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Single cell analysis of human foetal liver captures
the transcriptional profile of hepatobiliary hybrid
progenitors
Joe M. Segal 1,8, Deniz Kent1,8, Daniel J. Wesche2,3, Soon Seng Ng 1, Maria Serra1, Bénédicte Oulès 1,

Gozde Kar4, Guy Emerton4, Samuel J.I. Blackford 1, Spyros Darmanis5, Rosa Miquel1, Tu Vinh Luong1,

Ryo Yamamoto2, Andrew Bonham2, Wayel Jassem6, Nigel Heaton6, Alessandra Vigilante1, Aileen King7,

Rocio Sancho 1, Sarah Teichmann 4, Stephen R. Quake5,9, Hiromitsu Nakauchi2,9 & S. Tamir Rashid1,2,9

The liver parenchyma is composed of hepatocytes and bile duct epithelial cells (BECs).

Controversy exists regarding the cellular origin of human liver parenchymal tissue generation

during embryonic development, homeostasis or repair. Here we report the existence of a

hepatobiliary hybrid progenitor (HHyP) population in human foetal liver using single-cell RNA

sequencing. HHyPs are anatomically restricted to the ductal plate of foetal liver and maintain

a transcriptional profile distinct from foetal hepatocytes, mature hepatocytes and mature

BECs. In addition, molecular heterogeneity within the EpCAM+ population of freshly isolated

foetal and adult human liver identifies diverse gene expression signatures of hepatic and

biliary lineage potential. Finally, we FACS isolate foetal HHyPs and confirm their hybrid

progenitor phenotype in vivo. Our study suggests that hepatobiliary progenitor cells pre-

viously identified in mice also exist in humans, and can be distinguished from other par-

enchymal populations, including mature BECs, by distinct gene expression profiles.
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In rodents both hepatocytes and biliary epithelial cells (BECs)
are derived from a common bi-potent hepatoblast population
during liver development1. In adult mice, conflicting evidence

exists regarding the presence of a distinct bi-potent progenitor
capable of regenerating both hepatocytes and BECs. The regen-
erative potential of the rodent liver has been attributed to hepa-
tocytes2, BECs3,4, biliary-like progenitor cells or ‘oval cells’ arising
in the ductal region5,6, stem cells located around the central vein7

and hepatocyte or cholangiocyte de-differentiation into a hybrid
bi-potent progenitor8,9. In comparison, the mechanisms of
human liver regeneration are poorly characterised. It has been
proposed that EpCAM+ human liver stem/progenitor cells reside
in the ductal plate (DP) during foetal liver development. After
birth these cells localise to the Canals of Hering, where upon
severe chronic liver injury they become reactivated forming what
is pathologically described as ductular reactions10,11. Despite
these findings, the existence of a bi-potent human liver ‘pro-
genitor’ cell remains unclear. This issue is in part due to a sub-
stantial overlap in markers between potential progenitor
populations, hepatic precursors and mature BECs3,12,13, chal-
lenging the field to define the true transcriptional nature of a bi-
potent progenitor phenotype that can be replicated for clinical
use. Several recent studies have captured a bi-potent progenitor-
like state via small molecule-reprogramming of primary hepato-
cytes, capable of in vitro hepatic and biliary maturation, imitating
a process that has been observed during chronic mouse liver
injury8,14–16. Despite several well-established phenotypic criteria
for liver progenitor cells, no benchmark exits that truly distin-
guishes them from other human hepatic and biliary cells. To
facilitate the in vitro development of cell-based therapies for
treating liver disease, it is critical to precisely define a liver pro-
genitor cell that accurately captures the developmental origin of
human liver parenchyma.

In this study we utilise single-cell RNA sequencing (scRNA-
seq) to interrogate the transcriptome of human foetal and adult
liver at single-cell resolution. In recent years scRNA-seq has
helped identify unreported cell types within populations pre-
viously defined as homogenous17–20. Here, we report the tran-
scriptional signature of distinct hepatic cell types in foetal and
adult human liver, including a foetal hepatobiliary hybrid pro-
genitor (HHyP) population. Capturing a human hepatic pro-
genitor state in utero provides unparalleled and unexplored
insight into the true mechanisms of human liver development.
We identify a gene expression profile that can distinguish
between foetal HHyPs, foetal hepatocytes and mature BECs. We
further identify HHyP-like cells maintained in uninjured adult
primary liver tissue. Finally, we FACS sorted HHyPs from freshly
isolated human foetal liver and show evidence of hepatic and
biliary phenotypes in vivo. Our in depth profiling of previously
undefined HHyPs finally provides an accurate template for the
human liver progenitor phenotype that will be a valuable road-
map for translating ex vivo hepatic progenitor studies into suc-
cessful cell-based liver disease therapies.

Results
EpCAM+ cell heterogeneity in human foetal and adult liver by
scRNA-seq. To capture the cellular heterogeneity of human liver
during development, we combined a FACS strategy with scRNA-
seq. We first sorted by negative selection of red blood cells
(CD235a) and immune cells (CD45), and positively selected for
EpCAM and NCAM to enrich for potential human liver
progenitors10,21 (Supplementary Fig. 1). To investigate how foetal
human liver populations progress into adult liver we isolated and
sequenced EpCAM+ (biliary cells) and EpCAM−/ASGPR1+

(mature hepatocytes) cells from fresh, uninjured adult tissue

(Supplementary Fig. 1). In total, 1224 cells were sequenced from
human foetal and adult livers. Following stringent quality control
(qc), 741 cells were retained for downstream analyses (Supple-
mentary Fig. 1)22. Sample counts were normalised as transcripts
per million (TPM).

To define different populations captured by our FACS strategy,
we employed t-Distributed Stochastic Neighbour Embedding (t-
SNE) on high-variance genes. We then measured differential gene
expression to phenotypically characterise the different cell groups
(Fig. 1a, b). We identify several distinct ALB+ cell populations in
both the adult and foetal liver single cell analysis. As expected by
sorting adult human liver cells by EpCAM expression, nearly all
ASGPR1+ cells are identified as ALB+/ASGR1+/AFP− mature
hepatocytes (Supplementary Data 1). EpCAM+ adult cells express
progenitor/BEC markers KRT19 and SOX9, but interestingly
most are highly ALB+ as well (Fig. 1b, c, Supplementary Data 2).
In foetal liver, two distinct ALB+ expressing populations and
several non-hepatic populations transcriptionally resembling
stromal, mesothelial and erythroblast cell types were found
(Supplementary Fig. 2). Within the ALB+ populations we
identified a foetal hepatocyte population expressing hepatoblast
markers AFP and DLK1, but negative for traditional biliary
markers (Fig. 1b, c, Supplementary Data 3). Exclusively within the
CD235a−/CD45−/EpCAM+/NCAM+ population of human foe-
tal liver we identify a cluster of cells that closely resembles
EpCAM+ biliary cells identified in adult liver, expressing both
biliary and hepatic markers which we label here as HHyP cells
(Fig. 1b, c). Foetal HHyP cells expressed hepatic genes ALB,
APOE, TF and HNF4A, but were also positive for BEC markers
KRT19, SOX9 and CD24 (Fig. 1c, d, Supplementary Data 4).
Having expected to isolate mature BECs from adult EpCAM+

cells we looked for expression of mature BEC markers recently
identified in a comprehensive transcriptomic map of adult human
liver23. We identify a small ALB− population enriched for mature
BEC markers TFF1 and TFF2. This BEC population is
transcriptionally distinct from HHyPs which co-express hepatic
markers, liver progenitor markers and mature biliary markers
(Fig. 1c, d, Supplementary Data 5). Whilst potential BECs in our
study share many genes with HHyPs from both foetal and adult
human liver, they express a subset of genes enriched in mature
human BECs captured by scRNA-seq23 (Supplementary Fig. 3).
Whilst potential BECs in our study share many genes with
HHyPs from both foetal and adult human liver, we have
identified differences in gene expression that can distinguish
BECs from HHyPs (Supplementary Fig. 3)23. After applying
phenotypic labelling to t-SNE analysis we see contribution from
multiple donors for each cell type, including rarer populations,
demonstrating the robustness of our data set (Fig. 1e, f).

Populations of hybrid bi-potent progenitors have previously
been characterised in mice after chronic liver injury8. We,
therefore, compared the transcription profiles of human ALB+/
KRT19+/KRT7+ HHyPs and ALB−/KRT19+/KRT7+ BECs from
our data set with mouse hepatocyte-derived proliferative ducts
(HepPD) and biliary-derived proliferative ducts (BilPD) from
Tarlow et al.8. Relative to their respective biliary populations,
human foetal and adult HHyPs have similar expression patterns
to HepPDs, identified in mice as having bi-potent characteristics
of liver progenitor cells8. Genes, including AHSG, RBP4, SFRP5
and MCAM are enriched in both human HHyPs and mouse
HePDs, while mature BEC markers KRT7, MUC1, TSPAN8 and
TFF2 are downregulated in both (Supplementary Fig. 4). Thus, it
is likely that our single-cell strategy has captured the existence of
a hepatobiliary hybrid progenitor population that is transcrip-
tionally distinct from mature BECs and other hepatic cell
populations, but similar to hybrid progenitor cells identified in
mice after chronic liver injury.
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Identification of a distinct foetal HHyP transcriptional phe-
notype. Further in-depth characterisation of the markers defining
different liver populations is required to fully understand their
role in development and liver regeneration. Foetal hepatocytes
and HHyPs demonstrate clear transcriptional distinction. Despite

sharing ALB gene expression, foetal hepatocytes express none of
the traditional progenitor/BEC markers enriched in HHyPs,
including KRT7, SPP1, STAT1, SOX9 and HNF1B. (Fig. 2). Upon
t-SNE analysis performed only on ALB+ cells from our study,
K-means clustering indicates that adult HHyPs are more closely
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associated with adult mature BECs then foetal HHyPs (Fig. 3a).
Studies have suggested uninjured adult liver would not contain
progenitor-like cells with a hybrid hepatobiliary phenotype, yet
our scRNA-seq analysis on uninjured human adult liver
demonstrates HHyPs are both present and negative for many
recently identified mature human BEC markers23. However,
despite the high transcriptional similarity between foetal and
adult HHyPs there are some key differences in gene expression
(Fig. 3b). Gene set enrichment analysis (GSEA) on foetal HHyP
genes enriched over adult identifies ‘Stem cell proliferation’,
‘Developmental cell growth’, ‘Homophilic cell adhesion via
plasma membrane adhesion molecules’ and association with
‘Extracellular matrix component’, suggesting a phenotype asso-
ciated with progenitor/stem cell-like function and important
interactions with the niche environment (Fig. 3c). Genes,
including TACSTD2 (TROP-2), CLDN4, CLDN10 and KRT7 are
enriched in adult HHyPs compared to the foetal HHyP popula-
tion (Fig. 3d). In contrast, expression of CLDN6 and the tran-
scription factor STAT4 are exclusively detected in foetal HHyPs.
MCAM, CDH6 and STAT1 are also enriched in foetal HHyPs
over adult (Fig. 3d). We observed several other interesting
gene expression patterns, including GPC3 expressed exclusively in
foetal parenchymal populations, CXCL2 expressed exclusively in
adult parenchymal populations and MUC1 restricted to BECs
(Fig. 3d). To further understand how foetal HHyPs related to the
current understanding of liver progenitor cells in the field, we
looked at the transcriptome of a recent study for human primary
hepatocyte-derived liver progenitor-like cells16. We identified that

many of the top genes enriched in foetal HHyPs are enriched
during the transition process from primary hepatocytes to
progenitor-like cells, including MCAM, ANXA2, ANXA4, BICC1,
SPIN1, TNFRSF12A, STAT1 and ABCC3 (Fig. 3e). This suggests
that in vitro reprogramming techniques to create progenitor-like
cells from mature hepatocytes are moving towards a foetal
HHyP-like phenotype.

TROP-2 expression is restricted to biliary committed cells. To
validate the transcriptional signature of HHyP cells we next
employed RNA in situ hybridisation (RNA-ish) and characterised
their spatio-temporal regulation in primary human foetal
liver tissue. Expression of the HHyP markers CDH6, STAT1,
CD24, FGFR2, DCDC2 and CTNND2 that we identified are
restricted to the ductal plate (DP) (a layer of cells surrounding the
portal tract) in second trimester human foetal liver24 (Fig. 4a,
Supplementary Fig. 5). At this stage ALB is expressed highly in the
parenchyma, but absent from intrahepatic bile ducts (BDs) (Sup-
plementary Fig. 5). We confirmed the hepatic phenotype of DP
cells by co-expression of the DP marker STAT1 with the hepatic
marker HNF4A (Supplementary Fig. 5). We, additionally, observed
that CDH6 and STAT1 co-localised with the previously reported
human hepatic stem cell marker CLDN3 and biliary marker SOX9
in the DP at the protein level (Fig. 4b, Supplementary Fig. 5)5,10.
Importantly, these markers were also expressed within foetal BDs
alongside CK19, a classical DP marker (Fig. 4c)24. These results
highlight a significant challenge to the field, distinguishing between
potential bi-potent liver progenitors and biliary committed cells

Fig. 1 ScRNA-Seq analysis of foetal and adult human liver. a Overview of foetal and adult liver FACS strategy. b 2D t-SNE visualisation of single cells
isolated from foetal and adult human liver coloured by FACS gating population, shaped by tissue source. c Transcript expression of selected markers
overlaid on the 2D t-SNE space of human liver scRNA-seq analysis. Expression is Log10(TPM). d Heat maps of selected gene expression in mature hepatic,
foetal hepatic, hybrid hepatobiliary progenitor (HHyP) and mature cholangiocyte cell populations. Gene expression in Log10(TPM). Mean gene expression
of cells in each cluster is plotted, HHyP population= 138 cells, mature biliary epithelial cell (BEC)= 9 cells, mature hepatocytes= 226 cells, foetal
hepatocytes= 82 cells. e 2D t-SNE visualisation of single cells isolated from foetal and adult human liver coloured by cell type. Phenotypic labelling based
on transcriptional analysis. f Proportions of tissue sample contributions from adult liver (AL) and foetal Liver (FL) in each phenotypically labelled cell type
as a percentage of the total population. t-SNE t-distributed stochastic neighbour embedding, TPM transcripts per million, FACS fluorescence-activated cell
sorting
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which share several markers. Our scRNA-seq analysis identified
TROP-2 expression to be restricted to adult progenitor/BEC cells
and absent from foetal HHyPs. Furthermore in Tarlow et al.8,
TROP-2 is expressed in bilPDs (biliary progenitors) but not
bipotent hepPDs. We, therefore, investigated TROP-2 spatial

regulation in human foetal liver, as compared to progenitor mar-
kers CDH6 and STAT1. We observed by RNA-ish that while
CDH6 and STAT1 expression were observed in BDs and the DP
progenitor zone, TROP-2 expression was anatomically restricted to
BDs (Fig. 4d). These findings suggest that TROP-2 is up regulated
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during biliary lineage commitment. Therefore TROP-2 is a key
marker to distinguish human foetal liver hybrid progenitors from
TROP-2+ committed BECs present in BDs.

We next investigated whether these in situ findings translated
to ex vivo lineage commitment. Previous studies have isolated
and expanded progenitor-like cells in vitro from the EpCAM+

population of human liver in 3-dimensional (3D) culture
systems10,21. We, therefore, isolated EpCAM+ cells from human
foetal liver by MACs column purification and generated 3D
organoids in matrigel suspension (Fig. 4e)21. As expected,
organoids grown in liver expansion media were positive for
EpCAM, SOX9, CDH6 and HNF4A, suggesting they retained a
hybrid hepatobiliary phenotype in these conditions (Fig. 4e). To
trigger lineage commitment, EpCAM+ organoids were
transferred to either hepatic or biliary differentiation (BD)
media13,25–28. Consistent with our scRNA-Seq data and in situ
staining, organoids became positive for TROP-2 and CK7 upon
transfer to a BD media, whereas ALB and HNF4A were not
expressed. In contrast, organoids transferred to hepatic differ-
entiation (HD) media expressed ALB, while CDH6, TROP-2 and
CK7 were lost in ALB/HNF4A expressing structures (Fig. 4f).
These findings suggest the expression signature of foetal HHyPs
from our scRNA-seq dataset can be utilised to distinguish the
profile of a human liver progenitor from biliary and hepatic
committed cells ex vivo.

Adult HHyPs exhibit gene signatures of both hepatic and
biliary lineage. Our findings identified distinct human foetal and
adult HHyP populations with key differences in gene expression.
To further investigate heterogeneity within the foetal and adult
HHyP populations, we examined their lineage potential using the
R package MONOCLE29. Populations were clustered into 5
‘pseudo states’ in 2D PCA space (Supplementary Fig. 6). Pseudo
state 1 contained all foetal HHyPs, and a sub-population of adult
HHyPs (blue), enriched markers DCDC2, CDH6, STAT1 and
ANXA13 (Supplementary Fig. 6). Interestingly, we observed dis-
tinct adult HHyP clusters enriched for either biliary (Pseudo state
3) or hepatic (Pseudo state 4) lineage markers. Pseudo state 3
revealed an enrichment of ductal marker genes KRT7, KRT23 and
TROP-2, while hepatic transcription factors ATF5, MLXIPL and
CREB3L3 were enriched in pseudo state 4 (Supplementary Fig. 6).

We next looked at the spatial expression of enriched pseudo
state 1 markers CDH6, DCDC2 and ANXA13, alongside STAT1 in
adult uninjured liver by in situ hybridisation (Supplementary
Fig. 6). Intriguingly, all markers were expressed in both BDs and
at the limiting plate, an embryonic remnant of the DP
surrounding the portal mesenchyme, suggesting these cells may
be a population of intrahepatic duct residing cells distinct from
ALB−, TFF1+/TFF2+/MUC1+ BECs identified here and in other
studies23. This is further supported by our observation that
TROP-2 expression is restricted to foetal liver BDs and not
HHyPs localised to the DP (Fig. 4d). TROP-2 has previously been

identified in mouse liver injury as a marker that distinguishes oval
cells from BECs30, and only expressed in human cancers in the
liver31. Therefore, it was important to confirm that TROP-2 is
highly expressed in the BDs of uninjured adult human liver by
in situ (Supplementary Fig. 6).

FACS isolation and in vivo transplantation of human foetal
liver HHyPs. We next looked to assess the intrinsic hepatobiliary
lineage potential of distinct foetal human liver populations
in vivo. We used FACS to isolate distinct foetal hepatic cell
populations based on their differential surface marker expression,
and transplanted each population individually underneath the
renal capsule of 10-week-old NOD scid gamma (NSG) immu-
nodeficient mice (Fig. 5a). This approach has previously been
used to validate the differentiation potential of mouse and human
stem cell populations32–38. We FACS sorted a number of popu-
lations to investigate their respective in vivo differentiation
potential. We isolated CD235a−/CD45−/EpCAM+/NCAM+/
MCAM+ HHyP cells, based on our scRNA-seq analysis of
the HHyP phenotype (Fig. 5b). As a control we sorted for
CD235a−/CD45−/EpCAM+/NCAM−/MCAM− cells to assess
the in vivo behaviour of non-HHyP EpCAM+ cell types relative
to potential HHyPs (Fig. 5c). The xenografts were analysed after
4 weeks of development within the kidney capsule, and were
subsequently assessed by H&E and immunofluorescence (IF)
staining to determine their expansion capabilities and lineage
potential. After 4 weeks, only the HHyP cell population produced
clear expanded regions, despite matched cells numbers trans-
planted between HHyPs and EpCAM+ only populations. Non-
transplanted kidney from matched samples contained no such
explant regions (Fig. 5d).

We investigated the presence of hybrid progenitor cells within
the foetal HHyP explant by IF staining of hepatobiliary markers
identified in our scRNA-seq analysis and validated ex vivo. IF
staining of human-specific ALB and the BEC/progenitor marker
CK19 within foetal HHyP explant sections revealed the presence
of ALB+/CK19+ cells, as well as cells expressing only ALB
(Fig. 5e). ALB staining was negative in matched mouse adult liver
control, confirming the presence of human cells in the explant.
We next looked at markers of hepatic and biliary commitment by
IF to assess lineage potential of the FACS sorted foetal HHyP
population. The hepatic markers fumarylacetoacetate hydrolase
(FAH) and HNF4a are expressed widely across the explant region
of HHyP cells confirming the hepatic potential of foetal HHyPs
(Fig. 5f). To confirm biliary lineage potential we co-stained HHyP
explants for ALB and TROP-2, a marker we identified as negative
in foetal HHyPs and expressed in mature BECs by scRNA-seq
analysis. We identify ALB−/TROP-2+ duct-like structures
suggesting that the HHyPs population is also capable of
producing mature BECs (Fig. 5e). Finally, we also isolated
CD235a−/CD45−/EpCAM+/NCAM+/TROP2− cells to enrich
for HHyPs over biliary lineage committed cells (Fig. 6a, b). As

Fig. 3 Comparison of ALB+ cells in human liver scRNA-seq populations. a 2D t-SNE visualisation of ALB+ cells isolated from foetal and adult human liver
coloured by tissue type (left panel) and K-means cluster (right panel). Phenotypic labelling based on transcriptional analysis. b Comparison of foetal and
adult hepatobiliary hybrid progenitors (HHyP) significantly enriched genes (FC 1.1, p-val < 0.05 with student t test) by venn diagram with top ten highly
expressed genes in foetal (left) and adult (right) HHyPs. c Gene set enrichment analysis (GSEA) of foetal vs. adult HHyPs for Gene ontology (GO) terms
‘Stem cell proliferation’, ‘Developmental cell growth’, ‘Homophilic cell adhesion via plasma membrane adhesion molecules’ and ‘Extracellular matrix
component’. d Transcript expression of selected markers overlaid on the 2D t-SNE space of human liver scRNA-seq analysis for adult HHyP-restricted
genes (top), foetal HHyP-restricted genes (middle) and other cell type-specific expression patterns (bottom). Expression is Log10(TPM). e Heatmap of top
foetal HHyP up regulated genes in publicly available sequencing data from human hepatic liver progenitor cells (hepLPCs-Heps, GSE105019) converted
from primary hepatocytes16. Heatmap shows expression in primary hepatocytes (pH) and human primary hepatocytes converted into liver progenitor-like
cells (HepLPCs) at different stages in transition and expansion medium (TEM). The colour bar indicates gene expression in log10 scale. t-SNE t-distributed
stochastic neighbour embedding, TPM transcripts per million, FC fold change
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expected few cells were captured from foetal CD235a−/CD45−/
EpCAM+/NCAM−/TROP2+ population, likely due to their
restriction to forming BDs, thus proving difficult to isolate
(Fig. 6c). Again only HHyP cell expansion was observed upon
renal capsule transplantation over matched control cells (EpCAM
−/NCAM−/TROP2− cells) or BECs (Fig. 6d). We further show

that these cells express FAH, confirming their hepatic lineage
potential upon in vivo implantation (Fig. 6e). Collectively, these
results demonstrate the hepatobiliary hybrid phenotype of foetal
HHyPs identified in our scRNA-seq analysis, as captured
previously in mouse chronic liver injury studies and small-
molecule reprogramming of primary human hepatocytes.
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Fig. 5 In vivo lineage potential of human foetal HHyPs. a Experimental strategy for isolation and in vivo characterisation of foetal hepatobiliary hybrid
progenitors (HHyPs) by transplantation beneath the renal capsules of immunodeficient NOD scid gamma (NSG) mice. b 2D t-SNE visualisation of single
cells isolated from foetal human liver coloured by FACS gating population (left panel) and transcript expression of ALB and MCAM overlaid on the 2D t-
SNE space of human foetal liver scRNA-seq analysis (right panel). Expression is Log10(TPM). c Gating scheme for the isolation of distinct foetal human
liver populations based on expression of CD235a, CD45, EpCAM, NCAM and MCAM. d Hematoxylin and eosin (H&E) staining in tissue cross-sections of
implant regions 4 weeks post renal capsule transplantation of human foetal liver FACS populations. Scale bars represent 100 μm. e Immunofluorescence
(IF) co-staining of CK19 (green) and ALB (red) in implant regions of HHyPs post 4 weeks transplantation and matched control mouse adult liver. Slides
counterstained in DAPI (cyan). Scale bar represents 25 μm. f IF staining of FAH (red) and HNF4A (green) in implant region of HHyPs 4 weeks post
transplantation. Slides counterstained in DAPI (cyan). Scale bars represent 25 μm. g IF co-staining of TROP-2 (white) and ALB (red) in implant region of
HHyPs 4 weeks post transplantation. Slides counterstained in DAPI (cyan). Scale bars represent 25 μm. t-SNE t-distributed stochastic neighbour
embedding, FACS fluorescence-activated cell sorting, TPM transcripts per million
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Our FACS and scRNA-seq strategy has captured the
transcriptional profile of a HHyP population that arises during
human foetal liver development. We utilised this profile to clarify
the strong overlap in markers between potential progenitor
populations and mature BECs and define a gene signature
capable of truly distinguishing liver progenitor cells from mature
BEC populations. Integrating our foetal data set with recent
scRNA-seq and bulk analysis of different hepatic populations, we
identify marker sets that exclusively define BEC and progenitor
populations, as well as markers associated with both8,16,23.
Mature BECs uniquely express the genes CLDN10, CLDN4,
CXCL2, LGALS2, MMP7, MUC1, MUC5B, TROP-2, TFF1, TFF2,
TFF3 and TSPAN8 as determined by our study and MacParland
et al.23 (Fig. 7). CLDN4, MMP7, MUC1, TROP-2 and TSPAN8
interestingly are also enriched in mouse BilPDs over HepPDs
suggesting a gene signature of biliary specific lineage8 (Fig. 7).
We further identified a signature defining human hybrid
progenitor cells, distinct from mature BECs, immature hepato-
cytes and mature hepatocytes. Genes, including CAV1, CLDN6,
GPRC5B,MCAM, NCAM and STAT4 are restricted to expression
in HHyPs (Fig. 7). Several of these genes, including MCAM and
CAV1 are enriched in bipotent HepPDs that arise in mice after
chronic liver injury8. Our study, therefore, has captured a
transcriptional signature of previously undefined human foetal
HHyPs, comparable to hepatic progenitor-like cells that arise in
mice during liver injury.

Discussion
In this study, we captured the molecular identity of distinct
parenchymal and supporting cell populations in both foetal and
adult human liver using scRNA-seq. We identified the tran-
scriptional signature of a foetal human liver HHyP population,
validated its presence in primary human liver samples, and
showed its bi-lineage differentiation potential in vivo. In situ,
HHyP cells could be anatomically differentiated from cho-
langiocytes/BECs that populate intra-hepatic BDs by using mar-
kers identified from our transcriptional profiling including
TROP-2. Our work defines precise transcriptional changes dur-
ing hepatic and biliary lineage commitment and provides evi-
dence to suggest that hybrid hepatobiliary progenitor cells
previously identified in mice also exist in humans during foetal
development.

Previous work has proposed human liver stem/progenitors are
bi-potent cells capable of repopulating both hepatocytes and
cholangiocytes/BECs during development and injury21,39. These
cells were reported to be EpCAM+/NCAM+, reside in the DP of
human foetal liver and be retained in the Canals of Herring of
normal adult livers10,40. Transcriptionally, they co-express genes
associated with both hepatic and biliary lineage. Recent studies
have captured similar hybrid-like liver progenitor cells in mouse
and human adult liver tissue. In mouse, bi-potent progenitors
have been traced from chronically injured hepatocytes8 and
mature BECs3,4. In humans, hepatocyte trans-differentiation post
injury gives rise to hybrid cells41. Finally, in vitro small-molecule
reprogramming of both mouse and human mature adult primary
hepatocytes can generate a population of proliferating bipotent
liver progenitor cells14–16. Despite validating their in vivo efficacy,
little effort has been put into understanding the developmental
origin of human liver progenitor cells and therefore how phy-
siologically relevant they may be in a clinical setting. Using
scRNA-seq, we identified cells with hybrid hepatobiliary char-
acteristics within the human foetal liver EpCAM+/NCAM+

FACS population. These cells transcriptionally resemble the
periportal hybrid progenitors previously identified in mice, being
positive for SOX9, HNF1B and KRT19, but also ALB, APOE and

TF6,8,9. HNFA expression was also confirmed by in situ mRNA
staining. They also express BEC/progenitor markers CD24,
CD133, CLDN3, FGFR2, KRT7 and SPP1. How these hybrid cells
arise is contentious, having been previously attributed to hepa-
tocyte plasticity2,8, cholangiocyte trans-differentiation4,9 or
representative of a quiescent undifferentiated/reserve state in
uninjured postnatal liver6,10.

We found that HHyPs were distinct from foetal hepatoblasts
which are AFP+/DLK+. Interestingly, recent scRNA-seq data on
mouse liver was used to propose that hepatocyte and cho-
langiocyte lineages originate from AFP+/DLK+ hepatoblasts, and
not from HHyPs42. However, the authors positively selected for
DLK expressing cells, and therefore excluded EpCAM+/DLK
−cells we identified. This cell capture strategy may explain the
discrepancy with our results. Our cell-sorting protocol on the
other hand is likely enriching for progenitors. Accordingly, we
captured only a very limited number of mature ALB−/SOX9
+/KRT7+ BECs. Intriguingly, our sorting strategy isolated a
population of EpCAM+ cells highly similar to foetal HHyPs,
expressing hepatic markers ALB, HNF4A, RBP4 and biliary
markers SOX9, KRT19 and KRT7. However, these cells were
negative for mature BEC markers identified in the recent Mac-
Parland et al.23 scRNA-seq study of human liver, including
Trefoil factors (TFF)1–3 and mucins MUC1, MUC3A and
MUC5B. This study however, also identified ALB expression in a
subpopulation of BECs23. This raises the possibility that adult
HHyPs identified in our study may indeed represent a population
of mature BECs distinct from ALB−/TFF1+/TFF2+/TFF3+ BECs.
TFFs have been previously reported to be heterogeneously
expressed across different intrahepatic BDs43,44. Furthermore, it
has recently been reported that adult mice BDs contain distinct
BEC populations with differing proliferative capabilities45. Our
findings suggest that this could be interpreted as revealing BEC
heterogeneity in healthy liver. It is possible that these populations
and the mechanisms that govern their behaviour regulate the
inherent plasticity of parenchymal cell populations towards
mature hepatic and biliary lineage in response to
injury4,8,14,15,41,46. A key difference between foetal and adult
HHyPs is the expression of TROP-2, also expressed in mature
BECs. TROP-2 is a closely related family member of EpCAM
thought to be absent or weakly expressed in normal liver tissue
and enriched only at times of injury30 or cancer31. Our data
clearly show this is not the case in humans, with TROP-2 being
expressed in adult BDs during normal homoeostasis. Our data
further suggest that TROP-2 expression marks HHyP commit-
ment towards biliary lineage, consistent with recent mouse data8.
While this supports the notion that we have captured distinct
populations of adult BECs, our analysis also confirms that adult
HHyPs are transcriptionally close to foetal HHyPs validated
in vivo for lineage potential and mouse ‘oval cells’. Therefore, we
cannot say conclusively that these cells are a specific mature BEC
population without further functional validation, a collective
problem the field of human liver progenitor studies faces. It is
likely, however that, these populations respond differently to
different injury stimuli. Understanding the phenotypes of distinct
biliary populations is important when considering that the
management of hepatic diseases is often hindered by difficulties
in identifying their cellular origin. Given the frequent overlap in
markers between multiple parenchymal cell types, it is crucial to
accurately determine new histological markers.

Using the renal capsule of immunodeficient mice, we demon-
strate the proliferative and hepatobiliary hybrid lineage potential
of freshy isolated foetal human HHyPs. Investigating true func-
tional stemness of freshly isolated progenitor cells for clonality,
bi-potency and rescue was unfeasible in this study due to the low-
cell numbers obtained post FACS sorting from rare human tissue.
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Fig. 7 Collated marker expression in hepatic progenitor populations. Heatmaps of selected marker expression in populations identified in this study with
different cohorts of liver progenitor-like cells, biliary epithelial cells (BECs) and primary hepatocytes. Shown is gene expression patterns of publicly
available sequencing data from GEO (https://www.ncbi.nlm.nih.gov/geo/) or literature mined. Bulk RNA-seq data sets, include reprogrammed human
hepatic liver progenitor cells (hepLPCs-Heps, GSE105019) and primary hepatocytes (pHs, GSE105019) from Fu et al.16 and mouse hepatocyte-derived
proliferative ducts (HepPD, Tarlow et al. 2015) and biliary-derived proliferative ducts ((BilPD) (GSE55552), Tarlow et al. 2015)8. ScRNA-seq data sets,
include human BECs (GSE115469) from MacParland et al.23. Expression graded as high (red) to low (blue) relative to individual data sets
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Recent studies focused on the translational potential of progenitor
cells for liver repopulation required ex vivo expansion to produce
sufficiently high numbers for transplantation into multiple ani-
mals, injured with enough severity such that an environment
conducive to engraftment of donor cells is induced10,21,40,47. To
avoid physiological variables that compound this approach, we
elected to implant cells directly after FACS to experimentally
match cells we assayed in vivo with those defined through
scRNA-seq. This approach also completely removes results
obtained as a consequence of ex vivo culture. We chose, therefore,
to implant the foetal HHyP cell population into a non-hepatic
space previously reported to be permissive for evaluation of the
developmental potential of small numbers of human
cells32,33,37,48,49. While this assay limits the functional validation
of HHyP clonality and functional bi-potency of liver injury stu-
dies, this allowed us to investigate proliferative and hepatobiliary
lineage potential of well-defined and freshly isolated rare human
liver progenitor populations without in vitro expansion prior to
transplantation10,21,40,47,50. Using this approach we show that
foetal HHyPs within the EpCAM+/NCAM+ FACS population
previously shown to harbour human foetal progenitor cells10, are
capable of expanding into FAH and HNF4A expressing hepato-
cytes within the kidney capsule environment. Specifically,
EpCAM+/NCAM+/MCAM+ FACS isolated human foetal liver
HHyPs were capable of expansion within the renal capsule, and
shown to be ALB+/CK19+ confirming the hepatobiliary hybrid
phenotype of this population. Cells isolated from EpCAM
+/NCAM− foetal human livers did not engraft efficiently beneath
the renal capsule. Our scRNA-seq analysis predicts this popula-
tion is likely enriched for foetal immature hepatocytes, and may
reflect their inability to expand in this niche. In our scRNA-seq
analysis MCAM is identified as specifically enriching the foetal
and adult HHyP phenotype, absent from expression in mature
TTF1+/TTF2+/TTF3+ BEC populations and from foetal hepa-
tocytes. Furthermore, in mouse chronic liver injury studies,
MCAM is enriched in hepatocyte derived proliferative ducts, over
those derived from mature BECs alongside AHSG, ALB, CAV1
and RBP48. Interestingly, MCAM (CD146) has previously been
reported to be expressed on hepatic stellate cells that closely
interact with human hepatic stem cells, as well as many different
cell types including aggressive epithelial cancers10,51,52. MCAM
forms homotypic cell–cell interactions, and therefore may play a
key role in the niche–progenitor interface and regulating the
interactions of foetal HHyPs with cells that comprise the stem cell
niche during human liver development. Our in vivo findings
validate our initial transcriptional labelling of FACS isolated
putative foetal liver progenitors as hepatobiliary in nature. It will
be of great interest for future research to investigate the presence
of an expanded HHyP phenotype in human hepatobiliary disease
tissue for fresh isolation in greater cell numbers to more speci-
fically address questions on clonality, bi-potency and functional
rescue potential.

Previous attempts to address fundamental questions surrounding
the presence and nature of liver stem/progenitors have been ham-
pered by the lack of correlation between mouse and human models
and the limited resolution of lineage tracing strategies. By contrast,
the combination of carefully selected human tissue and single-cell
analysis performed here has facilitated the identification of a hybrid
progenitor population from human foetal liver. Furthermore, these
cells are transcriptionally distinct from mature human BECs. In our
study we present an accurate gene expression profile of human
foetal liver progenitor cells that the field can benchmark against for
a biologically relevant phenotype. In-depth characterisation of the
mechanisms regulating the behaviour of a hepatobiliary hybrid
progenitor population will help advance our understanding of
human liver development and disease.

Methods
ScRNA-seq cell sorting and cDNA library preparation. All human tissues were
collected with informed consent following ethical and institutional guidelines
(Stanford, US and Kings College London, UK). Freshly isolated adult hepatocytes
were obtained from Triangle Research Labs, while foetal livers were obtained from
the Human Developmental Biology Resource of University College London.
Human foetal tissue was dissociated by Collagenase XI enzymatic dissociation for
25 min at 37 °C with agitation. Samples were stained with the following primary
antibodies, CD235a (349104, FITC, mouse; Biolegend), CD45 (304050, BV711,
mouse; Biolegend), EpCAM (324208, APC, mouse; Biolegend), NCAM (362524,
PE, mouse; Biolegend), ASGPR1 (563655, PE, mouse, BD Pharmingen™), TFRC
(334106, PE mouse; Biolegend), MCAM (361005, PE, mouse; Biolegend),
TACSTD2 (363803, PE, mouse; Biolegend) all at 1:100 dilution and incubated for
30 min at 4 °C. DAPI (D1306, ThermoFisher Scientific) at 1:1000 dilution was used
for live/dead staining. Single-cell sequencing was performed using SmartSeq253.
Briefly, cells were sorted using a BD FACS Aria II instrument and deposited as
single cells into 96-well plates, pre-loaded with lysis buffer (1% Triton X-100, 1 mM
dNTP, 1 μM oligo-dT30, 1:1.2 × 106 ERCC ExFold RNA spike-in, Recombinant
RNase Inhibitor (2313B, Takara Clontech). RNA was converted into cDNA using
SMARTScribe Reverse Transcriptase (639538, Takara Clontech) and amplified for
21 cycles (Kapa HiFi HotStart ReadyMix 2×, KK2602, KAPA Biosystems). Suc-
cessful single cell libraries were identified by capillary gel electrophoresis (DNF-
474-1000, High Sensitivity NGS Fragment Analysis Kit, AATI) and converted into
sequencing libraries using a Nextera XT DNA Sample Preparation Kit (FC-131-
1096, Illumina). Barcoded libraries were pooled and subjected to 75 base pair
paired-end sequencing on a Illumina NextSeq 2500 instrument.

DNA sequencing and analysis of single-cell transcriptomes. Raw sequencing
reads were aligned using STAR and per gene counts were calculated using
HTSEQ54,55. Gene counts were further analysed using the R package SCATER for
pre-processing, quality control and normalisation22. To filter out unsuitable cells
for scRNA-seq analysis we used median absolute deviations (MADs) on library
size, total genes detected, mitochondrial gene percentage and artificial ERCC spike
in percentage. Two deviations from the median were used to remove cell outliers.
For library size and total genes the lower tail outliers were excluded. For mito-
chondrial and ERCC spike in percentage upper tail outliers were excluded. t-SNE,
spearman’s ranks co-efficient, hierarchical clustering and Student’s t tests were
performed using custom scripts in R. t-SNE was performed on log10(TPM) nor-
malised gene counts. For t-SNE analysis, the top 1000 variable features were used
between all cells in the analysis. User-defined K-means clustering was performed in
R. Optimal number of clusters was determined by peak cluster stability with sil-
houette analysis in R. For differential gene expression 1.50-fold change and p-value
< 0.05 was used as a cut off determined by student t-test. Gene set enrichment
analysis (GSEA) was performed on normalised scRNA-seq gene expression data
through GSEA software run using the ‘GO TERM’ collection56. Pseudo lineage and
lineage trajectory analysis was performed in R using the MONOCLE package29.

In situ RNA hybridisation. Foetal and adult human liver samples were fixed in
10% formalin buffer saline (HT501128, Sigma Aldrich) for 2 days then dehydrated
and paraffin wax infiltrated using Excelsior™ AS Tissue Processor. After embed-
ding, sections (5 µm) were processed for in situ RNA hybridisation RNA-ISH using
the RNAscope 2.5 High Definition (Red, 322350 ACD Bio) according to the
manufacturers instructions. For single-plex staining the following probes were
used: CDH6 (Hs-CDH6 403011), TACSTD2 (Hs-TACSTD2 405471), DCDC2 (HS-
DCDC2 452911), ANXA13 (HS-ANXA13 542811), HNF4A (HS-HNF4A 442921),
CD24 (HS-CD24 313021), CTNND2 (HS-CTNND2, custom), FGFR2 (Hs-FGFR2,
311171), (All ACD Bio). For Duplex RNA-ISH for transcript expression was
performed using RNAscope® 2.5 HD Duplex Assay (322435, ACD Bio) according
to manufacturer’s instructions using the following custom probes: STAT1 (Hs-
STAT1 469861, C2 channel change). Slides were counterstained with H&E QS
(Vector Laboratories. Inc.). Mounted slides were imaged using NanoZoomer
(Hamamatsu).

Tissue processing and analysis for IF and IHC. For IF staining, foetal liver
samples were OCT (23-730-571, ThermoFisher Scientific) embedded, sectioned (5
µm) and fixed for 10 min in 4% w/v paraformaldehyde (PFA). Primary antibodies
were used at the indicated dilutions: CDH6 (AF2715, sheep, 1:50; RnD systems),
CLAUDIN-3 (83609 S, rabbit, 1:50, Cell Signalling), SOX9 (AF3075, goat, 1:100,
RnD systems) and STAT1 (610115, mouse, 1:100; Transduction laboratories) at 4 °
C overnight. Cells were incubated with Alexa 647, Alexa 568, Alexa 488 conjugated
secondary antibodies (all Life Technologies) and counterstained with DAPI
(D1306, ThermoFisher Scientific). Images were acquired with a Nikon A1 confocal
microscope (Nikon Instruments Inc.). Digital images were processed using NIS
elements Advanced Research (Nikon) or ImageJ (https://imagej.nih.gov/ij/).

IHC—tissue sections. Paraffin-embedded foetal liver tissue was prepared as
described for RNA-ISH. After embedding, sections (5 µm) were stained using
mouse and rabbit specific HRP/AEC (ABC) Detection IHC Kit (abcam) using
antibodies against EpCAM (ab7504, mouse, 1:100; abcam), CK19 (ab52625, rabbit,
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1:200; abcam), CDH6 (ABIN950438, mouse, 1:100; Antibodies online) and STAT1
(610115, mouse, 1:100; Transduction laboratories) then counterstained with Eosin
Y dye (ab146325, abcam). Mounted slides were imaged using a NanoZoomer
(Hamamatsu).

EpCAM+ foetal liver cell isolation. Dissociated and filtered foetal liver cells were
incubated with anti-CD326 (EpCAM) MicroBeads (130-061-101, Miltenyl Biotech)
in 0.5% bovine serum albumin (BSA) with 5 U/ml DNASE1 (M0303, N.E.B.) and
passed through a large cell separation column 2 × (130-042-202, miltenyl biotech).
Total, EpCAM enriched and EpCAM depleted populations were FACS analysed for
CD235a and EpCAM on a BD Fortessa cell analyser. For foetal liver intra-hepatic
organoid formation (f-IHO) EpCAM enriched cells were pelleted at 300 × g for 5
min. The cell pellet was resuspended in a Matrigel® (354230, Corning) dome
containing ~50,000 cells/dome in one well of a 48-well plate covered in 250 μl of
liver expansion (LE) media. Media was changed every 48 h.

Organoid culture conditions. LE media was based on DMEM/F-12, GlutaMAX™
(10565018, Gibco, Life Technologies) supplemented with 1% N2 supplement
(17502048, Gibco, Life Technologies), 2% B27 supplement (17504044, Gibco, Life
Technologies), 20 mM HEPES (15630080, Gibco, Life Technologies), 1.25 mM N-
Acetylcysteine (A7250, Sigma), 1% penicillin–streptomycin (15140122, Sigma
Aldrich), 1% insulin:transferrin:selenium (ITS) (41400045, Gibco, Life Technolo-
gies) and the growth factors: 50 ng/ml EGF (AF-100-15, Peprotech), 500 ng/ml
RSPO1 (120-38, Peprotech), 100 ng/ml FGF10 (100-26, Peprotech), 25 ng/ml HGF
(00-39, Peprotech), 10 mM Nicotinamide (72340, Sigma), 25 µM RepSox (3742,
Tocris), 10 µM Forskolin (1099, Tocris), 0.1 μM dexamethasone (1126, R&D Sys-
tems), 25 ng/ml Noggin (120-10 C, Peprotech), 1:100 Wnt3a (homemade, descri-
bed in ref. 57, and 10 µM Y27632. HD media was based on DMEM/F-12,
GlutaMAX™ supplement supplemented with 20 mM HEPES, 1.25 mM N-
Acetylcysteine (A7250, Sigma), 1% penicillin–streptomycin (15140122, Sigma
Aldrich), 1% ITS, 0.1 μM dexamethasone, 10 µM Y27632, 25 ng/ml HGF (00-39,
Peprotech), 10 µM DAPT (D5942, Sigma), 2 ng/ml Oncostatin-M (295−OM-050,
Bio-Techne) and 10 ng/ml BMP4 (314-BP-010, Bio-Techne). BD media was based
on DMEM/F-12, GlutaMAX™ supplement supplemented with 20 mM HEPES, 1.25
mM N-Acetylcysteine (A7250, Sigma), 1% penicillin–streptomycin (15140122,
Sigma Aldrich), 1% ITS, 0.1 μM dexamethasone, 10 µM Y27632, 50 ng/ml EGF,
500 ng/ml RSPO1 and 100 ng/ml DKK-1 (5439-DK, R&D systems), 3 μM Retinoic
acid R2625, Sigma) and 10 ng/ml Activin-A (ActA, Q-kine). The culture medium
was changed every 48 h.

Passaging and staining organoids. To split f-IHOs, Matrigel® was digested with
Trypsin-EDTA for 15 min at 37 °C. Cell suspension was centrifuged at 300g for 4
min, washed once with William’s E medium and resuspended in Matrigel® domes
as described above. Organoids were typically passaged at a 1:4 ratio. For IF staining
of organoids, Matrigel® was dissolved in cell recovery solution (11543560, Ther-
moFischer scientific) for 30 min at 4 °C and fixed for 30 min in 4% w/v PFA.
Blocking was performed for 1 h in 3% donkey serum, 0.3% Triton and 0.1%
DMSO. Primary antibodies were used 4 °C overnight at the indicated dilutions:
CDH6 (AF2715, sheep, 1:50; RnD systems), EPCAM (ab7504, mouse, 1:100;
abcam), KRT7 (ab9021, mouse, 1:100; abcam), HNF4A (ab92378, rabbit, 1:100;
abcam), CK19 (ab52625, rabbit, 1:200; abcam), albumin (A80-129A, goat, 1:100;
Bethyl), TROP2 (10428-MM02, mouse, 1:100; Stratech). DAPI was used at 1:1000
dilution as a counterstain. Alexa Fluor-conjugated secondary antibodies (all 1:500,
Life Technologies). Images were acquired with a Nikon A1 inverted confocal
microscope, a Nikon Ti spinning disk confocal microscope (Nikon Instruments
Inc.) and a Leica TCS SP8 microscope (Leica Biosystems).

In vivo transplantation of cells. All experiments were performed in accordance
with UK laws (Animal [Scientific Procedures] Act 1986) with approval of local
ethics committee (King’s College Animal Welfare and Ethical Review Board,
London, UK) under a Home Office approved project licence. HHyPs or other foetal
human liver cells were purified using FACS, resuspended in 20 µl of Matrigel and
then injected using a Hamilton syringe underneath the renal capsule of 10–11-
week-old immunodeficient NSG mice. Injected cells developed into a graft. The
grafts were surgically removed for analysis after 4 weeks.

IF staining of human xenografts. After surgical removal human cell renal capsule
grafts were fixed in 10% formalin buffer saline for 12 h with rotation, washed 3× in
phosphate-buffered saline (PBS) then dehydrated and paraffin wax infiltrated using
Excelsior™ AS Tissue Processor. For IF staining, antigen retrieval was performed for
20 min in 1× citrate buffer pH 6.0 (C9999, Sigma Aldrich). Specimens were per-
meabilised in 0.1% Triton in 1% bovine serum albumin (BSA) solution for 1 h, and
blocked in 10% Donkey serum, 1% BSA in PBS for 2 h. Primary antibodies were
used 4 °C overnight at the indicated dilutions: FAH (20-0042, rabbit, 1:100;
Yecuris) CK19 (602–670, rabbit, 1:100; Abbomax), albumin (A80-129A, goat,
1:100; Bethyl), TROP2 (10428-MM02, mouse, 1:100; Stratech), HNF4A (ab92378,
rabbit, 1:100; abcam). DAPI was used at 1:1000 dilution as a counterstain. Alexa
Fluor-conjugated secondary antibodies (all 1:500, Life Technologies). Images were
acquired with a Lecia DM6B upright microscope (Leica Biosystems).

Data availability
The authors declare that all data supporting the findings of this study are available within
the article and its Supplementary information files or from the corresponding author
upon reasonable request. Raw RNA-seq data have been deposited in the Gene Expression
Omnibus (GEO) database under accession code GSE130473.
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