic activities at a lower concentration.

Sliwa et al. reported synthesis, characterization, and biological activity of three water-soluble
copper(II) complexes [Cu(NO3)(PTA=O)(dmphen)][PF6] 48, [Cu(Cl)(dmphen)2][PF6] 49,
and (Cu(NO3)2(dmphen)) 50 [69] (Figure 14).

The cytotoxic activity of compounds 48–50 was evaluated on the normal human dermal fibroblast
(NHDF), human lung carcinoma (A549), epithelioid cervix carcinoma (HeLa), colon cancer cell line of
supraclavicular lymph node metastasis (LoVo), and breast cancer cell line of invasive breast ductal
carcinoma (MCF-7) cell lines (Table 5). All coordination compounds were more active than cisplatin
but, expectedly, showed no significant selectivity to healthy cells. The interaction of compounds 48–50
with human apo-transferrin, causing a conformational change of the protein, was also proved using
fluorescence and circular dichroism spectroscopy.

Table 5. MTT data of coordination compounds 48–50 after 72 h of incubation [69].

IC50, µM ± S.D.

Cell Line/Compound 48 49 50 Cu(NO3)2 PTA = O Dmphen CDDP

NHDF 0.57 ± 0.08 0.23 ± 0.03 1.72 ± 0.25 310 ± 47 Nd nd 16.6 ± 2.1
A549 0.29 ± 0.01 0.28 ± 0.04 0.43 ± 0.06 155 ± 23 Nd nd 33.3 ± 4.2
HeLa 1.12 ± 0.16 1.13 ± 0.17 0.43 ± 0.06 19.1 ± 2.9 Nd 720 ± 108 16.6 ± 3.1

MCF-7 0.57 ± 0.08 0.57 ± 0.08 3.45 ± 0.51 155 ± 23 Nd nd 33.3 ± 4.2
LoVo 0.57 ± 0.08 1.13 ± 0.17 1.72 ± 0.25 38.8 ± 5.8 Nd 360 ± 54 9.12± 0.005
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Flow cytometry was conducted for accessing the apoptosis rate of U87 cells treated with compounds
51–57 after 24 h. All the complexes, except compound 54, significantly induced apoptosis in U87 cells.
The ability of compounds 51–57 to inhibit cancer cell growth by induction of cell cycle arrest was also
estimated. Treatment of U87 cells with compounds 51–57 caused a marked arrest of G1, a growth phase
that plays a key role in cell cycle progression and ensures that DNA is ready for synthesis. To validate
the hypothesis that 51–57 triggered apoptosis in treated U87 cells by the effect on the expression level
of apoptotic and anti-apoptotic genes, an RT-PCR assay was conducted. The results obtained showed
an increased level of caspase-independent apoptosis genes including P53, P21, Bid, and Bax in U87
cells after treatment by all the complexes except compounds 54 and 55. The level of anti-apoptotic
genes Bcl-2 and Bcl-xL was markedly inhibited in the presence of compounds 55 and 56.

The investigation of the antitumor activity of Cu(I) coordination compounds 51–57, thus,
demonstrated an inhibition of cell growth, cell cycle progression, migration ability, and expression
level of anti-apoptotic genes and an induced apoptosis, necrosis, and expression level of apoptotic
genes in a dose- and time-dependent manner in treated U87 cells.

Kacar et al. reported coordination compound 58 based on a pyridyl-fluorobenzimidazole
scaffold [71] (Figure 16).
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Compound 58 showed antiproliferative and apoptotic effects on NIH/3T3 normal fibroblast cells
and on SPC212 mesothelioma and DU145 prostate cancer cells. The most significant IC50 values were
found against DU145, i.e., 37.0, 21.1, and 10.0 mM for the 24, 48, and 72 h treatments, respectively.
A dose-dependent increase of pro-apoptotic Bax protein in DU145 preincubated with coordination
compound 58 was observed.

Majouga et al. reported mixed-valence Cu(II/I) copper compounds based on 2-thioimidazolones
with promising antitumor activity [72] (Figure 17).
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An MTT test on MCF-7 (breast cancer cell line of invasive breast ductal carcinoma), SiHa (human
cervical cancer cells with the modal chromosome number of 71), and HEK 293 (human embryonic
kidney cell line) cell lines showed promising antitumor ability of compounds 59–62 (Table 7). The ability
of compound 60 to damage DNA was confirmed by tunnel assay. Compound 60 also proved to be an
effective telomerase inhibitor. Nuclear accumulation of labeled coordination compound 63 was proven
using fluorescent microscopy.

Table 7. MTT data of coordination compounds 59–62 after 72 h of incubation [72].

IC50, µM ± S.D.

Compound MCF-7 SiHa HEK293

59 3.7 ± 1.6 3.0 ± 0.2 2.5 ± 0.4
60 2.1 ± 0.8 2.2 ± 0.7 2.3 ± 0.9
61 7.4 ± 1.4 3.9 ± 2.3 25.3 ± 1.2
62 13.4 ± 3.8 8.5 ± 0.4 12.7 ± 3.7

Dox 2.1 ± 0.8 2.0 ± 0.8 1.1 ± 0.1
CDDP 64.1 ± 3.9 - 12.4 ± 3.9

An in vivo investigation of antitumor activity was conducted using breast adenocarcinoma Ca-755
inoculated into mice lines C57BL/6 (female). Treatment began 48 h after vaccination with compound 60
(24 and 12 mg/kg/d) injected intraperitoneally at 24-h intervals for five days. Indicators of tumor
growth inhibition for mice with a course of the test substance at a dose of 12 mg/kg was 46.1% on day
seven after the end of treatment and 36.1% on day 14 after the end of treatment. For a dose of 24 mg/kg,
it was 73.5% on day seven after the end of treatment and 59.5% on day 14 after the end of treatment,
animal’s body weight loss did not exceed 10%. Telomerase inhibitor compound 60, thus, proved to be
an effective antitumor agent.

2.4. S/S-Donor Ligands

The cytotoxic activity of copper coordination compounds can occur both when a coordination
compound solution is administered in vivo/in cell and when a nontoxic ligand is administered with
the cytotoxic coordination compound forming in situ (this approach has already been described for
elesclomol in Section 2.2). Another example of the formation of a coordination compound during
therapy is disulfiram (DSF), an FDA-approved drug for treating alcoholism. In recent years, the drug
has attracted much attention as an antitumor inducer of ROS formation acting in combination with
copper gluconate [73]. Disulfiram alone has a negligible effect on tumor cells, but in the presence of
Cu(II) ions in a nanomolar range, it is effective against a wide range of tumor cell lines, as shown
in [74]. In vivo administration of folate-targeted nanoparticles with encapsulated DSF to animals
with subcutaneous models of breast cancer led to a decrease in tumor growth [75]. It was repeatedly
shown [76] that the cytotoxic effect of the DSF emerges as a result of in situ formation of the
coordination compound Cu-DSF. But a thorough study of DSF metabolism led to the conclusion that
the coordination compound Cu-DSF does not in fact exist [77]. It was found in [78] that even in an
aqueous solution, DSF does not form a coordination compound with copper and in fact decomposition
into diethyldithiocarbamate (DDC) occurs. The resulting diethyldithiocarbamate (DDC) reacts with
Cu(II) to form copper diethyldithiocarbamate 64, Cu(DDC)2 (Figure 18).
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Dithiocarbamates are a known class of copper chelating agents that exhibit significant antitumor
activity in vitro against various tumor cell lines [79]. We note that the use of DSF in combination
with copper gluconate is in clinical trials as a breast cancer treatment scheme [80]. Liu et al. studied
the mechanism of action in detail and reported that the disulfiram/copper mixture inhibits Bcl2 and
induced Bax protein expression in all GBM cell lines, induces ROS activity, activates the apoptosis
JNK pathway, causes ROS-dependent activation of the JNK and p38 pathways, and inhibits NFkB and
ALDH activity [81]. In a comment to Liu et al., Cvek recalled successful trials for breast cancer using
diethyldithiocarbamate in 1993 [82] and called for a return to undeservedly forgotten clinical trials of
this inexpensive and effective drug [83]. Accordingly, Cvek, disulfiram could be used for treating brain
tumors and even other cancers.

At present, DSF/Cu antitumor activity is still of interest. Duan et al. proposed synergistic
breast tumor therapy via codelivery of doxorubicin and disulfiram cell killing using pH-sensitive
core-shell-corona nanoparticles [84].

In vivo antitumor efficacy was proved using 4T1 tumor-bearing mice. The tumor inhibiting
rate was 34.81% for the DSF-treated group, 68.27% for the DOX-treated group, 80.92% for the
DSF + DOX-treated group, and 89.27% for the Co-NPs-treated group.

Wencheng Wu published a delicate pH-sensitive Cu/DSF delivery approach based on constructing
mesoporous silica nanoparticles enriched with covalent-bonded Cu2+ ions and physically bonded
DSF [85]. Under mild acidic conditions of the tumor microenvironment, a rapid biodegradation of
nanoparticles was assumed to occur with subsequent Cu2+ and DSF release and an instantaneous
chelation reaction leading to the formation of a cytotoxic agent. This approach was successfully tested,
proving its efficacy in vitro and in vivo. Treating 4T1 tumor-bearing female BALB/C nude mice with
3.75 mg/kg of DSF dose (as part of the developed formulation) led to 71.4% tumor growth inhibition
after two weeks of treatment, and no significant body-weight changes was observed.

Yiqiu Li et al. reported a DSF/Cu combination to induce anti-NPC activity through a joint
action of multiple apoptosis pathways, such as an increasing chloride channel-3 protein expression,
inducing ROS production, and decreasing NF-KB-p65 expression [86], and inhibiting the expression of
α-SMA in cancer-associated fibroblasts (CAFs) [87]. In vivo, DSF/Cu combined with cisplatin (CDDP)
therapy was well tolerated and could significantly suppress the growth of nasopharyngeal (NPC)
tissues [88]. McMahon et al. recently summarized all drug-delivery approaches and formulations for
DSF/Cu combinations [89]. Several active clinical trials testing the anticancer efficacy of DSF against
various cancers are underway, such as germ cell tumor treatment [90] and breast neoplasm female and
metastatic breast cancer [80,91]. Therefore, Disulfiram is a copper-based antitumor drug with great
therapeutic potential for treating malignant tumors.

Zinc pyrithione is an agent with antimicrobial activity [92]. The ligand pyrithione itself has no
antiproliferative activity, but copper coordination compound 65 based on it demonstrated antitumor
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activity [93] (Figure 19). A study of cytotoxicity of compound 65 on breast cancer cells (MCF-7) showed
significant activity of the coordination compound with IC50 = 0.375 µM. Activity was also detected in
U266 multiple myeloma cells with IC50 = 0.130 µM and in HepG2 liver cells with IC50 = 0.495 µM.
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The cytotoxic effects of compound 65 were evaluated ex vivo on bone marrow cells from patients
with acute myeloid leukemia (AML) and on mononuclear cells from peripheral blood of healthy
volunteers. In AML patients, (CTR) CuPT and Bortezomib, respectively, reduced the viability of
primary monocyte cells with an average IC50 of 57.03 and 20.50 nM, while in an experiment with healthy
cells (CTR), the average IC50 was respectively estimated at 101.08 and 74.23 nM. A 12-h incubation of
AML cells with coordination compound 65 in doses ranging from 0.25 to 0.75 µM led to apoptosis,
which was shown by staining with annexin V/PI by flow cytometry. Coordination compound 65, thus,
showed efficacy in AML therapy as compared with clinically used Bortezomib.

2.5. N-, O-, and S-Donor Ligands

The antitumor activity of copper coordination compounds with thiosemicarbazone has been known
since the 1960s. Zhang H et al. reported Cu(II) coordination compound 66 with thiosemicarbazide
8-hydroxyquinoline-2-carboxaldehyde Cu(HQTS) and 67 8-hydroxyquinoline-2-carboxaldehyde-
4,4-dimethyl-3-thiosemicarbazide Cu(HQDMTS) (Figure 20) [94]. An IC50 of 0.13 µM for compound 66
and 0.64 µM for compound 67 was obtained as a result of a study on SK-N-DZ neuroblastoma
cell populations.
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Hancock et al. reported simultaneous administration of a thiosemicarbazone copper-chelating
agent in combination with a copper salt [95]. In situ formation of a cytotoxic coordination compound
was assumed, as in the case of Disulfiram and elesclomol (Figure 21). A study of the cytotoxic effect of
thiosemicarbazone ligand L68 in combination with an equimolar amount of copper chloride showed
the induction of a cytotoxic effect by oxidative stress, glutathione depletion, and ROS formation.
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In vivo toxicological studies have shown that the administration of 100 mg/kg of ligand in 100%
DMSO does not lead to a decrease in tumor mass in mice. An equimolar mixture of a ligand L68 with
copper chloride in mice showed the maximum tolerated dose of 15 mg/kg, and the administration of
3 mg/kg intravenously two times a day during five days resulted in a significant (42%) decrease in
tumors (human leukemia cell line HL60), with less than 20% body weight loss. An ability to deplete
glutathione in the cell by the same mechanism as arsenic oxide (As2O3) was also proven. The authors
suggested that a combination of ligand L68 with a copper salt can be used in conjunction with classical
chemotherapeutic agents (cisplatin or Bortezomib).

Carcelli et al. reported synthesis and the cytotoxic activity of Cu(II) coordination compounds with
variously substituted salicylaldehyde thiosemicarbazone ligands [96] (Figure 22). Inhibition doses in
the low nanomolar range were found in some cases.
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Figure 22. Synthesis scheme and chemical structure of coordination compounds 69–74.

The in vitro activity of copper complexes on a pair of human colon cancer cell lines
(LoVo/LoVo-OXP) showed anticancer activity of the coordination compounds including on the
oxaliplatin-resistant human colon cancer cell line of supraclavicular lymph node metastasis cell line
LoVo-OXP (Table 8).

Table 8. MTT data of coordination compounds 69–74 after 72 h of incubation [96].

IC50, µM ± S.D.

Compound LoVo LoVo-OXP

69 0.031 ± 0.001 0.004 ± 0.001
70 0.029 ± 0.008 0.030 ± 0.010
71 0.036 ± 0.009 0.008 ± 0.002
72 0.020 ± 0.001 0.020 ± 0.001
73 0.21 ± 0.08 0.09 ± 0.01
74 0.030 ± 0.001 0.02 ± 0.01

Oxaliplatin 2.17 ± 1.37 13.92 ± 1.68

Three-dimensional MTT tests on colorectal adenocarcinoma cell line HCT-116, human pancreatic
adenocarcinoma cell line PSN-1 spheroids also showed a high antiproliferative activity of coordination
compounds 69–74 and a significant efficacy as compared with cisplatin (Table 9).



Int. J. Mol. Sci. 2020, 21, 3965 19 of 37

Table 9. MTT on three-dimensional (3D) spheroids of HCT-15 and PSN1 cancer cell spheroids of the
coordination compounds 69–74 [96].

IC50, µM ± S.D.

Compound HCT-116 PSN-1

69 1.08 ± 0.38 0.90 ± 0.02
70 3.56 ± 1.67 1.17 ± 0.11
71 1.25 ± 0.98 0.90 ± 0.30
72 1.17 ± 0.62 0.94 ± 0.27
73 1.69 ± 0.45 1.18 ± 0.23
74 1.28 ± 0.62 0.91 ± 0.01

CDDP 68.20 ± 4.57 52.60 ± 3.78

Cellular uptake and distribution were estimated using ICP-MS. A direct correlation between
cellular accumulation and cytotoxic potency was not found by comparing uptake and cytotoxicity data
in LoVo human colon cancer cells. Compounds 69–71 accumulated, substantially, in the mitochondria
fraction and to a lesser extent in cytosolic fractions.

To estimate if compounds 69–74 cause DNA damage, DNA fragmentation was evaluated using
alkaline single-cell gel electrophoresis (comet assay), and no DNA fragmentation was observed.
In addition, no glutathione depletion was observed, and an ROS evaluation confirmed that TSC
complexes did not provoke a substantial increase of cellular ROS levels. Therefore, the promising
antitumor activity of these coordination compounds is not associated with the redox activity of copper
ions. In clarification of the mechanism of cytotoxic action, the complexes were found to inhibit the
protein disulfide isomerase (PDI) enzyme. Therefore, it was hypothesized that the coordination
compounds 69–74 interfere with PDI activity, possibly inhibiting its disulfide bond catalytic activity.

The in vivo antitumor activity of compound 69 was evaluated in a solid tumor model, the highly
aggressive syngeneic murine Lewis lung carcinoma (LLC). Tumor growth inhibition induced by
compound 69 was compared with that of cisplatin (Table 10).

Table 10. In vivo antitumor activity of coordination compound 69 (cisplatin as a control) on Lewis lung
carcinoma (LLC) tumor-bearing mice [96].

Daily Dose
(Mg/Kg)

Average Tumor Weight
(Mean ± S.D., G)

Inhibition of Tumor
Growth (%)

Control - 0.459 ± 0.130 -
69 3 0.239 ± 0.080 48.0
69 6 0.118 ± 0.090 74.3

CDDP 1.5 0.114 ± 0.080 75.2

A 6 mg/kg dose of coordination compound 69 induced tumor growth inhibition of about 74%,
similar to cisplatin dosed at 1.5 mg/kg, but the time course of changes in body weight indicated
that cisplatin induced elevated anorexia. In contrast, treatment with compound 69 did not induce a
substantial body weight loss (<10%) throughout the therapeutic experiment. Once again, these results
confirm the higher biocompatibility of copper-containing anticancer drugs as compared with classical
platinum therapy.

Kongot et al. developed Cu(II) coordination compound 75 based on a ligand obtained by
the reaction between S-benzyldithiocarbamate and 2-hydroxy-5-(phenyldiazenyl)benzaldehyde [97]
(Figure 23). The ability of compound 75 to bind to bovine serum albumin (BSA) was tested
using its own fluorescence quenching method (titration of a protein solution with a solution of
a coordination compound). The binding constant of coordination compound 75 calculated using the
Benesi–Hildebrand equation was Ka = 0.94 × 104 M−1, which indicates a significant binding energy.
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The authors believe that the most probable reason for this affinity is the hydrogen bond between the
amino groups of the amino acid residues of the protein and the phenolic oxygen of the ligand.
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The cytotoxic activity of coordination compound 75 and the corresponding ligand was studied
on human cervical cancer cells HeLa. Significant cell death was achieved in the concentration range
of 2–10 µM. The calculated IC50 values were 4.46 µM for coordination compound 75 and 5.34 µM
for the corresponding ligand. The selectivity of the drugs obtained was evaluated by comparing the
cytotoxicity of the obtained compounds on healthy human cells HEK-293, which showed a rather high
cell death at a concentration of 10 µM. On the basis of the obtained data, CC50 = 6.31 µM for coordination
compound 75 and 10.90 µM for the ligand were calculated. Thus, coordination compound 75 was
found to be selective for healthy cells at a concentration of IC50 = 4.46 µM obtained on HeLa cell lines,
which also confirmed the selectivity of the coordination compound with respect to tumor cells.

2.6. Phosphine-Donor Ligands

Cu(I) phosphine-based coordination compounds attract wide attention due to high cytotoxicity,
antibacterial, and anti-inflammatory properties [98]. The use of a phosphine ligand prevents oxidation
and hydrolysis reactions due to a strong copper–phosphine interaction [33], which allows stabilization
of copper in a monovalent state, providing divers biological activity.

Khan et al. [99] reported nine copper Cu(I) complexes based on thiphenilphosphine and thiourea
(Figure 24).
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The synthesized compounds were utilized in different biological assays, which showed
antibacterial, antifungal, antilieshmanial, antioxidant, and cytotoxic properties against brine shrimps.
Compounds 79 and 81 proved to be the most active molecules against bacteria, fungi, and the
lieshmanial pathogen, in addition to having an excellent antioxidant activity.
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Tapanelli et al. [100] reported two water-soluble Cu(I) phosphonate complexes compounds 84
and 85, which showed activity against Plasmodium early sporogonic (Figure 25).
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Figure 25. Chemical structure of coordination compounds 84 and 85.

Coordination compound 84 with a more hydrophilic and less bulky tris(hydroxymethyl)phosphane
showed inhibition of plasmodia growth at an early stage of the disease up to 85 percent, while a
sterically bulk coordination compound 85 acted two to three times weaker in different replicas. At the
same time, when the dose was reduced from 100 µM, the therapeutic effect disappeared completely.
For similar gold and silver compounds, inhibition of parasite growth in 80–85% occurred already at
concentrations of 10 µM.

Mashat et al. [101] reported four Cu(I) phenanthroline-phosphine coordination compounds 86–89
(Figure 26).
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Figure 26. Chemical structure of coordination compounds 86–89.

Coordination compounds 86–89 showed DNA intercalation ability. Strong DNA binding is
provided by triphenylphosphine ligands with a substituent at the 4-position of the phenyl ring capable
of forming hydrogen bonds. Coordination compounds 86–89 showed IC50 values of 25–91 µM on the
MCF-7 cell line. The highest cytotoxicity was observed for compounds 87 and 89, which showed the
strongest binding to DNA.

Komarnicka et al. [102] reported four novel Cu(I) complexes based on
hydroxymethyldiphenylphosphine 90–93, and four mixed sparfloxacin (HSf), i.e.,
hydroxymethyldiphenylphosphine coordination compounds 94–97 (Figure 27).

The cytotoxicity of the complexes synthesized and ligands (diimines, phosphines and phosphine
oxides as potential decomposition products), starting compounds (CuNCS and CuI) was tested in vitro
towards two cancer cell lines, i.e., mouse colon carcinoma (CT26) and human lung adenocarcinoma
(A549). All tested complexes showed greater cytotoxicity than the corresponding ligands and copper
iodide. In the case of the A549 line, dmp complexes compounds 90 and 91 ~25 mkM were twice as
active as the bq complexes compounds 92 and 93 ~75 mkM. The activity against CT26 was slightly
higher but was similar for both types of complexes.

It was shown that the penetration of complexes into cells proceeds quickly and an increase in
the incubation time of cells with drugs from 4 h to 24 h does not lead to an increase in cytotoxicity.
Sparfloxacin moiety introduction into the structure of the phosphine ligand led to a two-fold increase
in toxicity on both cell lines.
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3. Drug-Based Copper Coordination Compounds

The redox activity of copper cations along with their therapeutic efficacy, biogenicity, and ability to
coordinate with various donor atoms opens up possibilities for synthesizing coordination compounds
based on FDA-approved clinically used drugs with resultant target molecules having multiple biological
effects. Copper coordination compounds based on ciprofloxacin [103], isoniazid [104], doxorubicin [105],
indomethacin [106], and clioquinol [107] have been described. Coordination of copper cations with
a drug molecule can change the pharmacodynamics of the drug and also enhance and complement
therapeutic activity. A copper-containing gel based on indomethacin has shown increased activity
as a local anti-inflammatory agent as compared with indomethacin [108]. A Cu(II) coordination
compound based on indomethacin is capable of activating a copper-dependent opioid receptor and
has a more effective analgesic effect than morphine with adjuvant arthritis after subcutaneous and oral
administration [109].

Cu(II) coordination compound 98 with the anti-inflammatory drug Diclofenac was described
by [110] (Figure 28). Diclofenac is one of the first anti-inflammatory NSAIDs used in medicine.
Epidemiological studies have shown that chronic inflammation predisposes patients to the development
of tumor diseases and that the long-term use of non-steroidal anti-inflammatory drugs reduced the
risk of developing malignant neoplasms.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 24 of 38 
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The cytotoxic effect of compound 98 was evaluated using the Uptiblue test on the following four
human cell lines: human dermal fibroblast (HDF), human keratinocyte cell line HaCaT, and human
colon adenocarcinoma cell lines SW620 and HT29. A comparison of the cytotoxic activity of the
initial Cu(II) salt, Diclofenac, and coordination compound 98 ([Cu(diclofenac)2(H2O)2]) showed that
the initial compounds have no cytotoxic activity (survival on tumor cell lines does not exceed 70%
at a concentration 200 µM), while coordination compound 98 exhibits cytotoxicity on human colon
adenocarcinoma cell lines SW620 and HT29 with the respective IC50 of 100 and 93 µM. Compound 98
([Cu(diclofenac)2(H2O)2]) is also the first Diclofenac-based coordination compound synthesized in a
100% aqueous medium.

Fenoprofen is a non-steroidal anti-inflammatory drug, a propionic acid derivative with
anti-inflammatory, analgesic, and antipyretic effects. Gumilar et al. reported Cu(II) coordination
compounds based on fenoprofen, caffeine, and DMF as coligands [111] (Figure 29). The coordination
compounds Cu2(Fen)4(caf)2 (Fen-fenoprofenate anion; caf-caffeine) 95 and Cu2(Fen)2(DMF)2 96 have
an analgesic effect, confirmed by studies in vitro and in vivo.
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Figure 29. Chemical structure of coordination compounds 99 and 100 based on the NSAID
drug fenoprofen.

The analgetic properties of coordination compounds 99 and 100 were also of interest. The visceral
analgesic action on acetic acid-induced pain of both complexes was five to seven times more potent
than fenoprofen salt at the same fenoprofen dose (20 mg/kg). Moreover, both complexes showed
longer onset and shorter duration of writhing than fenoprofen salt (data not shown). This indicates
that compounds 99 and 100 present a strong analgesic activity for visceral pain.

Kovala-Demerzi et al. reported coordination compound 101 based on mefenamic acid
([Cu (Mef)2(H2O)]2) [112] (Figure 30). The cytotoxic activity of coordination compound 101 was
tested in vitro on breast cancer cell line of invasive breast ductal carcinoma MCF-7, human bladder
carcinoma cell line T24, lung cancer cell line of adenocarcinomic human alveolar basal epithelial cells
A-549, and the mouse fibroblast cell line L-929. Coordination compound 101 exhibited greater cytotoxic
activity as compared with the NSAID mefenamic acid (IC50 increased by two to six times). The IC50

values shown for 101 on the MCF-7 and L-929 tumor cell lines were compared with cisplatin (IC50

values were less than for cisplatin by 2.8 times for MCF-7 and 8.0 times for L-929). The coordination
of mefenamic acid with copper (II) leads to the formation of an octahedral coordination compound,
an increase in the cytotoxic activity of the initial ligand, and also new modes of cytotoxic action.
Unfortunately, the low solubility of compound 101 prevents measuring anti-inflammatory effects
in vivo.
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Figure 30. Chemical structure of coordination compound 101 based on the NSAID mefenamic acid.

Xiangchao Shi et al. developed copper (II) coordination compounds 102 and 103 based
on a phenanthroline derivative and aspirin [113] (Figure 31). Compound 102 effectively induces
mitochondrial dysfunction and promotes early apoptosis in ovarian cancer cells. It also inhibits
the expression of cyclooxygenase-2 (COX-2), a key enzyme involved in the inflammatory response.
A similar coordination compound 103 CuL without an aspirin ligand has a similar effect on cell redox
homeostasis and cell cycle progression, but its cytotoxic activity is relatively low because its effect on
mitochondrial function is mild and it cannot inhibit COX-2.
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Figure 31. Synthesis scheme of copper coordination compounds 102 and 103 with mixed phenanthroline
and the NSAID aspirin.

The IC50 value on ovarian cancer cell line of ovarian serous cystadenocarcinoma SKOV-3, cervical
cancer cell line HeLa, and human normal kidney cell line HK-2 for coordination compound 102 is
10–30% less than that of compound 103, which does not contain an aspirin fragment, and three to
five times less than that of the ligand (Table 11). Coordination compound 102 was shown to have an
antiproliferative effect through DNA degradation and mitochondrial dysfunction. The introduction
of the aspirin moiety not only increases the antitumor efficacy of the drug but also reduces the
inflammatory threat.



Int. J. Mol. Sci. 2020, 21, 3965 25 of 37

Table 11. MTT data of coordination compounds 102 and 103, and the phenanthroline ligand after 72 h
of incubation [113].

IC50, µM ± S.D.

Compound SKOV-3 HeLa HK-2

102 (with aspirin) 1.1 ± 0.6 1.5 ± 0.5 4.4 ± 0.5
103 (without aspirin) 1.5 ± 0.4 1.8 ± 0.5 4.6 ± 0.8

L102 5.4 ± 1.2 6.8 ± 1.2 12.3 ± 1.6

The COX-2 level in lipopolysaccharide-stimulated RAW macrophages was investigated on a
flow cytometer after treatment with coordination compounds 102 and 103, and the anti-inflammatory
potential of coordination compound 102 was confirmed.

Nitroimidazole derivatives are widely used drugs with multiple pharmacological effects such as
antifungal [114], antibacterial [115], and cytotoxic [116]. They also represent a class of hypoxia
indicators that have been investigated for hypoxia-selective cytotoxicity and radiosensitization of
hypoxic cells [117]. The effectiveness of these molecules depends on the generation of a nitroradical
anion by intracellular reduction, which makes 5-nitroimidazoles suitable for penetration into cells by
passive diffusion, creating a favorable concentration gradient. Once inside the cell, the nitroradical
anion interacts with DNA and destroys the double helix. Cu(II) coordination compounds 104 and
105 and Cu(I) coordination compounds 106 and 107 with ligands based on 5-nitroimidazole were
synthesized in [118] (Figure 32).
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Figure 32. L104 and L105 ligand synthesis scheme and the chemical structures of coordination
compounds 104–107 based on the antifungal drug Metronidazole.

MTT tests on oxaliplatin-resistant and non-resistant human colon cancer cell line of supraclavicular
lymph node metastasis LoVo-OXP and LoVo of compounds 104–107 showed a significant increase
of antiproliferative activity of Cu(II) compounds 104 and 105 and Cu(I) compounds 106 and 107 as
compared with ligands in monolayer cultures of various lines of human tumor cells. Water-soluble
Cu(I) coordination compound 106 showed higher cytotoxicity as compared with Cu(II) coordination
compound 104 (Table 12). The data obtained indicates that water-soluble Cu(I) coordination compounds
have a better cellular accumulation than the Cu(II) analogues. This hypothesis was tested using AAS,
and intracellular accumulation of coordination compound 106 (R = H) was shown to be better than the
Cu(II) analogue.
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Table 12. MTT data of coordination compounds 104–107 after 72 h of incubation [118].

IC50, µM ± S.D.

Compound LoVo LoVo-OXP

104 Cu(II) 5.9 ± 0.6 5.1 ± 0.5
105 Cu(II) 4.3 ± 0.5 4.6 ± 1.0
106 Cu(I) 2.1 ± 1.1 1.9 ± 0.9
107 Cu(I) 4.9 ± 1.0 4.6 ± 0.8

Nitroimidazole derivatives are a promising platform for developing biologically active
coordination compounds, and water-soluble Cu(I) coordination compounds capable of high cellular
accumulation are a promising alternative to the classical Cu(II) coordination compounds, showing a
significant improvement of the cytotoxic potency.

The 8-hydroxyquinoline (8-HQ) derivatives comprise a class of antifungal or antimicrobial
agents. Developing Cu(II) coordination compounds with ligands based on oxyquinolones opens up
opportunities for designing agents with multiple biological activity. Tardito et al. reported a halogenated
clioquinol (CQ), which is an analogue of 8-HQ, and copper coordination compounds 108–115 based on
it [119] (Figure 33). MTT data for coordination compounds 108–115 on cervical cancer cell line HeLa
and human prostate cancer cell line PC3 are given in Table 13.
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Table 13. Cont.

IC50, µM ± S.D.

Compound Chemical Structure LogP (Ligand) HeLa PC3
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A structure–activity relationship (SAR) study was conducted. Cellular accumulation of the drug
can occur via active transport, as suggested by the hCTR1 copper transporter for cisplatin [120],
or by passive diffusion through the plasma membrane, in which case the drug should be endowed
with appropriate lipophilicity to pass through the cell membrane and reach a sufficient intracellular
concentration. An excessively lipophilic compound accumulates in the membrane, while greater
hydrophilicity prevents interaction with the lipid bilayer. Of the studied derivatives, coordination
compounds based on the most hydrophilic ligands L108 and L109 (5-SO3-8-HQ and 5-SO3-7-I-8-HQ)
do not exhibit cytotoxic activity, while ligands of the most active coordination compounds are ligands
with intermediate lipophilicity, namely, ligands L110 to L112 (8-HQ, 5,7-Me-8-HQ, and 5-Cl-8-HQ).

Coordination compounds 110 and 114 (Cu-CQ and Cu-8-HQ) were shown to inhibit the proteasome
activity. MTT tests showed that coordination compound 114 (Cu-CQ) is at least 10 times more cytotoxic
than ligand L114 administered separately when tested for 48 h on HeLa cell lines (IC50 = 8.9 µM
for coordination compound 114 and 93 µM for the ligand) and PC3 cell lines (IC50 = 9.0 µM for
coordination compound 114 and >100 µM for the ligand).
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Shah et al. demonstrated significant antibacterial activity of compound 114 (Cu-CQ) and its
strong gain by copper ions [121]. The antibacterial activity of compound 110 was confirmed using
Mtb-infected macrophages in the presence or absence of 7.5 µM CuSO4.

Copper coordination compounds based on 8-hydroxyquinolines exhibit both cytotoxic and
antibacterial properties. The molecular design allows varying their lipophilicity and cellular
accumulation. The results obtained together with the promising data obtained for elesclomol L13 [38]
confirm the promising use of copper coordination compounds in treating bacterial pneumonia caused
by Mtb. The therapy certainly owes its success to the redox activity of copper cations. Both therapeutic
regimens involving separate uses of copper and a ligand and in situ drug formation open up great
opportunities for developing formulations, including those that are selective for healthy tissues.

Silva et al. reported a nanostructured lipid system for low-soluble isoniazid-based
copper complexes compounds 116 ([CuCl2(INH)2]·H2O, 117 [Cu(NCS)2(INH)2]·5H2O, and 118
[Cu(NCO)2(INH)2]·4H2O with antimycobacterial activity (Figure 34). The nano-sized drug delivery
systems increased their antimycobacterial activity, decreased cytotoxicity against the Vero cell line,
and consequently improved the selectivity index [122].
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Figure 34. Chemical structures of coordination compounds 116–118 based on the antituberculosis
drug isoniazid.

A recent study on the cyto-genotoxicity of Cu(II) compounds 116–118 with INH was conducted by
Fregonezi et al. and also concluding that the compounds show no cytotoxicity in therapeutic doses [123].

4. Natural Product-Based Copper Coordination Compounds

Natural products (NPs) have attracted lots of attention as biological active ligands for copper
coordination compounds, due to the fact that nearly 60% of clinically approved anticancer drugs are
associated with NPs. Advances of metal complexes with natural product-like compounds have been
recently summarized by Heras et al. [124], herein a few examples of those design.

Fei et al. [125] reported two copper (II) complexes, compounds 119 and 120, based on
dehydroabietic acid (DHA), the main component of traditional Chinese medicine rosin (Figure 35).
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The ability of compounds 119 and 120 to interact with calf thymus DNA (CT DNA) via intercalation,
as well as albumin binding ability has been proven by various physicochemical methods. MTT assay
illustrates that the selective cytotoxic activity of compound 119 was better than that of ligand L119,
compound 120, cisplatin, and oxaliplatin. The exposure of compound 119 to MCF-7 cells resulted in cell
cycle arrest in G1 phase, apoptosis, mitochondrial dysfunction, and elevated ROS level, also compound
119 proved to induce apoptosis through intrinsic and extrinsic pathways, autophagy, and DNA damage
in MCF-7 cells. Compound 119 is assumed to have the ability to resist metastasis and angiogenesis
due to downregulation of VEGFR2, MMP-2, and MMP-9 expression levels in tumor cells.

Chen et al. [7] reported a coordination compound of copper 121 based on Hinokitiol,
a natural monoterpenoid (Figure 36). A coordination compound was formed in situ while using
equimolar mixtures of L121 and CuSO4, as was previously described for Disulfiram, elesclomol and
thiosemicarbazone ligand L68.
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Ligand L121 in the presence of CuSO4 induces striking accumulation of ubiquitinated proteins in
A549 and K562 cells, which means that it is capable of inhibiting the activity of the 19S proteasomal
DUBs much more effectively than it does the chymotrypsin-like activity of the 20S proteasome.
Coordination compound 121 effectively induces caspase-independent and paraptosis-like cell death in
A549 and K562 cells, and the resulted cell death has been proven to depend on ATF4-assosiated ER
stress but not ROS generation.

5. Conclusions

Copper-containing coordination compounds are a promising class of drugs with multiple
therapeutic effects from antitumor to anti-inflammatory activity. This review summarizes the successful
use of copper coordination compounds as antitumor, antimalarial, antituberculosis, antifungal,
and anti-inflammatory drugs.

An antitumor activity of copper coordination compounds was repeatedly proven in vivo.
Imidazolin-4-one based coordination compound 60 showed 73.5% of breast adenocarcinoma Ca-755
growth inhibition in seven days of treatment with a 24 mg/kg dose; animal’s body weight loss did not
exceed 10%. Thiosemicarbazone-based ligand L68 + CuCl2 showed 42% of monocytic leukemia HL60
growth inhibition in five days of treatment with a 3 mg/kg dose, with less than 20% body weight loss.
The DSF/Cu nanoparticle delivery system showed 71.4% of breast cancer 4T1 growth inhibition after
two weeks of treatment with a 3.75 mg/kg of DSF dose, and there were no significant body-weight
changes observed. Thiosemicarbazone-based coordination compound 69 showed 74% of Lewis lung
carcinoma (LLC) tumor growth inhibition in seven days of treatment with a 6 mg/kg dose, weight loss
body weight loss did not exceed 10%.

Regarding the mechanism of antitumor activity, the vast majority of coordination compounds act
through the ROS formation (1, 2, L13 + Cu, 42, 43, 45–47, Disulfiram-based coordination compound
64, L68 + Cu, 119), glutation depletion (45–47, L68 + Cu, 69–74), proteasome inhibition (7, 8, 110, 114,
L121 + Cu), DNA degradation (1, 2, 11, 60, 102, 119), DNA intercalation (1, 2, 3–5, L13 + Cu, 86–89,
119, 120), apoptosis induction (1, 2, 65, 102, 119), and cell cycle arrest (51–57, 103, 119). Despite the
fact that most coordination compounds of copper exhibit ROS-mediated cytotoxicity, examples of
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coordination compounds acting by other mechanisms are also described. Thus, the cytotoxic activity
of coordination compounds 42, 43, 69–74, L121 + Cu is not associated with ROS formation and does
not decrease under the influence of ROS inhibitors.

Redox-active drugs proved to be an effective supplement in addition to antituberculous drugs,
or even being an independent therapy. Thus, elesclomol-based copper coordination compound
13, Cu-CQ–based coordination compound 114, and isoniazid-based coordination compounds
116–118 showed promising activity against Mycobacterium tuberculosis. Phosphine-based coordination
compounds 79 and 81 showed a promising activity against bacteria, fungi, and the lieshmanial
pathogen. In addition, 1,10-phenanthroline–based coordination compounds 32–39 showed higher
antibiofilm activity than the clinically used Vancomycin, which is also associated with redox activity of
copper cations.

The ability of copper coordination compounds to penetrate through the blood-brain barrier
along with their stability in the bloodstream allows development of 64Cu-marked PET-imagine
agents. Thiosemicarbazone-based coordination compounds 23–30 are Aβ-targeted PET-visualizers of
Alzheimer’s disease showed the ability to rapidly crossing the blood-brain barrier, as well as good brain
uptake and Aβ plaques affinity. In addition, CuATSM coordination compounds are hypoxia-sensitive
PET-visualizers of malignant neoplasms, including head and neck cancer. Cu(II/I) redox potential was
repeatedly proven to govern the hypoxia selectivity of CuATSM coordination compounds.

Anti-inflammatory properties of coper-containing coordination compounds are interesting
due to the possibility of twin antitumor/anti-inflammatory drug development. Thus, aspirin-based
coordination compound 102 showed COX-2 inhibition due to aspirin moiety, whereas coordination
compounds 45–47 showed analgesic properties themselves.

It is also worth noting that using both a ligand and a copper salt is as effective as using a
coordination compound. Copper-containing coordination compounds of disulfiram metabolite are
always formed in situ, and the same approach has been successfully applied in vitro and in vivo to a
number of compounds, such as L13 + Cu, L68 + Cu, L108–L113 + Cu, and L121 + Cu.

The redox activity of copper ions along with the their biogenicity, the stability of copper
coordination compounds in the bloodstream, and the highly promising therapeutic results in vitro and
in vivo prove the potential of copper coordination compounds to become widely used in clinical practice.
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