CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN 2056-9890

Received 30 May 2016
Accepted 15 June 2016

Edited by D.-J. Xu, Zhejiang University (Yuquan Campus), China

Keywords: crystal structure; squarene; hydrogen bonding; quantum chemical calculations; nonlinear optical properties.

CCDC reference: 945212

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN $\begin{aligned} \text { ACCESS }\end{aligned}$

Crystal structure of 2-ethyl-4-methyl-1-(2-oxido-3,4-dioxocyclobut-1-en-1-yl)-1H-imidazol-3-ium

Ufuk Korkmaz, ${ }^{\text {a }}$ Iclal Bulut ${ }^{\text {b* }}$ and Ahmet Bulut ${ }^{\text {a }}$

${ }^{\text {a }}$ Ondokuz Mayis University, Faculty of Arts and Sciences, Department of Physics, Atakum, Samsun, Turkey, and
${ }^{\mathbf{b}}$ Ondokuz Mayis University, Faculty of Arts and Sciences, Department of Chemistry, Atakum, Samsun, Turkey.
*Correspondence e-mail: iclalb@omu.edu.tr

In the title inner salt molecule, $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$, the four-membered cyclobutene ring is twisted by $7.1(2)^{\circ}$ with respect to the five-membered imidazole ring. The crystal packing exhibits an $R_{2}^{2}(9)$ hydrogen-bonding ring motif through $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions. The potential non-linear optical properties were studied by a computational ab initio calculations performed at the DFT/ B3LYP/6-31++G(d,p) level of theory.

1. Chemical context

The study of the non-linear optical (NLO) properties of organic molecules and crystals are of great interest in physics, chemistry and applied technologies (Chemla et al., 1987). Certain classes of organic compounds exhibit very pronounced NLO and electro-optical (EO) effects. Their nonlinearity is based on the presence of molecular units containing strongly delocalized π-electron systems with the donor and acceptor groups sited at opposite ends of the molecule (Bosshard et al., 1995; Kolev et al., 2008). The study of the development of new non-centrosymmetric single-crystal NLO materials to obtain efficient frequency doublers is the subject of crystal engineering. In this context, some squaric acid derivatives together with cyclobutenediones with proper substitution groups have been found to be of interest in terms of their high NLO responses (Kolev et al., 2008).

Squaric acid gives rise to two structurally different classes of derivatives, which can be described by the general molecular structures $1,3-\mathrm{N}$-squarenes and amine-containing molecule betaines (Gsänger et al., 2014; Kolev et al., 2005). The squarenes shows photo-chemical, photo-conductive and NLO

Figure 1
A view of the molecular structure of the title inner salt, with the atom labelling. Displacement ellipsoids drawn at the 40% probability level.
properties and can therefore be used as electron acceptors in photo-sensitive devices (Lindsay \& Singer, 1995). On the other hand, substituted betaines play an important role in NLO behavior due to their dipolar structures (Kolev et al., 2004). The conversion of the N2 atom of 2-ethyl-4-methylimidazole into the corresponding betaine squaric acid form provides a way of enhancing the charge-transfer transition at the molecular level.

This study reports a novel betain form of squaric acid with a 2-ethyl-4-methylimidazole molecule. The crystal structure, together with its NLO properties, are reported here.

Table 1
Hydrogen-bond geometry ($\mathrm{A}^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\text {i }}$	0.97 (4)	1.73 (4)	2.680 (3)	164 (3)
C6-H6A . $\mathrm{O}^{\text {i }}$	0.96	2.59	3.378 (4)	139
$\mathrm{C} 9-\mathrm{H} 9 A \cdots \mathrm{O} 1$	0.97	2.35	3.112 (4)	135
$\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B} \cdots \mathrm{O} 2^{\text {i }}$	0.97	2.51	3.429 (5)	158

Symmetry code: (i) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{3}{2}$.

2. Structural commentary

A view of the asymmetric unit is given in Fig. 1. The $\mathrm{C} 1-\mathrm{C} 2-$ $\mathrm{C} 3, \mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$ bond angles in the squarate ring system are almost 90°. The $\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$ bond angle is $95.0(3)^{\circ}$ due to the C 4 atom bonding to the imidazole ring through N 2 atom. The $\mathrm{C}-\mathrm{C}$ distances in the planar squarate ring system of the compound reflect partial double-bond character for $\mathrm{C} 1-\mathrm{C} 4$ and $\mathrm{C} 3-\mathrm{C} 4[1.426$ (4) and 1.440 (4) \AA, respectively]. Single-bond character is observed for $\mathrm{C} 1-\mathrm{C} 2$ and C2-C3 [1.514 (5) and 1.516 (5) A, respectively]. The observed bond lengths indicate a degree of delocalization in the squarate ring, as has been observed in previous studies (Kolev et al., 2005; Korkmaz et al., 2013). The C1-O1 and $\mathrm{C} 3-\mathrm{O} 3$ bond lengths are 1.234 (4) and 1.216 (4) \AA, respectively. Conjugation of the squarate ring and the positively charged strong acceptor N 2 result in a shortening of the carbonyl group $\mathrm{C} 2=\mathrm{O} 2$ bond $[1.206$ (4) \AA A . A strong donor effect is observed for the 2-ethyl-4-methylimidazole group.

3. Supramolecular features

The structural properties of the molecule are the result of an extensive network of hydrogen-bonding interactions. The $\mathrm{N}-$

The crystal packing of the title compound, illustrating the $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the [010] direction together with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.
$\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ heteronuclear hydrogen bonds that form an $R_{2}^{2}(9)$ ring motif contribute as both donor and acceptor to the crystal packing (Table 1, Fig. 2). The N $\cdots \mathrm{O}$ distance should be in the region of 2.72-2.78 \AA, The observed $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}} D \cdots A$ distance $[2.680$ (3) Å; Table 1] corresponds to a $[(+/-) \mathrm{CAHB}]$ interaction. Looking at the $\mathrm{N} \cdots \mathrm{O}$ distances in the symmetry-related hydrogen bonding between squarate ring systems, it can be seen that the interaction is slightly shorter than the relevant interval values and is symbolized as either $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{O}^{12-}$ or $\mathrm{N}^{+}-\mathrm{H} \cdots \mathrm{O}^{-}$ (+/-)CAHB (Korkmaz \& Bulut, 2013). The C-H…O (Table 1, Fig. 2) interactions correspond to weak hydrogen bonding with an electrostatic or dispersion character according to the classification of Jeffrey (1997). In the structure, the weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are responsible for the connection between the ribbons. Therefore it can be said that the hydrogen bonds form the molecular assembly, producing a uni-dimensional construction in the supramolecular view, while the $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions extend this to bi-dimensionality.

4. Computational studies

We have applied computational methods to evaluate the compound in terms of NLO activity. The values of the dipole moment ($\mu_{\text {tot }}$), linear polarizability ($\alpha_{\text {tot }}$) and first-order hyperpolarizability $\left(\beta_{\mathrm{tot}}\right)$ of the molecule were calculated at the DFT/B3LYP method level of $6-31++G(d, p)$ by using Gaussian 03W program (Frisch et al., 2004). Urea is accepted as a prototype molecule for non-linear optical materials and results were compared with its values ($\mathrm{Pu}, 1991$). The calculation results for $\mu_{\mathrm{tot}}, \alpha_{\text {tot }}$ and β_{tot} for urea at the same level are $3.8583 \mathrm{D}, 4.9991 \AA^{3}$ and $3.2637 \times 10^{-31} \mathrm{~cm}^{5} /$ esu, respectively. The obtained values of $\mu_{\text {tot }}, \alpha_{\text {tot }}$ and $\beta_{\text {tot }}$ for the title compound are $14.8448 \mathrm{D}, 22.2315 \AA^{3}$ and $6.8664 \times 10^{-30} \mathrm{~cm}^{5} /$ esu, respectively. These values are comparable with those for some of the pyridinium-betains of squaric acid (Kolev et al., 2008). The value of β_{tot} appears to be much greater than that of urea. This result clearly indicates that the title compound is a strong candidate to develop a non-linear optical material. This is a prerequisite for the design of efficient second- and third-order non-linear optical materials. It should be noted that the title compound crystallized in a centrosymmetric space group $\left(P 2_{1} / n\right)$.

5. Synthesis and crystallization

The title compound was synthesized according to the procedure of Schmidt et al. (1984). Squaric acid $\left(\mathrm{H}_{2} \mathrm{Sq} ; 1 \mathrm{~g}\right.$, 8.7 mmol) and 2-ethyl-4-methylimidazole ($0.96 \mathrm{~g} ; 8.7 \mathrm{mmol}$) were dissolved in acetic anhydride $\left(30 \mathrm{~cm}^{3}\right)$ in the molar ratio $1: 1$ and the solution was heated to 323 K using a controlled bath and stirred for 1 h . The reaction mixture was then cooled slowly to room temperature. The crystals formed were filtered, washed with water and methanol, and dried in air. A few days later, well-formed crystals were selected for X-ray studies. Elemental analysis for the compound (green, yield 48\%)

Table 2
Experimental details.

Crystal data	
Chemical formula	$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
M_{r}	206.20
Crystal system, space group	Monoclinic, $P 2_{1} / n$
Temperature (K)	293
$a, b, c(\AA)$	$4.7940(4), 14.4120(9), 14.5360(9)$
$\beta\left({ }^{\circ}\right)$	$93.848(6)$
$V\left(\AA^{3}\right)$	$1002.04(12)$
Z	4
Radiation type	Mo $\mathrm{K} \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.10
Crystal size (mm)	$0.34 \times 0.22 \times 0.22$
Data collection	Agilent SuperNova (single source
Diffractometer	at offset) Eos
	Multi-scan $(C r y s A l i s ~ P R O ;$
Absorption correction	Agilent, 2011)
	$0.708,1.000$
$T_{\text {min }}, T_{\text {max }}$	$5496,3048,1363$
No. of measured, independent and	
\quad observed $[I>2 \sigma(I)]$ reflections	0.048
$R_{\text {int }}$	0.714
$(\text { sin } \theta / \lambda)_{\text {max }}\left(\AA \AA^{-1}\right)$	
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	$0.080,0.247,1.04$
No. of reflections	3048
No. of parameters	144
H-atom treatment	H atoms treated by a mixture of
	independent and constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA{ }^{-3}\right)$	refinement

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and DIAMOND (Brandenburg, 2005).
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$: calculated: C, $58.00 ; \mathrm{H}, 5.11 ; \mathrm{N}, 13.56 \%$. Found: C, 58.25 ; H, 4.89 ; N, 13.59\%. M.p. 544 K.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms attached to C 5 and N1 (H5 and H1, respectively) were located in Fourier difference maps and freely refined. The remaining H atoms were positioned geometrically $(\mathrm{C}-\mathrm{H}=0.96-0.97 \AA)$ and refined using a riding model with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Acknowledgements

We would like thank the Ondokuz Mayıs University Research Fund (PYO•FEN.1904.12.020) for financial support and also Dr Murat Taş for collecting the XRD data.

References

Agilent (2011). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.
Bosshard, C., Sutter, K., Prêtre, P., Hulliger, J., Flörsheimer, M., Kaatz, P. \& Günter, P. (1995). In Organic Nonlinear Optical Materials. Amsterdam: Gordon \& Breach.
Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Chemla, D. S. \& Zyss, J. (1987). In Nonlinear Optical Properties of Organic Molecules and Crystals. New York: Academic Press.

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Montgomery, J. A., Vreven, T., Kudin, K. N., Burant, J. C., Millam, J. M., Iyengar, S. S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G. A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J. E., Hratchian, H. P., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Ayala, P. Y., Morokuma, K., Voth, G. A., Salvador, P., Dannenberg, J. J., Zakrzewski, V. G., Dapprich, S., Daniels, A. D., Strain, M. C., Farkas, O., Malick, D. K., Rabuck, A. D., Raghavachari, K., Foresman, J. B., Ortiz, J. V., Cui, Q., Baboul, A. G., Clifford, S., Cioslowski, J., Stefanov, B. B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R. L., Fox, D. J., Keith, T., AlLaham, M. A., Peng, C. Y., Nanayakkara, A., Challacombe, M., Gill, P. M. W., Johnson, B., Chen, W., Wong, M. W., Gonzalez, C. \& Pople, J. A. (2004). GAUSSIAN03. Gaussian Inc., Wallingford, CT, USA.

Gsänger, M., Kirchner, E., Stolte, M., Burschka, C., Stepanenko, V., Pflaum, J. \& Würthner, F. J. (2014). J. Am. Chem. Soc. 136, 23512362.

Jeffrey, G. A. (1997). In An Introduction to Hydrogen Bonding. New York: Oxford University Press Inc.
Kolev, T. M., Stamboliyska, B. A., Yancheva, D. Y. \& Enchev, V. J. (2004). J. Mol. Struct. 691, 241-248.

Kolev, T., Wortmann, R., Spiteller, M., Sheldrick, W. S. \& MayerFigge, H. (2005). Acta Cryst. E61, o1090-o1092.
Kolev, T. M., Yancheva, D. Y., Stamboliyska, B. A., Dimitrov, M. D. \& Wortmann, R. (2008). Chem. Phys. 348, 45-52.
Korkmaz, U. \& Bulut, A. (2013). J. Mol. Struct. 1050, 61-68.
Lindsay, G. A. \& Singer, K. D. (1995). Editors. Polymers for SecondOrder Nonlinear Optics, ACS Symposium Series 601.
Pu, L. S. (1991). Acs Symp. Ser. 455, 331-343.
Schmidt, A. H., Becker, U. \& Aiméne, A. (1984). Tetrahedron Lett. 25, 4475-4478.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3-8.

supporting information

Acta Cryst. (2016). E72, 998-1001 [doi:10.1107/S2056989016009725]

Crystal structure of 2-ethyl-4-methyl-1-(2-oxido-3,4-dioxocyclobut-1-en-1-yl)-1H-imidazol-3-ium

Ufuk Korkmaz, Iclal Bulut and Ahmet Bulut

Computing details

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL2014 (Sheldrick, 2015).

2-Ethyl-4-methyl-1-(2-oxido-3,4-dioxocyclobut-1-en-1-yl)-1H-imidazol-3-ium

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=206.20$
Monoclinic, $P 2_{1} / n$
$a=4.7940$ (4) Å
$b=14.4120$ (9) \AA
$c=14.5360(9) \AA$
$\beta=93.848$ (6) ${ }^{\circ}$
$V=1002.04(12) \AA^{3}$
$Z=4$
$F(000)=432$

Data collection

Agilent SuperNova (single source at offset) Eos diffractometer
Radiation source: SuperNova (Mo) X-ray Source
Detector resolution: 16.0454 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.708, T_{\text {max }}=1.000$
$D_{\mathrm{x}}=1.367 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 544 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 943 reflections
$\theta=4.0-30.4^{\circ}$
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Prism, green
$0.34 \times 0.22 \times 0.22 \mathrm{~mm}$

5496 measured reflections
3048 independent reflections
1363 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=30.5^{\circ}, \theta_{\text {min }}=4.0^{\circ}$
$h=-6 \rightarrow 6$
$k=-16 \rightarrow 20$
$l=-20 \rightarrow 11$

Hydrogen site location: mixed
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0793 P)^{2}+0.493 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.35$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
H5	$0.783(8)$	$0.546(3)$	$0.562(2)$	$0.060(11)^{*}$
H1	$0.312(8)$	$0.693(3)$	$0.724(2)$	$0.069(12)^{*}$
O1	$0.2719(5)$	$0.30379(16)$	$0.74162(16)$	$0.0548(7)$
N1	$0.3883(6)$	$0.63979(19)$	$0.69274(18)$	$0.0419(6)$
N2	$0.5210(5)$	$0.50284(17)$	$0.65685(16)$	$0.0382(6)$
O3	$0.9453(5)$	$0.38166(18)$	$0.54799(18)$	$0.0614(7)$
C4	$0.5674(6)$	$0.4072(2)$	$0.6522(2)$	$0.0375(7)$
C3	$0.7687(7)$	$0.3595(2)$	$0.6001(2)$	$0.0432(8)$
O2	$0.7096(6)$	$0.18740(16)$	$0.63047(19)$	$0.0675(8)$
C2	$0.6603(7)$	$0.2691(2)$	$0.6374(2)$	$0.0454(8)$
C8	$0.3574(6)$	$0.5506(2)$	$0.7126(2)$	$0.0393(7)$
C1	$0.4553(7)$	$0.3249(2)$	$0.6897(2)$	$0.0409(7)$
C5	$0.6580(7)$	$0.5660(2)$	$0.6024(2)$	$0.0415(7)$
C6	$0.6446(9)$	$0.7446(2)$	$0.5893(2)$	$0.0590(10)$
H6A	0.5446	0.7912	0.6210	0.089^{*}
H6B	0.8420	0.7551	0.5998	0.089^{*}
H6C	0.5932	0.7479	0.5244	0.089^{*}
C9	$0.1873(8)$	$0.5129(2)$	$0.7852(2)$	$0.0512(9)$
H9A	0.1038	0.4547	0.7641	0.061^{*}
H9B	0.0369	0.5559	0.7955	0.061^{*}
C7	$0.5737(7)$	$0.6514(2)$	$0.6245(2)$	$0.0430(8)$
C10	$0.3587(12)$	$0.4966(3)$	$0.8760(3)$	$0.0884(16)$
H10A	0.2398	0.4723	0.9208	0.133^{*}
H10B	0.5056	0.4531	0.8665	0.133^{*}
H10C	0.4387	0.5543	0.8979	

Atomic displacement parameters $\left(\hat{A}^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0629(16)$	$0.0385(13)$	$0.0661(15)$	$-0.0065(11)$	$0.0278(13)$	$0.0052(11)$
N1	$0.0482(16)$	$0.0340(14)$	$0.0439(14)$	$0.0004(12)$	$0.0053(12)$	$-0.0031(11)$
N2	$0.0423(15)$	$0.0330(13)$	$0.0404(12)$	$-0.0001(11)$	$0.0110(11)$	$0.0004(10)$
O3	$0.0610(17)$	$0.0521(15)$	$0.0753(17)$	$0.0066(13)$	$0.0351(14)$	$0.0089(13)$
C4	$0.0394(16)$	$0.0330(16)$	$0.0405(15)$	$0.0005(13)$	$0.0057(13)$	$0.0015(12)$
C3	$0.0439(18)$	$0.0396(18)$	$0.0474(17)$	$0.0035(14)$	$0.0118(14)$	$0.0021(14)$
O2	$0.0790(19)$	$0.0345(14)$	$0.0906(19)$	$0.0097(13)$	$0.0179(15)$	$0.0010(13)$
C2	$0.0479(19)$	$0.0380(18)$	$0.0511(18)$	$0.0041(15)$	$0.0089(15)$	$0.0028(14)$
C8	$0.0377(16)$	$0.0379(17)$	$0.0426(15)$	$0.0001(13)$	$0.0057(13)$	$-0.0020(13)$
C1	$0.0448(18)$	$0.0337(16)$	$0.0447(16)$	$-0.0004(13)$	$0.0074(14)$	$0.0013(13)$

C5	$0.0475(19)$	$0.0337(17)$	$0.0446(16)$	$-0.0016(14)$	$0.0128(15)$	$0.0027(13)$
C6	$0.081(3)$	$0.038(2)$	$0.060(2)$	$-0.0057(18)$	$0.018(2)$	$0.0014(16)$
C9	$0.055(2)$	$0.0435(19)$	$0.058(2)$	$-0.0025(16)$	$0.0230(17)$	$-0.0024(16)$
C7	$0.0524(19)$	$0.0368(17)$	$0.0403(15)$	$-0.0042(15)$	$0.0062(14)$	$0.0006(13)$
C10	$0.128(5)$	$0.089(3)$	$0.049(2)$	$-0.035(3)$	$0.012(2)$	$0.010(2)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

C1-O1	1.234 (4)	C8-C9	1.479 (4)
N1-C8	1.328 (4)	C5-C7	1.341 (4)
N1-C7	1.386 (4)	C5-H5	0.91 (4)
N1-H1	0.97 (4)	C6-C7	1.485 (5)
C8-N2	1.353 (4)	C6-H6A	0.9600
N2-C5	1.399 (4)	C6-H6B	0.9600
$\mathrm{C} 4-\mathrm{N} 2$	1.399 (4)	C6-H6C	0.9600
C3-O3	1.216 (4)	C9-C10	1.526 (5)
C1-C4	1.426 (4)	C9-H9A	0.9700
C3-C4	1.440 (4)	C9-H9B	0.9700
C2-C3	1.516 (5)	C10-H10A	0.9600
C2-O2	1.206 (4)	C10-H10B	0.9600
$\mathrm{C} 1-\mathrm{C} 2$	1.514 (5)	C10-H10C	0.9600
C8-N1-C7	111.0 (3)	N2-C5-H5	121 (2)
C8-N1-H1	127 (2)	C7-C6-H6A	109.5
C7-N1-H1	121 (2)	C7-C6-H6B	109.5
C8-N2-C5	108.7 (3)	H6A-C6-H6B	109.5
C8-N2-C4	129.1 (3)	C7-C6-H6C	109.5
C5-N2-C4	122.1 (3)	H6A-C6-H6C	109.5
N2-C4-C1	137.4 (3)	H6B-C6-H6C	109.5
N2-C4-C3	127.6 (3)	C8-C9-C10	112.5 (3)
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3$	95.0 (3)	C8-C9-H9A	109.1
O3-C3-C4	136.1 (3)	C10-C9-H9A	109.1
O3-C3-C2	135.9 (3)	C8-C9-H9B	109.1
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	88.0 (2)	C10-C9-H9B	109.1
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1$	134.2 (3)	H9A-C9-H9B	107.8
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	137.3 (3)	C5-C7-N1	106.2 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	88.5 (2)	C5-C7-C6	131.9 (3)
N1-C8-N2	106.5 (3)	N1-C7-C6	121.9 (3)
N1-C8-C9	125.8 (3)	C9-C10-H10A	109.5
N2-C8-C9	127.6 (3)	C9-C10-H10B	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 4$	137.8 (3)	H10A-C10-H10B	109.5
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	133.6 (3)	C9-C10- H 10 C	109.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	88.6 (2)	H10A-C10-H10C	109.5
C7-C5-N2	107.6 (3)	H10B-C10-H10C	109.5
C7-C5-H5	132 (2)		
C8-N2-C4-C1	8.9 (6)	C4-N2-C8-C9	1.3 (5)
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 1$	-173.9 (3)	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 1-\mathrm{O} 1$	0.0 (7)

$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$-171.7(3)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$5.6(5)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 3$	$-0.7(6)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{O} 3$	$178.9(4)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$-179.7(3)$
$\mathrm{C} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$0.0(3)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 2$	$1.2(7)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{O} 2$	$-179.8(4)$
$\mathrm{O} 3-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$-179.0(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$0.0(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{N} 2$	$-0.5(3)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9$	$176.7(3)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$0.8(3)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 8-\mathrm{N} 1$	$178.3(3)$
$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9$	$-176.3(3)$

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 1-\mathrm{O} 1$	$-179.5(4)$
$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2$	$179.6(4)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 1-\mathrm{C} 2$	$0.0(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$-0.6(7)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	$179.6(4)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	$179.8(4)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 4$	$0.0(2)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 7$	$-0.9(4)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 7$	$-178.6(3)$
$\mathrm{N} 1-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-93.9(4)$
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$82.6(4)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 7-\mathrm{N} 1$	$0.5(4)$
$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 7-\mathrm{C} 6$	$-179.3(3)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 5$	$-0.1(4)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 6$	$179.8(3)$

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.97(4)$	$1.73(4)$	$2.680(3)$	$164(3)$
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\mathrm{i}}$	0.96	2.59	$3.378(4)$	139
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots \mathrm{O} 1$	0.97	2.35	$3.112(4)$	135
$\mathrm{C} 9 — \mathrm{H} 9 B \cdots \mathrm{O} 2^{\mathrm{i}}$	0.97	2.51	$3.429(5)$	158

Symmetry code: (i) $-x+1 / 2, y+1 / 2,-z+3 / 2$.

