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As the market size of the cosmetics industry increases, the safety and effectiveness of 
new products face higher requirements. The marine environment selects for species of 
micro-organisms with metabolic pathways and adaptation mechanisms different from 
those of terrestrial organisms, resulting in their natural products exhibiting unique structures, 
high diversity, and significant biological activities. Natural products are usually safe and 
non-polluting. Therefore, considerable effort has been devoted to searching for cosmetic 
ingredients that are effective, safe, and natural for marine micro-organisms. However, 
marine micro-organisms can be difficult, or impossible, to culture because of their special 
environmental requirements. Metagenomics technology can help to solve this problem. 
Moreover, using marine species to produce more green and environmentally friendly 
products through biotransformation has become a new choice for cosmetic manufacturers. 
In this study, the natural products of marine micro-organisms are reviewed and evaluated 
with respect to various cosmetic applications.
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INTRODUCTION

The skin is the largest organ of the human body and plays an important protective role 
(Resende et  al., 2021). As humans age, their skin becomes thinner and loses its original 
elasticity and moisturizing ability. Aged skin is dry, flabby, wrinkled, and increasingly fragile 
(Wang et  al., 2015; Resende et  al., 2021). Because skin has prolonged contact with the outside 
world, external factors, such as UV radiation, dust, and chemical reagents, can reduce skin’s 
antioxidant capacity and accelerate its aging rate (Resende et  al., 2021). Skin care is essential 
for maintaining its appearance and health, but it also strengthens the barrier function of the 
skin (Bedoux et  al., 2014). The concept of skin care is well known. With the idea of skincare 
gaining popularity, many antiaging creams, moisturizers, and sunscreens are on the market. 
However, the majority of cosmetics sold are composed of synthetic chemicals, which may 
have harmful side effects (Morais et  al., 2021). Parabens, the most widely used preservatives 
in cosmetics, have been reported to mimic the effects of estrogen, increase the risk of breast 
cancer in women, and influence the development of malignant melanoma (Kerdudo et  al., 
2016). The California Department of Environment has found that chemicals in cosmetics and 
personal care products are associated with birth defects in male reproductive organs, reduced 
sperm count, and altered pregnancy outcomes in animal experiments (Barrett, 2005). Although 
the study did not show the same effect in humans, it was met with serious skepticism when 
it was published. Safety-conscious consumers are no longer looking for skin cosmetics that 
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only provide fragrance and temporary adornment, but are 
willing to pay more for cosmetics containing natural ingredients 
that are more beneficial to the skin (Draelos, 2018). It is 
estimated that the global market value of natural cosmetics 
will reach USD 54.5  billion by 2027 (Thiyagarasaiyar et  al., 
2020). With the continuous increase in consumer demand and 
the expansion of the cosmetics market, it is necessary to develop 
a large number of active natural substances. Interestingly, the 
ocean attracts developers because of its unique environment 
(high pressure, high salt, and low temperature). Shu Uemura’s 
first addition of seawater to skin-care products has led researchers 
to explore the use of marine natural products in cosmetics 
(Martins et  al., 2014).

Finding novel active natural compounds is the main target 
of developing new cosmetics. The oceans cover more than 
70% of the Earth’s surface. They are the largest habitat on 
Earth and are home to 90% of all living organisms (Gomez 
et  al., 2009; Dash et  al., 2012). Therefore, marine micro-
organisms are considered important potential sources of 
active natural products. Some bioactive compounds from 
marine micro-organisms have antitumor activity (Rehman 
et  al., 2020), anti-inflammatory activity (Toledo et  al., 2014), 
and antibacterial activity (Nalini et al., 2018). The natural 
products of marine microbes have received great attention 
in the cosmetics industry. However, few active compounds 
derived from marine micro-organisms have been used in 
the cosmetics industry. In this paper, we  reviewed the 
application and possible mechanism of active substances 
derived from marine micro-organisms in sun protection, 
whitening, moisturizing, anti-aging, repair, etc. (Supplementary  
Table 1). In addition, some possible difficulties and solutions 
of natural products in the cosmetics industry derived from 
marine micro-organisms are discussed to provide a reference 
for the cosmetics industry.

SUNSCREEN

Part of the UV radiation emitted by the sun is absorbed by 
oxygen molecules in the stratosphere (UVC, 100–290 nm), part 
is absorbed by the ozone layer (UVB, 290–320 nm), and the 
remainder of UVA radiation (UVA, 320–400 nm) and a small 
part of UVB are transmitted to the ground (Battistin et  al., 
2020). Basking in the sun can help the conversion of 
7-dehydrocholesterol into vitamin D in human skin, but long-
term exposure to UV light causes mutagenic and non-specific 
damage to the epidermis. UV-induced reactive oxygen species 
(ROS) can alter genetic material and inhibit the production 
of extracellular matrix proteins. This can contribute to the 
loss of skin elasticity, skin photoaging, actinic keratosis, and 
skin cancer (Guillerme et  al., 2017; Battistin et  al., 2020; He 
et  al., 2021).

Sunscreens are a sun protection products that help reduce 
the damage caused by UV rays, but some sunscreens lack 
light stability, irritate the skin, and cause allergic reactions 
(Greenspoon et  al., 2013). In addition, these compounds can 
also affect marine life (Downs et  al., 2015) and the marine 

environment (Sang and Leung, 2016; Chaves Lopes et al., 2020) 
when discharged into the ocean with sewage. Therefore, the 
cosmetics market is constantly looking for new environmentally 
friendly UV-resistant molecules to change this situation. Lower 
eukaryotes, such as marine microalgae, have evolved mechanisms 
to synthesize secondary metabolites unrelated to their growth 
and reproduction, but most of these metabolites can interact 
with UV light to coordinate cell functions (Kostyuk et  al., 
2018). This led to widespread concern in the cosmetics market. 
Many marine microbial sources of mycosporine-like amino 
acids (MAAs) can absorb UV rays ranging from 310 to 360 nm. 
They are colorless, water-soluble, and low molecular weight 
compounds composed of cyclohexanone or cyclohexanol imine 
chromophores with the nitrogen substituent of an amino acid 
or its imino alcohol, which inhabit fungi, algae, cyanobacteria, 
and other marine organisms. MAAs are also considered a 
potential source of environmentally friendly sunscreen 
ingredients with good anti-UV activity (Sinha et  al., 2007; 
Sun et  al., 2020; Nedeljka, 2021). People’s interest in MAAs 
has increased in recent years. MAAs are distributed in the 
cytoplasm of fungal cells and can also be  released into 
extracellular colony mucus, enhancing UV protection for 
themselves and possibly for other community members 
(Llewellyn and Airs, 2010). Kogej et  al. (2006) found two 
different UV-absorbable mycosporine-glutaminol-glucosides 
(Figure  1) and three unidentified UV-absorbable compounds 
in fungi in glaciers and high-salt waters, which they considered 
to be  MAAs. These are natural sources of MAAs, which will 
have a good market value if they can be  further applied to 
cosmetics. Some sunscreens with MAAs as the main active 
ingredient have been marketed globally, such as Helionori® 
and Helioguard365® (Chrapusta et  al., 2017). However, some 
microbes are difficult to grow in laboratory conditions because 
of environmental constraints, which impede access to these 
metabolites. Fortunately, the current sequencing technology is 
very advanced, and people can obtain the relevant gene cluster 
information of the metabolites of MAAs produced by marine 
micro-organisms based on metagenomic sequencing technology, 
obtain the genes through the chemical synthesis in vitro, and 
then transform them into Escherichia coli for production using 
genetic engineering. Miyamoto et al. (2014) found gene clusters 
for MAAs synthesis in Actinosynnema mirum DSM 43827 and 
Pseudonocardia P1. These genes were not expressed or rarely 
expressed, in laboratory culture conditions. However, silenced 
MAAs gene clusters were expressed in the Streptomyces sp. 
avermitilis SUKA22 strain after genetic engineering. This result 
encourages the cosmetics industry to obtain these natural active 
products and helps accelerate the innovation and development 
of the cosmetics industry.

Moreover, carotenoids, such as astaxanthin, zeaxanthin, 
lycopene, and β-carotene are the most common pigments in 
nature and have biological functions such as light capture and 
photoprotection (Vílchez et al., 2011). Microalgae are important 
sources of carotenoids, fatty acids, and amino acids (Ambati 
et  al., 2018). Haematococcus lacustris (formerly Haematococcus 
pluvialis; Chlorophyta) can accumulate astaxanthin under high 
salinity, high temperatures, and light stress (Naguib, 2000). 
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This microalga has the highest astaxanthin yield and has great 
application potential (Kuang et  al., 2019). Astaxanthin has a 
higher antioxidant activity than lutein, lycopene, β-carotene, 
and other carotenoids (Naguib, 2000). The antioxidant activity 
of astaxanthin is 10 times that of zeaxanthin, lutein, and 
β-carotene (Matsuno and Miki, 1990). This is due to the 
carbonyl functional groups in the ionone ring of astaxanthin 
(Liu and Osawa, 2007). Due to its strong antioxidant activity, 
astaxanthin has been added as its active ingredient in some 
cosmetics brands around the world, such as Geisha Astaxanthin 
Refining Serum, Home Facial Pro Astaxanthin Essence, and 
Kose Becky Firming Essence (Kuang et  al., 2019). However, 
astaxanthin is unstable and prone to oxidation and discoloration, 
so better technologies are needed to develop and expand 
astaxanthin applications. Zeaxanthin is an important factor in 
the photoprotection mechanism of Nannochloropsis oculata 
(Shen et  al., 2011). Microalgal-derived fucoxanthin protects 
against sunburn (Matsui et  al., 2016). Lycopene neutralizes 
oxygen free radicals and is a powerful natural antioxidant with 
the potential to be  used as a sunscreen ingredient (Mourelle 
et  al., 2017). Hashtroudi and colleagues isolated strains that 
produce carotenoids from Iranian terrestrial and aquatic 
ecosystems. Anabaena (Cyanobacteria) was the first time a 
strain with the highest natural lycopene production was identified 
(Hashtroudi et  al., 2013). In addition to the microalgae, 
scytonemin in the outer sheath of cyanobacteria mainly absorbs 
UVA radiation, while MAAs are keys to protecting against 
UVB radiation. At low MAA-content conditions, the carotenoids 
in cells are rapidly synthesized and bind to the outer membrane 
to act as photoprotection (Ehling-Schulz et al., 1997). Scytonemin 
is a unique natural product that consists of indole and phenolic 
subunit dimers. It can be used in sunscreens due to its anti-UV 
and antioxidant effects (Mourelle et al., 2017; Stoyneva-Gärtner 
et  al., 2020). Additionally, cyanobacteria have high carotenoid 
potential (Mezzomo and Ferreira, 2016). All in all, carotenoids 
produced by cyanobacteria and microalgae have great potential 
for use in cosmetics.

Marine heterotrophic bacteria and fungi are also potentially 
important sources of carotenoids. Phaffia, Rhodozyma, and 
Xanthophyllomyces produce large amounts of astaxanthin (Ambati 
et al., 2014). Two rare, monocyclic carotenoids, (3R, 2’S)-myxol 
(Figure  2A) and (3R)-saproxanthin (Figure  2B), were found 
in a new bacterium species from the family Flavobacteriaceae 
isolated in Okinawa, Japan. Compared to zeaxanthin and 
β-carotene, saproxanthin and myxol showed stronger antioxidant 
activity (Shindo et  al., 2007). Zhang et  al. (2008) isolated a 
new benzodiazepine alkaloid, cyclosporine I (Figure 3A), from 
the metabolites of the marine fungus Exophiala. This compound 
had a structure similar to cyclosporine C and G (Figures 3B,C) 
from the same source and had good anti-UVA activity. Compared 
with microalgae, the amount of carotenoid produced by marine 
fungi and bacteria is small, but fungi and bacteria are easy 
to culture and rapidly reproduce. Thus, they can be  modified 
using genome sequencing and genetic engineering to improve 
carotenoid production (Galasso et  al., 2017). These findings 
suggest that there may be other exploitable substances in marine 
micro-organisms with anti-UV activity.

Natural ingredients can provide protection through the direct 
absorption of UV rays and protect skin from UV damage 
through antioxidant action (He et al., 2021). Many antioxidants 
derived from marine organisms have been studied for their 
UV protection. Two compounds, a golmaenone of the 
diketopiperazine alkaloid and neoechinulin A of related alkaloids, 
were isolated from the marine fungus Aspergillus sp. They 
showed the activity of scavenging free radicals against 1, 
1-diphenyl 2-picrylhydrazyl (DPPH) and showed better anti-UV 
activity than oxybenzone in sunscreen (Li et  al., 2004). Most 
lipophilic vitamins also have strong antioxidant activity 
(Lourenço-Lopes et  al., 2020). Tocopherol (vitamin E) is only 
synthesized by photosynthetic organisms and has the same 
antioxidant activity as carotenoids. Tocopherol was studied in 
130 cultured microalgae and cyanobacteria [including 118 
microalgal strains from four phylogenetic lineages (Chlorophyta, 
Streptophyta, Heterokontophyta, and Rhodophyta) and 12 

A B

FIGURE 1 | Reprinted with the kind permission of Environmental Chemistry publications. Chemical structures of Mycosporine-glutaminol-glucoside (A,B) isolated 
from fungi hypersaline waters and polar glacial ice. Adapted from Kogej et al. (2006).
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cyanobacterial strains] by Mudimu et  al. (2017). They found 
that α-tocopherol was most abundant, while β-tocopherol and 
γ-tocopherol were present in some algae but in lower amounts. 
Among them, the α-tocopherol production of Chlorophyta was 
higher than that of Rhodophyta, which could be  a natural 
source of α-tocopherol (Mudimu et  al., 2017). Sivakumar et  al. 
(2014) discovered a new strain (Stichococcus bacillaris strain 
siva2011) that produces natural RRR-α-tocopherol and could 
be  commercialized. Leya et  al. (2009) found two strains of 
Raphidonema from snow and permafrost substrates, which were 
good α-tocopherol producers (Leya et  al., 2009). Shanuja et  al. 
(2018) extracted pigment from a marine Aspergillus nidulans 

and found that it had structural similarity to 5, 6-dihydroxyindole-
2-carboxylic acid (DHICA), the precursor of melanin. It can 
reduce ROS generation after UV irradiation and has the potential 
for use in sunscreen formulations.

Moreover, some other natural molecules have anti-UV activity, 
such as phenolic substances. Phenolic compounds are produced 
during the production of ROS and are considered stress-induced 
compounds with protective mechanisms against UV radiation 
and anti-reactive oxygen (Bedoux et  al., 2014). Phenols also 
play an important role in the antioxidant mechanism of cells 
and research on phenols in marine algae has been conducted 
(Stoyneva-Gärtner et  al., 2020). Haoujar and colleagues tested 

A

B

FIGURE 2 | Reprinted with the kind permission of Applied Microbiology and Biotechnology publications. Chemical structures of two rare monocyclic carotenoids 
(3R, 2’S)-Myxol (A) and (3R)-Saproxanthin (B). Adapted from Shindo et al. (2007).

A B C

FIGURE 3 | Reprinted with the kind permission of The Journal of Antibiotics publications. Chemical structures of Circumdatin I (A), C (B), and G (C). Adapted from 
Zhang et al. (2008).
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four microalgae: Phaeodactylum tricornutum (Bacillariophyta), 
Microchloropsis gaditana (formerly Nannochloropsis gaditana; 
Ochrophyta, Eustigmatophyceae), Nannochloris sp., and 
Tetraselmis (Chlorophyta), and found that the antioxidant 
capacity of microalgae was positively correlated with the content 
of phenolic substances. Phaeodactylum tricornutum had the 
highest phenolic content and the best antioxidant activity among 
the four microalgae. These results indicate that P. tricornutum 
is a potential source for developing novel antioxidant substances 
(Haoujar et  al., 2019). Duval et  al. (1999) isolated Chlorella 
sp. (Chlorophyta) from a snow microalgal community at King 
George Island and showed that the total content of phenols 
in Chlorella increased under UVA and UVC irradiation. This 
confirms that phenols contained in microalgae act as antioxidants 
when stimulated by UV light (Haoujar et  al., 2019). Although 
algae are rich in phenolic compounds, it has been found that 
the content of phenolic compounds in algae extracts also 
depends on the algae collection site and extraction method 
(Mateos et  al., 2020). This requires conducting topographic 
analysis and selecting extraction methods before development 
to maximize the use of phenolic substances in algae.

WHITENING EFFECT

Skin, consisting of the epidermis and dermis, plays a protective 
role in the human body. The epidermis is the outermost layer 
of the skin and is mainly composed of melanocytes and 
keratinocytes. Melanocytes provide melanin to keratinocytes 
through the dendritic transfer of melanin bodies so that 
keratinocytes can form melanin caps and reduce UV-induced 
DNA damage to the epidermis (Costin and Hearing, 2007). 
One’s skin color is mainly determined by the amount, type, 
and distribution of melanin in the skin (Dessinioti et al., 2009). 
There are two types of melanin, eumelanin (dark brown insoluble 
polymers) and non-melanin (reddish sulfur-containing polymers). 
Tyrosinase is an important enzyme in melanin synthesis (Alves 
et  al., 2020). Under its catalysis, tyrosine can be  converted 
into dopaquinone, which is finally converted into melanin 
through a series of complex processes (Dessinioti et  al., 2009; 
Agrawal et  al., 2018). Marine organisms are important sources 
of compounds that can inhibit tyrosinase. The kojic acid 
produced by the fungi Altenaria sp. isolated from the surface 
of marine Ulva lactuca (Chlorophyta) has been shown to have 
tyrosinase activity (Li et  al., 2003). Li et  al. (2005) isolated 
Myrothecium sp. (Fungi) strain MFA58 from marine green 
algae. Two cyclopentenone compounds, designated as 
myrothenones A and B, were found in this strain. Only 
myrothenone A showed tyrosinase inhibitor activity and its 
activity was greater than that of kojic acid, which is currently 
used in sunscreen products. Tsuchiya et  al. (2008) found that 
homothallin II produced by marine Trichoderma viride (Fungi) 
may inhibit tyrosinase activity by competing for the copper 
ion active site. Wu et al. (2013) isolated two new sesquiterpene 
compounds, 1β, 5α, 6α, 14-tetraacetoxy-9α-benzoyloxy-7βH-
eudesman-2β, 11-diol and 4α, 5α-diacetoxy-9α-benzoyloxy-7βH-
eudesman-1β, 2β, 11, 14-tetraol, from the marine fungus 

Pestalotiopsis sp. strain Z233, which also showed tyrosinase 
inhibitory activity. The Micromonospora sp. strain SH-89, which 
is symbiotic with sponges, also showed significant inhibitory 
activity against tyrosinase, as described by Said Hassane et  al. 
(2020). Some substances produced by marine organisms that 
inhibit tyrosinase activity have been used commercially, but 
other substances (hydroquinone) have been banned in all 
European countries as they threaten human health (Burger 
et  al., 2016). Therefore, there is a constant search for new, 
active whitening molecules. Marine micro-organisms such as 
microalgae and bacteria can also produce active substances 
with whitening functions. Astaxanthin, produced by marine 
yeast, has been found to protect skin from age spots (Corinaldesi 
et al., 2017). Astaxanthin and zeaxanthin produced by microalgae 
from Nannochloropsis oculata (Ochrophyta, Eustigmatophyceae) 
or H. lacustris (Chlorophyta) have antityrosinase activity 
(Balasubramaniam et al., 2021). Some whitening active substances 
derived from marine micro-organisms have also been discovered. 
A N-acyl dehydrotyrosine derivative derived from Thalassotalea 
sp. (Bacteria) strain PP2-459 isolated from crustaceans can 
act as a tyrosinase inhibitor superior to commercial kojic acid 
and arbutin (Deering et al., 2016). Cell extracts with the activity 
of cell-free tyrosinase were produced in a Pseudomonas sp. 
isolated from the waters off Ganghwa Island, South Korea. 
An extract of dichloromethane from the secondary metabolite 
of these new bacteria can reduce the melanin deposition in 
cultured skin and zebrafish. This extract has a whitening effect 
and could be  used as a novel whitening ingredient (Kang 
et  al., 2011). Kim et  al. (2017) isolated the Bacillus strain SCO 
147 from Gwangyang Bay, South Korea. The 
(−)-4-hydroxysattabacin metabolite from its crude extract had 
an anti-melanogenic effect in a human epidermal model and 
they identified it as a new natural melanin reducing agent 
(Kim et  al., 2017). Khan et  al. (2021) found that cydromicin 
(1), a secondary metabolite produced by the Tolypocladium 
sp. (Fungi) strain SCSIO 40433 isolated from arctic glacial 
sediments, also showed tyrosinase inhibitor activity. It follows 
that polar fungi are also potential sources of natural active 
substances. Pseudoalteromone A (1), a ubiquinone derivative 
produced by APmarine002 and RoA-050 strains of 
Pseudoalteromonas sp. (Bacteria) of marine origin, can inhibit 
tyrosinase activity by inhibiting melanin-producing gene 
expression. The whitening effect of the substance was evaluated 
by using a 3D pigment epidermis model, and it was confirmed 
that the substance had whitening and brightening effect, which 
provided a new source of active molecules for whitening 
products in cosmetics (Lim et  al., 2021).

MOISTURIZING EFFECT

The main cell type of the dermis is the fibroblast, which is 
embedded in collagen, elastic fibers, and an extracellular matrix 
composed of glycoprotein, hyaluronic acid, glycosaminoglycan, 
and other mixtures such as water and salts to form a gel. 
Glycosaminoglycan (GAG) is a proteoglycan that stores 
most of the water in the skin (Costin and Hearing, 2007; 
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Bedoux et al., 2014). Water is essential for the skin to function 
properly. The influence of external factors can promote skin 
aging and skin aging destroys its barrier function. This makes 
it more fragile, and it gradually loses its natural elasticity and 
moisturizing function (Pimentel et  al., 2017). Keratinocytes in 
the skin’s epidermis contain natural moisturizing factors (NMF), 
which are natural hygroscopic compounds, such as urea, 
polysaccharides, amino acids, and minerals (Pimentel et  al., 
2017; Brunt and Burgess, 2018). The lipids between the cells 
of the skin’s cuticle are also moisturizing, lining up to form 
a barrier to prevent water loss (Verdier-Sévrain and Bonté, 2007).

Marine organisms produce moisturizing molecules such as 
fatty acids and polysaccharides, which are commonly used in 
cosmetics. Algae-derived omega-6 polyunsaturated fatty acids, 
especially C-18 linoleic acid and gamma-linolenic acid, such 
as those found in marine microalgae, can be  added to the oil 
in water emulsions to moisturize skin (Guillerme et  al., 2017). 
A lack of unsaturated fatty acids has been reported to cause 
dermatitis and skin dehydration (Ziboh et al., 2000; Kim et al., 
2008). Marine micro-organisms are important producers of 
unsaturated fatty acids. A strain of Vibrio cyclitrophicus isolated 
from the ocean has been reported to produce eicosapentaenoic 
acid (EPA; Abd Elrazak et  al., 2013). According to Kim et  al. 
(2008), Nanochloropsis sp. can produce EPA. Cladophora 
glomerata, a filamentous green alga of marine origin, was 
described as containing saturated fatty acids (C16:0) and 
unsaturated fatty acids (C16:1) (N-7) and (C18:1) (N-3), which 
can be  used as an active moisturizing agent to prevent skin 
moisture loss (Couteau and Coiffard, 2020). The thickness of 
the cell wall of algae and the mucus layer formed by 
polysaccharides contained in the cell wall explain how they 
keep the cells hydrated (Stoyneva-Gärtner et  al., 2020). 
Polysaccharides and oligosaccharides can be  hydrogen-bonded 
to keratin to retain moisture (Bedoux et  al., 2014). Wang et  al. 
(2013) tested the moisturizing ability of polysaccharides extracted 
from five kinds of algae and found that polysaccharide DL 
extracted from Phaeophyceae had a good moisturizing effect, 
and its moisturizing performance was better than that of 
hyaluronic acid (HA). This indicated that seaweed polysaccharides 
could be used as an additive for moisturizing cosmetics. Nostoc 
commune moisturizing serum can be used to moisturize, whiten, 
and be non-greasy for the skin (Stoyneva-Gärtner et al., 2020).

In addition to the moisturizing function of seaweed 
polysaccharides, the extracellular polysaccharide (EPS) of marine 
bacteria also has moisturizing potential. The EPS of the 
Polaribacter sp. SM1127, isolated from Arctic kelp, had a good 
moisturizing ability that was superior to HA in cosmetics. 
This EPS has a significant protective effect on human dermal 
fibroblasts at low temperatures and can be used as a moisturizing 
ingredient in cosmetics (Sun et  al., 2015). Phyllobacterium 
sp.  921F can produce a large amount of EPSs, and its water 
absorption and retention ability are better than collagen, chitosan, 
and glycerol (Li et al., 2015). There are few examples of bacterial 
exopolysaccharides used in cosmetics, so discovering these 
exopolysaccharides provides new moisturizing molecules for 
cosmetic formulations (Brunt and Burgess, 2018). A new strain 
of Pseudoalteromonas sp. has been isolated from polar regions. 

Intracellular extracts of the strains of RefirMAR® by BIOALVO 
have been applied to RefirMAR®, a cosmetic that is a good 
hydration agent (Martins et  al., 2014). EPS HYD657, extracted 
via the fermentation of Alteromonas macleodii subsp. fijiensis 
biovar deepsane, is used in Abyssine® cosmetics (Martins et al., 
2014). Chlorella extracts have been described to promote collagen 
synthesis and reduce wrinkles and appear to have value for 
skin-care products (Wang et  al., 2015).

ANTIAGING EFFECT

The aging process of the skin is affected by both internal 
factors and the external environment (Ganceviciene et al., 2012). 
Internal factor changes are mainly related to age, while external 
environmental stressors include high temperature, smoke, 
pollutants, and UV radiation (Zhang and Duan, 2018). Skin 
aging is mainly due to a reduction in collagen, elastic fibers, 
and hyaluronic acid and is manifested by wrinkles, dryness, 
loss of elasticity, sagging, and rough appearance (Brunt and 
Burgess, 2018). In the aging process of the skin, cells suffer 
from oxidative stress and lose the ability to regulate ROS 
(Bedoux et al., 2014). Fortunately, many substances from marine 
organisms effectively combat oxidative damage to cells and 
prevent skin aging. Fucoxanthin extracted from brown seaweed 
has been shown to protect keratinocytes from oxidative damage 
(Zheng et  al., 2013). A glycosaminoglycan extracellular 
polysaccharide (HE 800) was discovered from the deep-sea 
bacteria Vibrio diabolicus, which can facilitate skin regeneration 
(Courtois et  al., 2014). Alteromonas fermentation extract is an 
EPS produced by extremophiles living in deep-sea hydrothermal 
vents. The fermentation extracts of Alteromonas can reduce 
MDA (the end product of lipid peroxidation), chelate cadmium, 
and lead and form a protective film on the body surface (Borel 
et  al., 2017). It was combined with carnosine, a sodium 
hyaluronate cross-polymer, and a tripeptide to create a new 
beauty cream, and the product was shown to improve facial 
contours and skin quality (Garre et al., 2017). This formulation 
has good tolerance and is an excellent antiaging product.

Marine micro-organisms contain many high-quality functional 
proteins and bioactive natural peptides with diverse molecular 
structures (Xia et  al., 2021). For example, marine peptides 
derived from proteolytic products of Navicula salinicola (formerly 
Navicula incerta; Bacillariophyta) microalgae inhibit the activity 
of gamma-glutamate transferase (GGT), thereby reducing 
oxidative damage and delaying cell senescence (Kang et  al., 
2012). Similarly, peptides from Chlorella can reduce the 
expression of matrix metalloproteinase-1 (MMP-1) in human 
skin fibroblasts, thereby reducing the breakdown of collagen 
and delaying aging (Chen et al., 2011). We can use biotechnology 
to find more of these products from the ocean. A typical 
example of this is the research by Said Hassane et  al. (2020), 
who studied microbial diversity from the marine sponge 
Scopalina hapalia using metagenomics and found that the 
microbial secondary metabolites had biological activity against 
seven targets associated with cell senescence. These were elastase, 
tyrosinase, catalase, sirtuin 1, cyclin-dependent kinase 7 (CDK7), 
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fyn kinase, and proteasome. These data showed the potential 
of marine microbes to produce antiaging compounds.

REPAIR FUNCTION

The skin is the first barrier of the immune system, and its 
most important function is to separate the internal environment 
from the external environment. The skin barrier inhibits water 
loss and prevents harmful substances from entering (Proksch 
et  al., 2009). The skin barrier mainly includes the cuticle, 
which contains protein-rich cells, keratinocytes, and lipid-rich 
cells. These lipids include cholesterol, free fatty acids, and 
ceramides (sphingolipids; Elias and Friend, 1975). When the 
skin barrier is damaged, the skin becomes dry and dehydrated. 
As a result, it is more easily invaded by external germs and 
irritants, which trigger inflammatory reactions and other 
symptoms (Proksch et al., 2009). Thus, skin repair is an important 
part of beauty care (Figure  4).

To deal with these problems, first, we  can promote wound 
repair, that is, the growth or protection of skin fibrocytes. 
Zhang (2019) found that the EPS of marine bacteria Polaribacter 
sp. SM1127 can increase fibrocytes, promote the healing of 
skin wounds in mice, and reduce skin injury caused by low 

temperatures. In addition, the EPS of Polaribacter sp. SM1127 
can also reduce lactate dehydrogenase (LDH) and ROS, increase 
glutathione (GSH) content, reduce superoxide dismutase (SOD) 
enzyme activity, and maintain cell activity and integrity to 
resist UV radiation damage. Letsiou et  al. (2020) isolated 
Aspergillus chevalieri TC2-S6 from sponges (Axinella) and 
cultured it in potato dextrose broth (PDB) to obtain a component 
named ACCB from the culture medium. ACCB is mainly 
tetrahydroauroglaucin and flavoglaucin, and is capable of 
protecting human fibroblasts under oxidative stress conditions.

Second, we  can protect the keratinocytes from damage by 
moisturizing. Long et  al. (2010) cloned a new endo-type 
β-agarase gene agaA from the marine bacteria Agarivorans sp. 
LQ48 and expressed it in E. coli. This agaA enzyme (AgaA) 
had strong acid and alkali resistance. AgaA can produce DP6 
(neoagarohexaose) and DP4 (neoagarotetraose) by hydrolysis 
from agarose, and these can be  used as skin moisturizers. 
Collagen is a structural skin protein commonly used as the 
active ingredient in moisturizers (Brunt and Burgess, 2018). 
Swatschek et  al. (2002) extracted collagen from kidney-shaped 
cartilage sponges and compared the effects of sponge-derived 
collagen with existing collagen in human skin. Marine collagen 
increased skin lipids, although both had similar moisturizing 
effects. We  believe that marine collagen has a superior repair 

FIGURE 4 | Reprinted with the kind permission of Journal der Deutschen Dermatologischen Gesellschaft publications (Proksch et al., 2009). The skin barrier is 
normal (left) and impaired (right). When the skin barrier is compromised, water loss increases, and environmental toxins can penetrate the skin, triggering irritation, 
allergic reactions, inflammation, or exacerbation of specific eczema.
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function because the added lipids help the skin hold 
moisture better.

In addition, we  can also use substances with antioxidant 
effects to protect and repair skin cells, strengthen the vitality 
and connectivity of skin cells, enhance their immune capacity, 
and reduce free radical damage to skin cells. Squalene is an 
antioxidant, and hydrogenated squalane is used in cosmetics 
(Stoyneva-Gärtner et  al., 2020). Squalene can also be  added 
to moisturizers as an emollient that is quickly absorbed by 
the skin (Stoyneva-Gärtner et  al., 2020). The HS-399 strain of 
Aurantiochytrium acetophilum sp. (a thraustochytrid) was isolated 
from a mangrove swamp in Biscayne Bay, Florida, United States, 
producing squalene and lipids (Ganuza et  al., 2019). Moreover, 
bioactive indole derivatives were isolated from the marine sponge 
Rhopaloeides odorabile and its derived fungus Hyrtios sp., and 
DPPH (a stable free radical) was used to test its antioxidant 
capacity (Longeon et  al., 2011); its antioxidant capacity was 
similar to that of Trolox. Compound 9  in the indole derivatives 
had no cytotoxicity and was suitable for skin repair. Raveendran 
et  al. (2013) extracted mauran (MR), a highly polyanionic 
sulfated EPS from Halomonas maura, and showed that MR 
induces antioxidant properties by preventing the production 
of LPO (lipid peroxidation) and free radicals. It does not affect 
the production and function of the body’s own antioxidants, 
such as GSH (which normally functions as an antioxidant in 
cells), GR (which is essential for GSH production), and GPx 
(glutathione peroxidase). Li et  al. (2011) isolated an aromatic 
polyketone compound from the sponge-derived fungus Aspergillus 
versicolor. Through the control experiment using standard 
antioxidants, including butylated hydroxyanisole (BHA), butylated 
hydroxytoluene (BHT), tertiarybutylhydroquinone (TBHQ), and 
ascorbic acid (VC), its excellent antioxidant performance was 
proven. On the other hand, lipase can also be  used to produce 
whitening antioxidant products. For example, Sang (2017) 
screened microbial strains producing ferulic acid esterase (FAES1) 
from seawater. Ferulic acid is a phenolic acid with a strong 
antioxidant capacity and scavenging effect on free radicals. In 
addition, skin fibroblasts can be  protected by enhancing lipid 
cell differentiation and promoting adiponectin synthesis, such 
as docosahexaenoic acid (DHA). DHA is usually obtained from 
marine fish oil (Lee et  al., 2020), but due to environmental 
pollution, fish oil-derived DHA has become unreliable, and 
marine microbial DHA, produced by Thraustochytrium sp. 26185, 
can be  used as a substitute. Meesapyodsuk and Qiu (2016) 
provided a partial solution to the biosynthesis mechanism of 
DHA. DHA has moisturizing and antiaging functions as well 
as tanning under certain conditions (Martini, 2017).

The above ideas provide a method for skin repair, but how 
to effectively combine these functional molecules to produce 
new skin-repair products still needs to be  supported 
by experiments.

SKIN LIPID CONDITIONING

The average rate of sebum production in normal human skin 
is about 1 mg/10 cm2 every 3 h (Hong et al., 2020). If the sebum 

secretion of human skin exceeds 1.5 mg/10 cm2 every 3 h, caused 
by high secretion of the sebaceous glands, then the skin becomes 
oily. However, a sebum secretion rate as low as 0.5 mg/10 cm2 
per 3 h in human skin will result in dry skin (Endly and 
Miller, 2017). Excessive oil secretion may affect the microbial 
environment of the face, leading to acne (Youn, 2010). In 
addition, this can lead to enlarged facial pores and a greasy 
facial appearance (Hong et al., 2020). Therefore, it is particularly 
important to clean the face. Lipase can catalyze the hydrolysis 
of insoluble triglycerides into glycerol diesters and glycerol 
monomers (Yvergnaux, 2017) to produce cleansing facial oil. 
Compared with chemical reagents, the enzymes are milder 
and less irritating, and many of these commercial products 
now have enzymes added (Liu et  al., 2016). Lipase comes 
from a variety of sources, including animals, plants, and 
microorganisms. Significantly, microorganisms have many 
advantages, such as easy cultivation, short generation cycles, 
and resistance to external environmental conditions (Hasan 
et al., 2006). Marine micro-organisms can generate many lipases 
that can withstand various conditions due to their unique 
environment, better meeting the needs of commercial production 
and practice requirements, so they are favored by people. For 
example, Su et  al. (2015) obtained alkaline-resistant lipase 
(LipA) from a metagenomic library of the sponge Ircinia sp. 
Yuan et  al. (2016) expressed a MAS1 gene derived from the 
marine Streptomyces strain W007  in Pichia pastoris and proved 
that MAS1 is a heat-resistant and alkali-resistant lipase. Nishihara 
et al. (2008) isolated a bacterium HFKI0020 from the intestinal 
contents of marine fish that could produce phospholipase A1 
at low temperatures. The skin barrier of patients with dry 
skin tends to be  itchy, red in color, scaly, and easily injured 
(Tončić et  al., 2018). Lipase can be  used to produce simple 
lipids for dry skin tonings, such as myristyl myristate (Figure 5A) 
and cetyl-ricinoleate (Figure  5B; Metzger and Bornscheuer, 
2006). In addition, collagen is not absorbed by the skin, but 
binds to water through hydration and attaches to the skin, 
thereby maintaining moisture (Swatschek et al., 2002). Swatschek 
et  al. (2002) collected the Chondrosia reniformis Nardo sponge 
from the Aegean Sea and extracted collagen, proving that this 
sea-derived collagen has a good moisturizing ability and can 
increase skin lipids. These lipids can treat dry skin instead of 
traditional collagen products.

AROMATIC SUBSTANCES

Fragrances are aromatic substances that can be  perceived by 
smell. Olfactory cells on the mucous membrane inside the 
nasal cavity can accept the stimulation of odor molecules and 
produce olfactory stimuli. The smell of perfume passes the 
nasal cavity and stimulates the olfactory cell, the olfactory 
center that transmits the fragrance to the cerebrum, thereby 
forming olfactory sensations and bringing joyful experiences 
(Silva Teixeira et  al., 2015). Fragrances are generally short-
chain fatty acids or alcohol esters (Macedo et  al., 2003), that 
are pleasing to people and are often used in cosmetic products. 
On the one hand, the natural volatile aromas of some marine 
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microbes could be  used as a new source of perfume; on the 
other hand, known perfume ingredients can be  produced 
through biological transformation. These methods are greener 
and more environmentally friendly than those used in the 
traditional chemical industry. Most compounds with volatile 
fragrances belong to terpenes (Riad et al., 2021). Synechococcus 
PCC 6911 can reduce Geranial (1) into Geraniol (2), and 
Synechococcus PCC 6716 transforms (−)-Menthone ((−)-4) 
into (−)-Menthol ((−)-5), which are important components 
of perfumes’ essential oils (Jϋttner and Hans, 1986). These 
needed spices can also be  produced by the catalysis of natural 
enzymes, such as acetic acid and cinnamic acid. Wang (2016) 
screened lipase L-1, which can synthesize cinnamic acid acetate 
with the highest conversion rate from the genome of the 
deep-sea micro-organism Streptomyces sp. SCSIO 13580. 
Recombinant enzymes designed for specific substrates are more 
efficient than traditional tools for biotransformations, such as 
micro-organisms. Fu et  al. (2012) achieved recombinant 
expression of ene-reductase from Synechococcus sp. PCC 7942 
and obtained a new ene-reductase that can efficiently convert 
(R)-(−)-carvone to (2R, 5R)-dihydrocarvone. Additional aromas 
from marine microbes are likely to be discovered in the future 
(Figure  6).

PIGMENT SUBSTANCES

Beautiful colors provide sensory enjoyment and are found in 
nail polish, lipstick, and other cosmetics. Industrial pigments are 
usually synthesized from benzene, toluene, and other chemical 
reagents, so they can be  toxic and unacceptable to many people 
(Kalra et al., 2020). Natural pigments are widely used in products 
due to their safety and stability. They are represented by 
anthocyanins, carotenoids, and chlorophyll (Kalra et  al., 2020). 
Marine microbes are considered sources of inexpensive, novel, 
stable, and safe biological pigments, so many relevant studies 
have been reported. Du et  al. (2008) obtained two pigments 

from Aspergillus glaucus isolated from marine sediments around 
mangrove roots in Fujian Province, China. These were named 
yellow pigment (+) variecolorquinones A and red pigment 
aspergiolide B. Dhale and Vijay-Raj (2009) isolated Penicillium 
sp. NIOM-02 from marine sediments in Miramar (India). The 
removal of the DPPH radical and the production of red dye 
were achieved simultaneously. When it was cultured on malt 
extract agar (MEA) plates, the red pigment secreted by the fungus 
occurred around its colony. This showed that the red dye has 
good water solubility. Penicillium bilaii (MST-MF667) was isolated 
from the Huon Estuary, Tasmania, and subjected to chemical 
analysis. Analysis revealed two yellow pigments including (−)-2, 
3-dihydrocitromycetin and (−)-2, 3-dihydrocitromycin (Capon 
et  al., 2007). Ganesh Kumar et  al. (2013) isolated the 
hMGM-7 [MTCC 11712] strain from the surface of Hypnea 
musciformis (Rhodophyta) and found that it could produce acid-
resistant melanin.

In addition, some invertebrates in the ocean, such as sponges 
and corals, are very colorful and these bright colors may be related 
to the photosynthetic pigments of symbiotic micro-organisms. 
Xu et al. (2008) isolated Aspergillus sp. from coral reefs in Manado, 
Indonesia, and obtained the red pigment bostrycin and two new 
yellow hexahydroanthrones, named tetrahydrobostrycin and 
1-deoxytetrahydrobostrycin. Yellow compounds were isolated 
from Eurotium cristatum, a fungus from a sponge Mycale sp., 
which contains 2-(2′, 3-epoxy-1′, 3′-heptadienyl)-6-hydroxy-5-(3-
methyl-2-butenyl) benzaldehyde and 1, 8-dihydroxy-6-methoxy-
3-methyl-9, 10-anthracenedione (physcion). Phycocyanin produced 
by thermophilic cyanobacteria can be used to make eye shadows 
(Bermejo et  al., 2003). Phycocyanin from Spirulina has been 
used as a colorant in eye shadow by Ink Chemicals in Japan 
(Ryu et  al., 2015; Pangestuti et  al., 2020; Yarkent et  al., 2020). 
Pink and purple pigments in cosmetics can also be  formulated 
from natural pigments extracted from red microalgae (Arad and 
Yaron, 1992). Biotechnically, obtained R-phycoerythrin has been 
used in colored creams and cosmetics as a natural dye instead 
(Bedoux et  al., 2014). Antioxidant phycoerythrobilins from 

A

B

FIGURE 5 | Reprinted with the kind permission of Applied Microbiology and Biotechnology publications (Metzger and Bornscheuer, 2006). Chemical structures of 
Myristyl myristate (A) and Cetyl-ricinoleate (B) are produced by lipase-catalyzed esterification.
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Arthrospira/Spirulina (Cyanobacteria) and Porphyridium 
(Rhodophyta) can be used in lipstick and eyeliner (Hamed, 2016). 
In summary, pigments derived from marine micro-organisms 
are now widely used in the cosmetics industry.

OTHERS

The size and largely unexplored nature of the ocean often 
produce surprising discoveries. The complex and diverse 
ocean environment leads to metabolic pathways and adaptation 
mechanisms of marine micro-organisms that are completely 
different from those of terrestrial organisms. These pathways 
generate various natural products with unique structures, 
great diversity, and significant biological activities (Zhang 
et  al., 2021). Jin et  al. (2020) used AGAR biodegradation 
bacteria Flammeovirga pacifica WPAGA1 isolated from deep-sea 
locations to prepare algal oligosaccharide (AOS). AOS inhibited 

dihydrotrophil (DHT) to prolong the hair growth period of 
mice and might be  used to prevent androgenetic alopecia 
(AGA). Peng et al. (2006) isolated the bacterial strain A4B-17 
belonging to microspheres from sea squirts in the coastal 
waters of Palau. A4B-17 can generate alkyl esters of 4HBA 
(4-hydroxybenzoate), which can effectively prevent the growth 
of yeast, mold, and Gram-positive bacteria. This indicated 
it could possibly be  used as a cosmetic preservative. The 
compounds extracted from microalgae can be  used as the 
main components of cosmetics, but they can also be  used 
as cosmetic stabilizers, dyes, thickeners, and other auxiliary 
materials depending on their different characteristics (Ryu 
et al., 2015; Wang et al., 2015). The rich pigments of microalgae 
can also be used in deodorants, antioxidants, creams, cleansers, 
and other products. They can also be  used as deodorants 
because of their ability to mask odors. Vitamins produced 
by green unicellular Chlorella can promote hair growth by 
treating dandruff (Stoyneva-Gärtner et  al., 2020). Seaweed 
polysaccharides are also widely used. Cationic polysaccharides 
derived from seaweed, such as chitosan, are very useful film-
forming agents and are widely used in hair damage care 
and gel fixing products due to their unique advantage of 
binding tightly to the proteins (negative charges) found on 
human skin and hair (Kanlayavattanakul and Lourith, 2015). 
Chitosan can be  used in dental products, such as toothpaste 
and chewing gum (Rinaudo, 2006). Non-ionic polysaccharides 
such as hydroxymethylcellulose can be  used in nail products 
such as film formers and thickeners (Kanlayavattanakul and 
Lourith, 2015). Polysaccharides extracted from algae, such 
as D-glucose, D-mannose, D-galactose, and D-glucuronic 
acid, have been considered excipients in cosmetics due to 
their viscosity (Kim et al., 2008). Seaweed-derived tocopherol 
can be  used in baby wipes, eyebrow growth serums, beard 
creams, and hair shampoo (Stoyneva-Gärtner et  al., 2020). 
These versatile and strange natural products draw the scientist’s 
mind. The ocean’s treasures are almost endless, and they are 
waiting to be  discovered.

CONCLUSION

This review covers the recent research and applications of 
natural products from marine micro-organisms in cosmetics, 
including marine bacteria, fungi, microalgae, and other micro-
organisms. Starting from functional aspects, the mechanism 
and potential of natural compounds such as phenols, 
polysaccharides, vitamins, enzymes, proteins, and peptides in 
the field of cosmetics are summarized. As mentioned above, 
naturally active substances extracted from marine microbes 
have fewer skin side effects than chemically synthesized substances 
and can reduce skin damage while maintaining beauty. However, 
the exact mechanisms by which most of these natural compounds 
act on the skin have not been fully studied. We  believe that 
it is necessary to further study these compounds to determine 
their mechanisms of action, preferably through clinical trials 
or in vitro cell tests to investigate the absorption and sensitization 
of these active substances on different skin types. This not 

FIGURE 6 | Reprinted with the kind permission of Chemical Senses 
publications (Silva Teixeira et al., 2015). Schematic representation of a sagittal 
section through the human head with a section of the olfactory nervous 
system depicted in greater detail. Air transmits odor molecules to olfactory 
mucosa, combines with odor transporter proteins to form complexes, and 
transports them to olfactory receptors on olfactory cilia. After a series of signal 
transductions, they are transmitted to the olfactory tract to produce olfactory 
sensations.
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only helps to improve the quality of cosmetics but also helps 
different groups of people to better choose cosmetics to protect 
the rights and interests of consumers and promote the benign 
development of the cosmetics market.

However, relatively little development of marine resources 
has been made to date. The unique environment of the ocean 
produces rich microbial resources and includes marine sediments, 
the symbiotic micro-organisms of invertebrates, and the intestinal 
micro-organisms of marine fish. The environment of these 
micro-organisms is very different from that of terrestrial 
organisms, endowing them with unique metabolic pathways 
and adaptation mechanisms. Adaptation to the marine 
environment also makes organisms unable to survive outside 
of this environment and difficult to culture. This is a great 
obstacle to developing and utilizing new molecules and enzymes, 
but metagenomic technology may help in this regard. 
Metagenomics can extract DNA from the whole environment 
to obtain the genome of unculturable micro-organisms in the 
whole environment and has been considered a good method 
to utilize the natural active substances of unculturable micro-
organisms (Martins et  al., 2014). Said Hassane et  al. (2020) 
used metagenomic technology to discover metabolites with 
antiaging potential from microorganisms in marine sponges. 
Su et  al. (2015) obtained LipA from a metagenomic library 
of the sponge Ircinia sp. Yuan et  al. (2016) expressed the 
MAS1 gene derived from marine Streptomyces strain W007  in 
P. pastoris and demonstrated that MAS1 is a heat-resistant 
and alkali-resistant lipase. These results provide us with ideas 
for the exploitation of marine microbial resources. In addition, 
we  know that most of the natural products of marine micro-
organisms have multiple functions. For example, collagen not 
only has the functions of antioxidation and anti-UV radiation 
but also has a moisturizing function. The combination of these 
functions provides it with an antiaging function (Swatschek 
et  al., 2002). Moreover, using marine species to produce more 

green and environmentally friendly products through 
biotransformation has become a new choice for cosmetic 
manufacturers. In developing these types of materials in 
cosmetics, we can combine a variety of non-interfering substances 
to produce greater functionality. These active substances produced 
by marine microbes will be  brought to market safely 
and effectively.
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