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Eimeria infection impacts upon chicken welfare and economic productivity of the poultry

sector. Live coccidiosis vaccines for chickens have been available for almost 70 years,

but the requirement to formulate blends of oocysts from multiple Eimeria species makes

vaccine production costly and logistically demanding. A multivalent vaccine that does not

require chickens for its production and can induce protection against multiple Eimeria

species is highly desirable. However, despite the identification and testing of many

vaccine candidate antigens, no recombinant coccidiosis vaccine has been developed

commercially. Currently, assessment of vaccine efficacy against Eimeria, and the disease

coccidiosis, can be done only through in vivo vaccination and challenge experiments

but the design of such studies has been highly variable. Lack of a “standard” protocol

for assessing vaccine efficacy makes comparative evaluations very difficult, complicating

vaccine development, and validation. The formulation and schedule of vaccination, the

breed of chicken and choice of husbandry system, the species, strain, magnitude,

and timing of delivery of the parasite challenge, and the parameters used to assess

vaccine efficacy all influence the outcomes of experimental trials. In natural Eimeria

infections, the induction of strong cell mediated immune responses are central to

the development of protective immunity against coccidiosis. Antibodies are generally

regarded to be of lesser importance. Unfortunately, there are no specific immunological

assays that can accurately predict how well a vaccine will protect against coccidiosis

(i.e., no “correlates of protection”). Thus, experimental vaccine studies rely on assessing

a variety of post-challenge parameters, including assessment of pathognomonic lesions,

measurements of parasite replication such as oocyst output or quantification of Eimeria

genomes, and/or measurements of productivity such as body weight gain and feed

conversion rates. Understanding immune responses to primary and secondary infection

can inform on themost appropriate immunological assays. The discovery of new antigens

for different Eimeria species and the development of new methods of vaccine antigen

delivery necessitates a more considered approach to assessment of novel vaccines

with robust, repeatable study design. Careful consideration of performance and welfare

factors that are genuinely relevant to chicken producers and vaccine manufacturers

is essential.
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INTRODUCTION

Poultry health and welfare is threatened by a number of
pathogens and protozoan parasites of the genus Eimeria are
among the most important. Infection with Eimeria, which
invade and replicate within gut epithelial cells, can compromise
chicken welfare and reduce productivity in both layer and broiler
systems requiring relatively costly treatments. The cost of these
interventions, combined with the losses caused by infection,
are estimated to cost the global chicken industry in excess
of £2 billion every year (1). Eimeria infection has also been
demonstrated to exacerbate the outcome of exposure to other
pathogens such as Clostridium perfringens, combining to cause
necrotic enteritis (2).

Control of Eimeria in commercial chicken production
relies on routine chemoprophylaxis (primarily broiler
chickens) or vaccination using formulations of live virulent
or attenuated Eimeria species (layer and breeder chickens). Mass
administration of anticoccidial drugs has long been employed as
a highly effective method of control, however drug resistance is
widespread and public/legislative pressure demanding reduced
use in livestock production is intensifying (3, 4). Classification of
ionophores as antibiotics in markets such as the United States of
America has reduced use further as demand for “no antibiotics,
ever” food products grows, prompting more than 40% of
producers to include vaccination in one or more production
cycles per year (5). Unfortunately, existing vaccines are relatively
expensive due to high production costs and are difficult to scale
up, especially those that include attenuated parasite lines. In
response, demand for cost-effective anticoccidial vaccines is
greater than ever.

Seven species of Eimeria are recognized to infect chickens
and these vary in their fecundity, pathogenicity and location of
replication within the gut [reviewed in Chapman (6)]. Infection
with each species induces a robust protective immune response
against homologous challenge (7). However, the numbers of
parasites and rounds of infection required to induce immunity
that is sufficient to protect against disease varies depending
on the infecting Eimeria species, dosing schedule and chicken
breed (7–10). There is little or no immune protection against
challenge infection with a heterologous species, and in some
cases even infection with a different strain of the same species
can escape immune protection (11, 12). Therefore, although
immunization of chickens with live Eimeria oocysts is effective
and has been the basis of live oral coccidiosis vaccines for
almost 70 years, chickens must be vaccinated with oocysts
from each Eimeria species in order to be fully protected. The
requirement for a live vaccine to include controlled doses of
oocysts for all pathogenic species of Eimeria, and in some cases
multiple strains of Eimeria maxima, makes vaccine manufacture
logistically demanding as all vaccine lines have to be propagated
separately in chickens under stringent specific pathogen free
conditions. Another important consideration is that fecal-oral
recycling of vaccine parasites is required to generate levels
of protective immunity that are sufficient to protect chickens
against pathogenic challenge by most Eimeria species (13). A
recombinant vaccine that is protective against multiple Eimeria

species is therefore highly desirable and this should contain
multiple antigens, derived from different parasite species and
lifecycle stages.

Criteria to identify a “good” new vaccine are difficult to define
and may depend on the stakeholder asked. Sterile immunity,
defined as the ability to stop all oocyst production following
challenge, might be regarded as the primary objective but current
anticoccidial drugs and live vaccines do not meet this stringent
requirement (14, 15). Indeed, achievement of such strong
evolutionary pressure may select for vaccine resistance (13).
Important measures of efficacy that should be considered include
decreased parasite load or replication, lowering environmental
oocyst occurrence and thus transmission, reduced clinical signs
of disease, and improved performance. Important performance
parameters include feed conversion efficiency, body growth rate,
flock homogeneity, and/or egg production. A vaccine should also
be easy to administer, and safe for the target- and overlapping
populations. Stability and consistency between batches is of
utmost importance. Onset and duration of immunity are also
important although the relevance of these parameters vary
depending on the target population; short lived broiler chickens
require vaccines with rapid onset of immunity, but duration is
of less importance, whilst the opposite is commonly true for
layer chickens. In the absence of effective correlates of protection,
assessment of novel vaccines to protect against coccidiosis can
only be performed in-vivo (as discussed below), but the design of
experimental vaccine challenge studies has been highly variable
in the published literature. This lack of standardization results
in difficulty evaluating new vaccines and makes comparison
between studies challenging. As well as study design, the choice of
parameters evaluated during a vaccine challenge is also important
when evaluating novel vaccines, particularly for intracellular
pathogens such as Eimeria where antibody response is not a
reliable correlate of protection against disease (16). This review
examines the challenges in design of vaccination studies for
chicken coccidiosis and methods for evaluating vaccine efficacy.

CURRENT EIMERIA VACCINES

The first vaccines against coccidia used live, wild-type, sporulated
E. tenella oocysts and were initially marketed in the 1950’s
based on observations that administration of low doses of
oocysts over a number of days induced protective immunity
against homologous challenge. Over time these first generation
vaccines were developed to incorporate further Eimeria species
and have been widely utilized, particularly in North America
(15). Methods for delivery of these live wild type vaccines have
improved over the years; common methods include spraying
live oocysts directly onto day of hatch chicks in a spray
cabinet, although vaccines can also be delivered by spraying onto
feed, in an edible gel or in drinking water (17). Nevertheless,
uniform administration of oocysts is not always accomplished
and recycling of live oocysts by reinfection from litter is required
for the development of robust immunity within the flock (18).
Recycling of oocysts is difficult in traditional layer cage setups,
although the addition of floor coverings have been trialed and

Frontiers in Veterinary Science | www.frontiersin.org 2 February 2020 | Volume 7 | Article 101

https://www.frontiersin.org/journals/veterinary-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/veterinary-science#articles


Soutter et al. Coccidiosis: Vaccine Study Design/Interpretation

found to improve oocyst recycling (19). A significant risk in the
use of these wild-type, and thus fully virulent, live vaccines is
that large numbers of oocysts accumulate rapidly within chicken
house litter resulting in high levels of exposure and clinical
disease, even mortality, necessitating the use of anticoccidial
drugs following vaccination (15).

Newer second generation anticoccidial vaccines frequently
utilize oocysts derived from attenuated lines of Eimeria parasites,
the majority of which have been selected for an abbreviated
lifecycle termed “precocious development” [reviewed in Shirley
and Bedrnik (20)]. Briefly, consistent selection during in vivo
passage for those oocysts which are produced at the beginning
of the patent period result in parasite lines with shorter prepatent
periods, facilitated by fewer and/or smaller rounds of schizogony,
and reduced total oocyst production (21). Precocious parasite
lines exhibit reduced pathogenicity, but importantly retain their
immunogenicity (22). The exception is an E. tenella line selected
for growth in embryonic chicks (23, 24). As for wild type
anticoccidial vaccines, attenuated vaccine formulations include
a mixture of sporulated oocysts of different Eimeria species.
Attenuated anticoccidial vaccines are also given orally, adopting
strategies similar to those used for live wild-type vaccines.

Production of live wild-type and attenuated anticoccidial
vaccines is limited by the necessity for in-vivo infection of
chickens to produce oocysts as these cannot be produced in
vitro. They are therefore costly and time-consuming to produce
when compared to alternatives such as anticoccidial drugs, most
notably for attenuated vaccine lines that are less productive
than their wild-type equivalents. Attenuation of less fecund but
highly pathogenic species such as E. brunetti and E. necatrix
results in parasite lines with limited reproductive potential,
making routine propagation challenging (25). Other limitations
include the necessity for detailed quality control of each vaccine
batch for efficacy that can only be achieved in vivo, as well
as a short shelf life and the requirement for a cold chain
without options for freezing or freeze drying. Such limitations
in production of vaccinal parasite lines can restrict vaccine
availability, encouraging demand for recombinant vaccines.

CURRENT CHALLENGE MODELS USED IN
ANTICOCCIDIAL VACCINE DEVELOPMENT

A number of Eimeria antigens have been identified as valid
anticoccidial vaccine candidates, but no recombinant vaccines
are commercially available (13). Comparison of results from
vaccination and challenge experiments using different, or even
the same, antigens is challenging because of high variability
in the study design of published vaccination trials (Table 1).
Common differences include magnitude and timing of the
challenge dose, vaccine formulation (expression system, antigen-
adjuvant combination, and quantity of antigen), vaccine dosing
schedule, chicken breed or genetic line, husbandry set up and
the choice of parameters measured to assess protection. Each
factor can be confounding, which makes it difficult to compare
efficacy of different antigens between studies. Selection of chicken
breed and vaccine schedules might also make it difficult to

assess whether vaccines could work in a commercial setting with
large numbers of outbred birds, where cost of dose per chicken
and improvements in production parameters are of utmost
importance. The use of common standard chicken lines that are
widely available, such as Cobb500 or Ross 308 broilers, or Hyline
layers, will encourage comparison between studies. However, the
hybrid nature of these chicken lines can result in elevated levels
of experimental variation. Using specific pathogen free and/or
inbred chicken lines can reduce non-treatment variation and
improve statistical validity.

ETHICAL CONSIDERATIONS IN VACCINE
CHALLENGE STUDIES

All studies using live animals must be well-designed and have
animal welfare at the forefront. The three Rs principles should be
considered; replace, reduce and refine animal usage (26). Where
possible consider replacing the use of animals; novel antigens
could be examined in-vitro using existing cell lines before moving
to in-vivo work, although scope is very limited given the inability
of Eimeria to complete its lifecycle efficiently in-vitro. Reducing
the number of chickens used in a study is important whilst
balancing the need for adequate statistical power to examine the
effect of any novel vaccine (27). Reducing variability in response
to infection and vaccination by optimal chicken breed selection
and careful study design could reduce the number of individuals
required to achieve a statistically meaningful result. Refinement
of studies through careful consideration of animal housing and
procedures should maximize animal welfare and improve results;
unnecessary stress during housing and handling is likely to
impact on vaccine response. For example, housing chickens
in larger cages for oocyst counting experiments can reduce
the efficacy of oocyst recovery, increasing variation between
groups and compromising statistical validity. Previous studies
have suggested a minimum of between five and 10 chickens
per treatment group is required for assessment of differences
between lesion scores due to variability in response to infection
with Eimeria. (28), although the magnitude of the anticipated
response should be used to inform an appropriate estimate of
statistical power (e.g., 2-sample t-test method). Similarly, when
using quantitative PCR (qPCR) to assess parasite genome copy
numbers in the caeca of chickens infected with E. tenella a group
size of a minimum of six birds was required during validation of
the technique at 5 days post infection (27).

VARIABLES IN VACCINE CHALLENGE
STUDY DESIGN

The Host
The choice of chicken breed or line used in an Eimeria
vaccine challenge study is likely to be determined based on a
number of criteria including relevance to the target chicken
population, experimental setup, outcomes to be measured,
and genetic background. Use of inbred chicken lines can
reduce host variation in response to vaccination and Eimeria
infection, offering opportunities to minimize the number of
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TABLE 1 | A summary of key published anticoccidial vaccination studies.

Species

(No. papers)

Formulation Vaccine challenge study details Outcome parameters measured

Breed

L = layer

B = Broiler

Challenge dose

(oocyst)

L = low, h = high

Oocyst

output

Lesion

score

Body weight

gain

Feed

conversion

ratio

qPCR

parasite

replication

Histo-

pathology

Survival

rate

Anti-

coccidial

index (ACI)

Serum

antibodies

Other

immune

parameters

E. acervulina (22) DNA 5/22 L 10/22 L 2/22 (5,000) 16 13 18 1 0 0 3 5 10 10

rProtein 12/22 B 12/22 H 20/22 (<5000)

Other 5/22

E. brunetti (2) DNA 1/2 L 0/2 L 0/2 2 2 2 0 0 0 0 2 2 2

rProtein 2/2 B 2/2 H 2/2 (100,000)

Other 0/2

E. maxima (14) DNA 3/14 L 3/14 L 5/14 (<1000) 12 6 11 1 0 1 4 3 10 9

rProtein 7/14 B 5/14 H 9/14 (>1000)

Other 4/14 NS 3/14

Other 3/14

E. mitis (1) DNA 0/1 L 1/1 L 0/1 1 0 1 0 0 0 0 0 1 1

rProtein 1/1 B 0/1 H 1/1 (100,000)

Other 0/1

E. tenella (43) DNA 13/43 L 16/43 L 2/43 (<1,000) 40 29 38 1 1 1 10 14 28 18

rProtein 19/43 B 19/43 H 40/43 (>1,000)

Other 11/43 NS 2/43 NS 1/43

Other 6/43

Multiple (8) DNA 4/8 L 2/8 L 1/8 (<10,000) 6 5 5 0 0 0 2 4 4 3

rProtein 5/8 B 5/8 H 7/8 (>10,000)

Other 0/8 NS 1/8

For further details see Supplementary Table 1. NS, not specified.
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chickens needed to assess vaccination outcomes and streamline
experimental design. However, vaccine responses and the
consequences of challenge are likely to differ from the hybrid
commercial chicken lines that most anticoccidial vaccines will be
intended for. If using commercial layer or broiler chickens the
choice of line is also important and again could be influenced
by the target market of the vaccine. One advantage of examining
vaccine response in layer chickens is that cages can more readily
be used in place of floor pens. Keeping chickens in cages can
permit more flexible study design, also offering better control
of oocyst recycling and opportunities for fecal collection for
accurate enumeration of oocyst excretion. However, if measuring
production outcomes such as weight gain is desirable then the use
of broiler chickens is likely to be advantageous over layers.

It has been demonstrated that some inbred chicken lines
are more susceptible to Eimeria infection than others (29).
A potential association between MHC haplotype and Eimeria
infection outcome has been identified, although results of
individual studies have been inconsistent, possibly influenced
by the choice of chicken haplotypes examined, the infection
model used, chicken infection histories, and measures of
infection used to assess susceptibility/resistance (30–32). It
is also likely that additional genes are involved in disease
susceptibility/tolerance/resistance and this has been supported
by some studies (33, 34). As well as influencing the outcome
of challenge, it is also likely that the genetic background of
the chicken will influence response to any novel vaccine being
assessed. For example, there is evidence that MHC B locus
haplotype may influence protection after challenge; lesion scores
after challenge infection with E. tenella were reduced in B5B5

chickens vaccinated with a recombinant protein derived from
oocysts, but this response was not seen in B2B2 chickens
(35). However, in another study B2B2 chickens were found to
be more protected than other lines by vaccination following
challenge with E. acervulina (36). The choice of chicken line
and genetic background therefore must be considered when
designing vaccine challenge studies, and it may be necessary
to test the same vaccines in different geographically distributed
chicken breeds.

Rodent models are sometimes used to examine responses
to coccidial infection but are unlikely to replace the need
for work in chickens as not only do different species of
Eimeria infect each host, but the immune system of rodents
is very different compared to avians (37, 38). While there
are many similarities between Eimeria species that infect
birds or mammals and most replicate within enterocytes,
fundamental differences include antigenic profiles, schizont size
and number of rounds of schizogony (39, 40), all of which
may impact on vaccination and immunological outcomes. The
availability of immunological tools and reagents for rodent
species continue to offer value to vaccine development, but
there has been a notable expansion of resources for work
with chickens (see https://www.immunologicaltoolbox.co.uk/ for
details). Furthermore, knockout mice with well-characterized
phenotypes are readily available and can be utilized to better
understand immune responses to infection. Although the
limitations of these knockout mice is becoming more apparent

(41), some experiments are still easier to perform in these mice
compared to chicken, and may shed light on pathogenicity.
For example, infection of mice with Eimeria vermiformis shows
some similarities to E. maxima infection of chickens in terms
of immunogenicity, pathogenicity and the area of gut infected,
and have been utilized as an infection model (42). Nevertheless,
mechanisms of pathogenicity or immunogenicity in rodent
models are not necessarily reproducible in avian species.

The Parasite
The choice of Eimeria species used in vaccine development
and validation is commonly based on regional priorities and
identity of the candidate antigen(s) to be tested. The choice of
Eimeria species influences study design. Variation in fecundity,
pathogenicity, and immunogenicity among Eimeria species
impacts on the outcome of vaccination and severity of disease,
but also dictates the magnitude of challenge dose and study
design. If a multivalent vaccine is developed to protect against
multiple Eimeria species, efficacy against each species should
initially be assessed in isolation with a separate challenge for
each species to avoid confounding results. In some examples
the choice of Eimeria strain/genotype is also important. Strain-
specific antigenic variation has been noted to influence the
outcome of vaccination for several species including E. maxima
(11). The same strain or isolate used as template in production
of a vaccine should also be employed as the challenge, ensuring
antigenic as well as species homogeneity. Subsequent vaccine
development should then include comparison with antigenically
distinct strains to assess cross-protection. The choice of strain
or isolate can vary between studies and regions, regularly
prioritizing local parasites to promote local relevance. However,
the use of multiple different strains, many of which may be
antigenically distinct, precludes effective comparison between
studies. Standardization using vaccines and challenges developed
from reference strains such as Houghton (H) Eimeria strains (40)
can improve opportunities for comparison.

Challenge doses should be determined empirically based on
breed of chicken and species of Eimeria and should be tailored to
the study design so that the desired outcome of vaccination can be
measured reliably and at an appropriate time point post infection
(e.g., reduction in lesion score or parasite replication). A lower
challenge dose is more appropriate for measurements of parasite
replication such as oocyst counts or quantitative PCR (qPCR) to
measure Eimeria genome copies, as the linear dose dependent
relationship between challenge dose and parasite replication
eventually plateaus as the challenge dose is increased (27, 43).
Any potential reduction in parasite replication as a result of
your vaccination is thus difficult to interpret at higher challenge
doses due to this biological phenomena. Higher challenge doses
that induce at least moderate lesions and depress weight are
more appropriate for assessment of reduction in pathogenicity
by lesion scoring or for production measurements such as body
weight gain. The age, quality and sporulation rate of oocysts
used for challenge must also be considered; oocysts stored for
a long time or inadequately (e.g., incorrect temperature) are
likely to be less infectious. A reduction in pathogenicity in-vivo is
usually observed when using oocysts older than 6 months of age
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and a reduction in replication can be detected from 3 months.
Standardization of oocyst age at the time of dosing between
experiments will promote comparison between studies, although
it has been suggested that dose adjustment can be employed if
using older cultures (44). Administering the challenge dose is
usually performed by oral gavage of oocysts, either as a single
dose or multiple doses to try to mimic natural infection. Infection
from the environment can be initiated through re-use of litter or
co-housing with infected individuals.

IMMUNOLOGY AND PATHOGENESIS OF
EIMERIA INFECTION

Elucidating the effector cells andmolecules involved in protective
immunity induced by natural Eimeria infection and then eliciting
either a similar response by vaccination or a different one, if
this is protective, is the desired outcome of many novel vaccines.
However, it has to be stressed that the definition of an effective
vaccine may differ widely between stakeholder groups. Indeed,
this can range from the “best case” scenario, the induction of
sterile immunity to more realistic responses, such as reduction
in shedding and/or reduction of clinical signs. However, it is
clear that understanding these immune responses can offer
valuable insight into vaccine development and efficacy. It is
apparent that Eimeria sporozoites interact with both phagocytic
and non-phagocytic cells within the gut, but this interaction
does not always result in clearance of the parasite. Early studies
suggested that Eimeria sporozoites are transported from the
gut lumen to the crypt epithelium, where most species develop
further, via the lamina propria in intraepithelial lymphocytes
(45). Another study using monoclonal antibodies to stain
duodenal sections infected with E. acervulina found sporozoites
to be within CD8+ cells, macrophages and, to a lesser extent,
CD4+ cells (46). The same study confirmed that both live and
dead sporozoites were present within macrophages cultured in-
vitro, suggesting that uptake into the macrophage might not
result in parasite killing (46). However, subsequent publications
concluded that the percentage of E. tenella sporozoites found
within intraepithelial lymphocytes was relatively low (47). In
this study, most sporozoites were found within enterocytes
although the number located within lymphocytes was higher
in the lamina propria (47). It was suggested that in birds
immune following natural infection sporozoites remain within
intraepithelial lymphocytes and do not penetrate the crypt
epithelial cells (45), whereas others suggested that sporozoites
remain within the lamina propria and do not enter the crypt
epithelium or are inhibited from further development within
the crypt epithelium (47). It is important to note that effector
cells and molecules might vary between primary and secondary
immune responses, and this is certainly true of E. vermiformis
infection inmice (42). Therefore, these potential differences must
be considered during development of vaccines and protocols for
vaccine characterization.

Eimeria specific antibodies are generated during Eimeria
infection, but they do not appear to be involved in controlling
infection following oocyst challenge (7), and antibody levels

are not correlated with disease susceptibility (16). Early studies
demonstrated that bursectomised chickens, unable to generate
an antibody response, were resistant to a secondary challenge
with E. tenella suggesting that a serological response is not
required for protective immunity (48). However, it has been
demonstrated that sera from chickens recovering from infection
may inhibit sporozoite invasion of chick kidney cells in-vitro
(49). Lysis of sporozoites by immune sera and changes suggestive
of agglutination have been demonstrated in-vitro but surface
changes to sporozoites and to a lesser extent merozoites, visible
by electron microscopy, were not detected when immune sera
was heat inactivated suggesting that this action could bemediated
by complement (50). Passive protection of chickens against E.
tenella infection with a monoclonal antibody has also been
demonstrated in-vivo (51). The role of secretory IgA was initially
considered important in protecting against parasite invasion (49).
Caecal contents from immunized chickens were demonstrated to
reduce sporozoite invasion of a chick kidney cell line however
parasite development was not associated with immunoglobulin
level or neutralization of sporozoites (52). Similarly, sporozoite
numbers were reduced in the intestinal lumen of previously
challenged infected chickens but these sporozoites were still
infective and anti-sporozoite gall bladder IgA was not associated
with immunity to reinfection (53). Antibodies therefore do not
appear to play an important role in protective immunity against
Eimeria infection in vivo and cell mediated responses appear to
be of more importance.

The role of T-lymphocytes in inducing a protective immune
response to Eimeria infection has long been recognized in
rodent models devoid of T-lymphocytes, as these were unable
to control infection [reviewed by Rose (54)]. An initial study
in athymic nude rats infected with E. nieschulzi demonstrated
that these rats did not become immune to a second infection.
In contrast, heterozygous (nu/+) rats were very resistant to
reinfection, suggesting a role for T lymphocytes (55). Similarly
chickens treated with cyclosporin A, which prevents proliferation
of T-lymphocytes, were not immune to secondary infection
and had increased oocyst output compared with untreated
controls (56). Transfer of cell mediated immunity (CMI) is also
possible; adoptive transfer of peripheral blood lymphocytes and
splenocytes from infected, immunized chickens resulted in the
transfer of antibody producing cells as well as CMI when given
intravenously to uninfected chickens, as shown by reduced oocyst
output following E. maxima infection (57). Lymphoproliferative
responses of peripheral blood lymphocytes to sporozoite antigen
appear to correlate with resistance to E. maxima in different
inbred chicken lines in primary and secondary infection, whilst
antibody responses are inversely correlated to resistance to
E. maxima and E. tenella (58). In the mouse CD4+ T-cells,
and to a lesser extent CD8+ T cells, appear to be more
important in controlling primary Eimeria infection, whilst CD8+

T cells appear to be more important in secondary infections
(59). However in chickens, several studies have suggested there
are differences in the cell populations involved in controlling
infection by different Eimeria species, in single or mixed species
infections (60, 61). A more recent study showed increased
proportions of cytotoxic CD8+(TCRγδ−CD8β+) cells following
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primary infection but the proportion of TCRγδ−CD8β+ in the
caeca was only maintained for 3 days following secondary E.
tenella infection before gradually declining (62). The same study
demonstrated induced CD107a+ cell surface mobilization on
cytotoxic TCRγδ−CD8β+cells, a marker of recent degranulation,
following primary and secondary infection with E. tenella
(62). In secondary E. acervulina infection the percentage of
CD8+ intraepithelial cells is increased, and one study has
demonstrated a greater proportion of CD8+ intraepithelial
lymphocytes in resistant chickens 10 days post infection (63).
Variability in T-cell responses might also be seen between
different chicken lines, presumably due to genetic variation (64).
The role of CD8+ cells in mediating resistance to secondary
infection has been proposed to be killing of infected epithelial
cells (65).

In early studies, cytokines produced by T-lymphocytes
were presumed to mediate immune responses to E. tenella
and E. acervulina infection in chickens injected with T-cell
supernatants (66). The role of interferon-gamma (IFN-γ) was
initially examined in E. vermiformis infected BALB/c mice, where
blocking of endogenous IFN-γ by an IFN-γ specific monoclonal
antibody in-vivo resulted in increased susceptibility to primary
but not secondary infection, and increased oocyst production
during primary infection compared with mice not injected
with the antibody (67). The role for cytokines in primary but
not secondary infection has been supported by a qPCR study
examining cytokine transcripts following E. maxima infection
that demonstrated upregulation of both Th1 and Th2 cytokines
in primary but not secondary infection (68). Studies suggest
that antigen specific IFN-γ responses from infected chicken
splenic cells do not peak until days 20–25 post infection (69,
70), or even up to 35 days after primary infection in one
study (71). During E. tenella infection the specific IFN- γ

response in peripheral blood lymphocytes appears to occur
earlier, around 8 days post infection, and may coincide with
an increase in CD8+ cells in the peripheral blood (72). The
role of other cytokines such as tumor necrosis factor (TNF)
and interleukin (IL)-10 in controlling Eimeria infection has also
been explored. TNF production by macrophages is upregulated
following Eimeria infection, with peak production coinciding
with the incidence of intestinal lesions, leading the authors
to be speculate that release of this pro-inflammatory cytokine
may enhance disease pathology (73). Another study found
it to be upregulated in primary but not secondary infection
with E. tenella and found differences between levels of TNF
produced by different inbred chicken lines (74). IL-10 mRNA
transcripts were found to be upregulated in the spleen and
small intestine of susceptible chickens after infection with E.
maxima (75). Similarly, in E. tenella infection IL-10 mRNA was
upregulated in the caeca post-infection (76), although there does
not appear to be a clear relationship between IL-10 expression
during infection and caecal pathology (33). Other cytokines
might be linked to Eimeria-associated pathology (77), but further
work is needed to define the underlying mechanisms. It is
clear than although many cytokines are upregulated during
Eimeria infection and the primary response in particular, no
single cytokine is a clear biomarker for disease susceptibility or

progression; although this could be because of the heterogenous
cell populations/tissues assayed.

The role of macrophages in controlling Eimeria infection has
also been investigated. Assessment of phagocytosis of Eimeria
sporozoites by chicken peritoneal macrophages in-vitro showed
low levels for E. tenella and, to a lesser extent, E. maxima in
macrophages taken from non-infected chickens. Phagocytosis by
peritonealmacrophages from infected chickens was increased but
varied depending on the stage and number of infections, and was
enhanced by immune serum. However, it has to be stressed that
peritoneal macrophages have been described to be functionally
very different to tissue-resident macrophages in the gut (78),
and may have a more immunomodulatory role rather than an
antigen-presenting function (79). Quantification of macrophages
during caecal infection with E. tenella showed higher absolute
numbers in immune birds at 8 h post infection compared with
naïve birds, however there was a greater increase in macrophages
in naïve birds compared with immune birds (80). The same
study also demonstrated that sporozoites were more likely to
be located within or next to macrophages in the caeca of naïve
birds compared with immune birds, where sporozoites were also
more often located within or next to CD8+ cells (80). The role of
macrophages is therefore somewhat unclear, although they are
likely to play an important role as antigen presenting cells to
CD4+ T cells in primary infection and might also act as effector
cells, potentially destroying parasites through the production of
reactive oxygen species. Natural killer (NK) cells, mononuclear
cells with cytotoxic activity, might also play a role in Eimeria
infection although this is still unclear and may be mediated
through IFN- γ (81).

IMMUNOLOGY AND RELEVANCE TO
EIMERIA VACCINOLOGY

It is clear that there is no single immune correlate of protection
against Eimeria in the chicken. Circulating antibodies, IgY, IgM,
and IgA, that are specific against Eimeria can be detected
in infected chickens and ELISAs to measure serum antibody
levels to Eimeria species in chickens have been developed (82,
83). Detection of antibodies raised against novel anticoccidial
antigens post vaccination might be of some relevance in
assessing antigenicity and can provide evidence of successful
delivery. However, as serum antibody levels are not central to
immune protection following Eimeria infection their relevance
in assessment of vaccine efficacy is minimal. In natural immunity
to Eimeria infection a cell mediated response is most important
and presumably an efficacious vaccine will need to generate a
similar response, ideally without inducing pathology. Measuring
cell mediated responses to vaccination is more challenging than
measuring serum antibodies, both technically and to interpret.
Peripheral blood is the most easily acquired sample, although cell
mediated responses in the periphery may differ compared with
local responses in the gut. Examining cell mediated responses
in organs such as the gut and spleen can only be achieved post
mortem and, therefore, pre and post vaccine samples are not
available for any individual chicken.
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ASSESSMENT OF PROTECTION IN
EIMERIA VACCINOLOGY

Measures of Pathology
In the absence of clear identifiable immunological correlates of
protection other relevant parameters must be used to assess
vaccine efficacy. Reduction or absence of clinical disease can be
assessed by observing individual chickens for signs of disease and
more quantitatively by assessment of pathognomonic lesions in
the gut. A standardized approach to scoring pathological lesions
described by Johnson and Reid (28) is still widely utilized; a lesion
scoring system from 0 to+4 was adopted for each Eimeria species
with varying score criteria based on the infecting species and the
nature of any lesions assessed during peak infection. Use of the
lesion scoring system requires training from an experienced user
or pathologist and can be subject to individual interpretation. It
is therefore prudent to use the same individual or ideally multiple
individuals to score all groups within each study and to consider
that lesion scores might not be comparable between different
studies examined by different individuals. Johnson and Reid
(28) suggested that for some species such as E. maxima, lesion
score does not appear to correlate with pathogenicity. Association
between lesion scores and the clinical impact of coccidiosis
appears more nuanced. For example, in one study chickens
immunized with live oocysts and then challenged with a high E.
tenella dose demonstrated high lesion scores but not the same
reduction in body weight as unvaccinated challenged birds (84).
Later studies confirmed that although some vaccinated chickens
developed lesions, parasites did not appear to be associated with
these lesions, possibly implicating the pro-inflammatory immune
response (85).

Measures of Parasite Replication
Comparison of Eimeria replication through measurement of
parasite load or output in vaccinated, mock vaccinated and/or
unvaccinated groups is a common method for assessing vaccine
efficacy. Traditional measures include microscopy to count
oocysts excreted per gram (OPG) of feces or persisting in litter,
or total oocysts excreted per unit of time (e.g., per day), with
vaccine efficacy calculated as the difference between vaccinated
and unvaccinated groups or individuals. Oocyst counts from
total fecal material collected per day, or throughout the parasite’s
patent period, are the gold standard, removing variation incurred
by differences in fecal consistency. For reliable oocyst counts
from litter, sampling should ideally be randomized, collecting
litter from multiple pre-determined points to avoid unconscious
bias and ensure representation from different individuals within
the group, although this is obviously difficult to achieve for large
groups of chickens (86, 87). Sampling to obtain oocyst counts for
multiple species of Eimeria should be undertaken with caution
due to a variance in fecundity between species, with more fecund
species potentially masking the presence of less fecund species.

Quantitative PCR (qPCR) is a viable alternative to oocyst
counts as a method to quantify the number of Eimeria genomes
in a sample. Assays have been developed and validated for
quantification of all seven Eimeria species that infect chickens,
using genomic DNA extracted from purified oocysts and fecal
samples (88). For E. maxima, qPCR has been applied to total

genomic DNA extracted from jejunum/ileum tissues adjacent to
Meckel’s diverticulum to define replication dynamics in chicken
lines with varying susceptibility to infection (89). For E. tenella,
total genomic DNA extracted from caecal tissue was used as
template to quantify parasite genome numbers, highlighting a
significant association between genome number and size of the
oocyst dose used to initiate the infection. This method has
the advantage of requiring lower group numbers due to within
reduced intra-group variation between chickens given the same
oocyst challenge dose compared with fecal oocyst counts (27).
DNA extracted directly from feces can be unsuitable due to the
presence of inhibitors which can impact qPCR efficiency and
therefore quantification accuracy, although an internal qPCR
control can be used for standardization (90). Extraction from
tissues or oocysts is preferable given lower occurrence of PCR
inhibitors. Variation in oocyst sporulation rates can influence
quantification by qPCR given that an unsporulated oocyst
contains two genomes, while a fully sporulated oocyst contains
eight. Some studies have utilized non-sporulated oocysts for
DNA extraction to minimize the impact of sporulation rate on
quantification (91). qPCR has also been applied to validate and
standardize next generation sequencing analyses, such as deep
sequencing or Eimeria species 18S rDNA PCR amplicons (92).

While microscopic quantification of oocyst numbers and
qPCR are reproducible and highly sensitive techniques, parasite
replication can be confounded by several parasite and host effects.
Parasite effects include the reproductive potential of the parasite
species and strain. Species such as E. acervulina are highly fecund,
producing many millions of progeny oocysts per chicken. In
contrast, species such as E. maxima are far less productive (93).
Host effects include inherent genetic resistance or susceptibility,
nutritional status and immune status as a consequence of
prior exposure history (94, 95). Parasite replication can also be
influenced by the crowding effect, a phenomenon characterized
by reducing fecundity in response to increasing level of parasite
challenge, although the mechanism remains unclear (43). Co-
infection with other Eimeria species or other infectious agents
might also influence oocyst output (96, 97).

Measures of Productivity
Production measures are of utmost importance to the poultry
industry when assessing any novel vaccine but can be difficult to
measure and/or interpret in an experimental setting. Body weight
gain is of primary significance during broiler production, but
might only be impacted during severe infection where weight
gain can be up to 60% lower than in uninfected chickens
(98). However, experimental models of severe infection can be
unpredictable and are undesirable from a welfare perspective.
Williams and Catchpole (99) advocated the use of body weight
gain up to 7 days post infection and feed conversion efficiency as
measures of vaccine efficacy, and demonstrated the use of these
criteria for the live attenuated vaccine ParacoxTM.

Composite Measures of Efficacy
The anticoccidial index (ACI) has been developed as a
method to evaluate resistance to anticoccidial medication (100,
101). McManus et al. (101) incorporated percentage survival,
percentage relative weight gain, lesion score and oocyst count,
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combining pathological, parasitological and production traits.
Jeffers (100) used the difference in weight between day 0 and
day 7 post-infection and then subtracted the average score
of fecal abnormality, where 0 equated to normal feces and 4
equated to no normal feces visible, divided by 10. Chapman and
Shirley (102) used a modified version of the former protocol and
assigned cut-offs for drug sensitivity; >160 = sensitive, partially
resistant = 120–160 and <120 = resistant. Some vaccine studies
have used ACI as a method to evaluate vaccine efficacy and
assigned different cut-off scores for efficacy with some variation
between studies; an ACI of <160 is generally considered to be
ineffective (103–107). However, whether this adapted scoring
method is overly simplistic to evaluate the efficacy and usefulness
of vaccines in the field has yet to be determined.

Combining the information derived from measurement of
multiple parameters and interpreting this information can be
difficult as correlation is commonly poor between the different
measurements of vaccine efficacy (99). This could be in part
because parameters such as weight gain and feed conversion
efficiency need to be assessed over a longer period of time than
the 5–6 days post infection which is optimal for assessment of
lesion score and parasite replication. Even for vaccines which
are currently on the market and considered efficacious there is
variability in vaccine response with some chickens developing
pathological lesions, although lesion score is not necessarily
associated with weight gain in these vaccinated birds (85).
Furthermore, the variability in measurements of each parameter
will be influenced by the population selected with commercial
breedsmore likely to show variability in response to infection and
vaccination than more inbred lines. Studies have tried to model
outcome parameters following Eimeria infection and fit them to
an “infection index,” however this too can be difficult withmodels
working more efficiently at certain inoculation doses. The time
point of measuring infection outcomes is also likely to impact on
correlation between parameters (108).

CONCLUSIONS

Assessment of novel vaccines to protect against Eimeria
infection in chickens is becoming more and more relevant

with the discovery of new antigens for different Eimeria
species and the development of new methods for delivery.
The lack of a standardized approach to assessment of coccidial
vaccine efficacy hampers comparison between studies, with
different chicken breeds, challenge models, husbandry
systems and outcomes being assessed. Ultimately, any new
anticoccidial vaccine must be easily deliverable and relevant
to the target market. While reductions in parasite replication
and lesion score are important and might be considered
optimal, producers in the majority broiler sector prioritize
improvements in feed conversion efficiency and weight
gain. As well as these considerations, future studies should
adopt a methodical approach to animal study design and
reporting, ideally conforming to the ARRIVE guidelines to
maximize robustness, repeatability and transparency (109).
Reporting of negative or inconclusive results must also be
considered. A better understanding of response and variability
to both infection and vaccination is imperative in informing
future study design and minimizing animals used whilst
maximizing outputs.
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