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Abstract. Computer‑aided diagnosis systems aim to assist 
clinicians in the early identification of abnormal signs in order 
to optimize the interpretation of medical images and increase 
diagnostic precision. Multiple sclerosis (MS) and clinically 
isolated syndrome (CIS) are chronic inflammatory, demyelin‑
ating diseases affecting the central nervous system. Recent 
advances in deep learning (DL) techniques have led to novel 
computational paradigms in MS and CIS imaging designed 
for automatic segmentation and detection of areas of interest 
and automatic classification of anatomic structures, as well as 

optimization of neuroimaging protocols. To this end, there are 
several publications presenting artificial intelligence‑based 
predictive models aiming to increase diagnostic accuracy and 
to facilitate optimal clinical management in patients diagnosed 
with MS and/or CIS. The current study presents a thorough 
review covering DL techniques that have been applied in MS 
and CIS during recent years, shedding light on their current 
advances and limitations.
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1. Introduction

Multiple Sclerosis (MS) is a chronic inflammatory demy‑
elinating disease of the central nervous system (CNS), 
commonly affecting young adults. MS usually manifests 
as a relapsing‑remitting (RR) process, predominantly char‑
acterized by inflammatory demyelination that secondarily 
evolves to a progressive stage with neurodegeneration, gliosis 
and accumulating disability. Although the etiology of MS is 
largely unknown, it is considered primarily an autoimmune 
disease, in which activated myelin‑specific T‑cells, migrate 
from the periphery to the CNS, by crossing the blood brain 
barrier (BBB) inducing the formation of new inflammatory 
demyelinating lesions (1,2). Clinically isolated syndrome (CIS) 
describes a clinical episode of at least 24 h, suggestive of an 
inflammatory demyelinating disorder of the CNS. CIS usually 
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occurs in young adults and represents a monophasic episode, 
isolated in time, and usually isolated in space, affecting 
optic nerves, the brainstem, or the spinal cord, while there 
are no signs of fever or infection. Although patients usually 
recover from their presenting episode, CIS is often the first 
manifestation of MS. The course of MS after CIS is variable: 
after 15‑20 years, one third of patients have a benign course 
with minimal or no disability, while half will have developed 
secondary progressive MS with increasing disability (3,4). MS 
and CIS clinical studies, need to be accompanied by sensi‑
tive and reliable imaging methods, in order to investigate the 
specific pathological alterations of the white matter (WM). 
Imaging methods for MS include optical computed tomography 
and coherent anti‑Stokes Raman scattering microscopy (5). 
Magnetic Resonance Imaging (MRI) is the modality of choice 
for diagnosis and monitoring MS pathology, by exploiting both 
conventional and quantitative protocols (6).

Conventional MR techniques for MS and CIS imaging, 
include T1‑w images since in this protocol lesions are usually 
depicted by lower signal intensity compared to the surrounding 
tissues, while T1 severe hypointense lesions (black holes) 
represent the most severe stage of MS lesions with irreversible 
axonal loss (5,7). Lesions in earlier stages of the disease can 
be captured using Gd enhanced T1‑w MRI sequences, based 
on the fact that contrast agent (CA) uptake indicates premature 
stage of inflammation and blood brain barrier (BBB) disrup‑
tion. Furthermore, T2‑w MRI sequences are also sensitive in 
detecting lesions, since these are demonstrated as bright areas 
in a dark background. T2 hyperintense lesions represent tissues 
that are characterized by edema, inflammation, demyelination, 
axonal loss and gliosis. Sensitivity is further enhanced by using 
the fluid‑attenuated inversion recovery (FLAIR) protocol, 
which can be used for highlighting subcortical and periven‑
tricular lesions by suppressing T2 signal from cerebrospinal 
fluid (CSF) (8). The aforementioned techniques constitute the 
gold standard for MS and CIS diagnosis and monitoring (9).

However, conventional MRI do not provide sufficient 
sensitivity that could enable early diagnosis or appropriate 
specificity to predict disease severity. Quantitative MRI 
techniques provide enhanced insights in disease severity and 
tissue damage. These techniques include: i) MR spectros‑
copy which provides a non‑invasive method to examine the 
biochemical changes in MS (10); ii) magnetization transfer 
imaging which offers improved sensitivity and specificity for 
MS studies (11,12); iii) diffusion weighted imaging (DWI) and 
diffusion tensor imaging (DTI) which are quantitative MRI 
techniques, providing information on size, integrity, geometry, 
and orientation of tissue fibres by capturing the motion of 
tissue water (13); iv) dynamic contrast enhanced MRI which 
enables quantification of BBB disruption, a therapeutic target 
in MS (14); and v) dynamic susceptibility contrast MRI that 
provides quantitative maps of cerebral blood flow, cerebral 
blood volume and temporal parameters such as mean transit 
time by intravenous administration of CA (14).

Conventional clinical protocols for MS diagnosis and moni‑
toring, utilize imaging data and measurements, such as signal 
intensities and volumetric results from user defined regions of 
interest, in order to compare healthy and MS subjects or to 
examine longitudinal changes during therapy, and evaluate the 
clinical outcome. However, these results are prone to errors 

due to inter‑observer variability, while the lack of ability to 
compare studies from different modalities is a major limita‑
tion. Moreover, procedures that involve human interplay, 
besides that are time consuming and employ human experts, 
these may be characterized by high inter observer variability 
that may hinder the quality of the final results. Therefore, 
during the last years artificial intelligence (AI) techniques 
have opened new horizons in computer aided diagnosis (CAD) 
systems, by automatically generalizing rules and patterns that 
exist in labeled imaging data, while by utilizing this informa‑
tion they are able to generate predictions and classifications on 
independent datasets that were not used in the model training 
process (15).

Furthermore, segmentation techniques in MS imaging 
are gaining ground during the last years, considering the 
necessity of accurate algorithms for automatic delineation of 
anatomical structures (16). Performing these tasks manually 
is time‑consuming and prone to errors, thus there is a lot of 
interest to accomplish this task using automated computer 
algorithms, towards increased accuracy and precision, while 
at the same time minimize human involvement.

Finally, computer algorithms able to assess image quality 
of the acquired data, as well as methods that are able to 
compute optimal protocol parameters prior to image acquisi‑
tion, are tools that can save time and provide noise free and 
qualitative data with increased diagnostic information (17). To 
this purpose, AI techniques constitute a valuable methodology 
for assessing MR image quality as well as determining the 
necessity to repeat the acquisition, while there are attempts 
to provide algorithms aiming to image protocol optimization.

The focus of this review paper, is to study the current liter‑
ature regarding MR imaging deep learning (DL) applications 
focused on MS and CIS imaging. The reviewed publications 
were examined from different standpoints including the 
different DL architectures, the patient cohorts and the 
end‑point of the reported studies in the field.

2. Selection criteria

Based on a PubMed search using keywords: ‘deep learning’ 
AND ‘multiple sclerosis’, 74 articles were initially identi‑
fied. Subsequently, screening for MR imaging relevance 
and removing duplicates led to 32 original research articles 
that applied DL techniques in MS and CIS for diagnosis 
tasks, segmentation tasks and clinical protocol optimization. 
Afterwards, a similar search in google scholar, using the same 
keywords, and keeping only original research journal papers, 
led to 13 additional articles making a total of 45 original 
papers.

After an initial review, selected articles were separated 
in three broad categories i.e., i) segmentation of MS and 
CIS lesions; ii) classification of different pathologies and 
anatomical structures; and iii) post processing techniques and 
image enhancement methods with application in MS and CIS 
imaging. In Fig. 1 presents the general workflow of the DL 
techniques along with the final goal, as was determined in the 
present review manuscript. In Fig. 2, the distribution of the 
reviewed papers in each of the three abovementioned catego‑
ries is presented. Obviously, segmentation and classification 
techniques are the main areas of interest, accounting for the 
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76% of the overall publications. Moreover, in Fig. 3 the number 
of publications through years, for the three abovementioned 
application fields, is presented.

3. Detection: Segmentation methods

MS is a progressive disease of CNS affecting the myelin 
sheath, a fatty material that envelops neuron axons, and as 
a result alters the morphology and structure of the brain. 
Furthermore, brain atrophy is taking place in cortical and 
subcortical regions, whereas the gray matter (GM) atrophy 
and its association with disability and cognitive impairment 
is under investigation (18,19). Nevertheless, measurement of 
GM volume is a useful method for assessing the overall GM 
damage and can be estimated through conventional MRI 
techniques (6). Another established measurement for predic‑
tion of neurological disorders is the lesion load (20), since 

it has been proved that both lesion volume and lesion count 
are strong predictors of disease course and progressive time‑
points. Additionally, detection of MS lesion is of paramount 
importance since the diagnosis of MS is based on the spatial 
and temporal distribution of focal demyelination lesions (21). 
Since manual detection of MS lesions is time consuming and 
prone to errors as well as inter observer variability, algorithms 
aiming to automatically delineate these tissues may constitute 
a great tool for clinical practice. Considering all the aforemen‑
tioned, automated computer algorithms aiming to segment 
anatomical structures as well as to detect MS lesions, are 
valuable tools for clinicians offering objective and repeatable 
results. Accurate segmentation of WM lesions is hindered 
due to overlapping intensities of these lesions with GM, while 
finite resolution of MR images, complicated shapes that vary 
among different lesions as well as the partial volume effect, 
hamper the accurate delineation of MS tissues. Additionally, 
gray matter lesions are often not visible in T2‑w images due 
to size, magnetic relaxation characteristics and partial volume 
effects with CSF. Finally, these lesions may not be visible even 
in FLAIR sequences, despite the increased sensitivity of this 
protocol compared to a conventional T2‑w one.

Many previous studies have proposed DL methods aiming 
to provide a robust and reliable framework for detection and 
segmentation of MS lesions, while the most significant of are 
summarized below. Valverde et al (22) presented an automated 
WM lesions segmentation method, by utilizing a cascade of 
two 3D patch‑wise convolution neural networks (CNN), the 
first was sensitive for revealing possible candidate lesions 
voxels while the second one was responsible for reducing the 
number of misclassified voxels resulted from the first network. 
The accuracy of the proposed approach was evaluated in the 
medical image computing and computer assisted interven‑
tion society (MICCAI) 2008 database (http://www.ia.unc.
edu/MSseg), as well as on two private MS clinical datasets, 
while results were also compared with other lesion segmen‑
tation tools and methods. It was reported that the proposed 

Figure 1. A schematic generalized workflow of the DL techniques presented in the manuscript. Initially the magnetic resonance acquisition is performed, pro‑
ducing a number of different anatomical and functional map representations. These provide additional information regarding the underlying pathophysiology 
(for example, quantitative), which can be used as input in the DL architecture for training the models and, in turn, address un‑met clinical needs. DL, deep 
learning.

Figure 2. Pie chart distribution, grouping reviewed studies according to 
different end‑points. The vast majority of published articles are serving seg‑
mentation and classification techniques.
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approach is the best ranked on the MICCAI2008 challenge, 
and in the clinical datasets it exhibited an increased accuracy 
in the WM lesions segmentations.

Birendaum et al (23) developed an automated DL method 
for MS lesion segmentation, utilizing a CNN that was mainly 
based on the Single View CNN (V‑Net) and the Longitudinal 
Network (L‑Net). For this work, the 2015 Longitudinal MS 
Lesion Segmentation Challenge dataset (24) was used while 
the network resulted in Dice Similarity Coefficient 0.627. 
Finally, authors reported that the aforementioned method 
achieved performance level comparable to a trained human 
rater.

Gros et al (25), proposed a fully‑automated framework 
for segmenting spinal cord and intramedullary MS lesions 
using conventional MRI data. The aim of this study was to 
provide a robust and automated framework, by overcoming 
the technical limitations of large variabilities related to acqui‑
sition parameters and image artifacts, and furthermore to 
eliminate the inter‑rater variability as well as to optimize the 
large‑throughput analysis pipeline. The cohort of this study 
consisted of 1,042 subjects; 459 healthy controls, 471 MS 
patients and 112 with other spinal pathologies. Authors used a 
sequence of two CNNs, the first intended for the detection of 
spinal cord centerline using 2D convolutions, while the second 
segmented the spinal cord and/or lesions using 3D convolu‑
tions. These networks were trained independently using the 
Dice loss (26), considering that it is not sensitive to high class 
imbalances, while comparing the proposed technique with the 
PropSeg method, an unsupervised technique for spinal cord 
segmentation (27), resulted in median Dice 95% when using 
manual vs 88% when using PropSeg. Moreover, regarding MS 
lesion segmentation, the proposed technique provided Dice 
of 60%, while sensitivity and precision were 83% and 77% 
respectively.

Aslani et al (28) presented an automated approach for MS 
lesion segmentation, based on a Deep end‑to‑end 2D CNN, 

a technique that incorporates a multi‑branch down‑sampling 
path which enables the network to encode information stem‑
ming from multiple modalities in a separate way. The proposed 
model was trained and tested by using orthogonal plane orien‑
tations for every 3D modality, in order to exploit information 
from all directions. Evaluation of the proposed method was 
on two datasets, one private (37 MS patients) as well as the 
International Symposium on Biomedical Imaging (ISBI) 2015 
longitudinal MS lesion segmentation challenge dataset (14 
MS patients) (24). Results on the ISBI challenge ranked the 
proposed methodology among the top (DSC 0.6114), while 
on the private dataset the proposed method achieved the best 
results (DSC 0.6655).

Sander et al (29), employed a fully automated segmenta‑
tion method, based on multi‑dimensional gated recurrent 
units (MD‑GRU). MD‑GRU, is a DL approach that employs 
a convolutional adaptation of a recurrent neural architecture. 
This network was trained on 50 MS patients and 17 healthy 
controls, while a refinement procedure of the algorithm 
parameters took place in a cohort of 20 independent MS 
patients. For accuracy testing, 20 MS or CIS patients from 
the same cohort were used, while accuracy was further 
assessed in a dataset including 80 independent MS or CIS 
patients from the same cohort. Reproducibility assessment 
was followed by considering T1‑w images from 33 healthy 
controls. Finally, robustness of the segmentation approach was 
assessed using images from 50 Alzheimer patients. According 
to the results, the proposed segmentation approach provided 
accurate, highly reproducible and a robust fully‑automated 
segmentation framework for the brainstem and its substruc‑
ture in both healthy controls as well as in MS and Alzheimer 
disease patients. In more detail, study results were compared 
with FreeSurfer (30) software results, while authors reported 
that the mean % change/SD between test‑retest brainstem 
volumes were 0.45%/0.005 for MD‑GRU and 0.95%/0.009 
for FreeSurfer and 0.86%/0.007 for manual segmentations. 

Figure 3. Number of publications, in each application category, per year. There is a trend indicating that the number of publications in the segmentation and 
classification categories are increasing in recent years.
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MD‑GRU segmentations were compared to segmentations 
performed from experts, resulted in mean Dice score/SD of 
0.97/0.005 for brainstem, 0.95/0.0131 for mesencephalon, 
0.98/0.006 for pons and 0.95/0.015 for medulla oblongata.

Hashemi et al (31), developed a 3D fully connected 
convolution neural network (FCNN) with DenseNet blocks 
(FC‑DenseNet), using an asymmetric similarity loss func‑
tion Tversky index, aiming to mitigate the data imbalance 
problem and to achieve a better trade‑off among precision 
and recall. This method used 15 patients from the MS lesion 
segmentation challenge (MSSEG) of the 2016 Medical Image 
Computing and Computer Assisted Intervention confer‑
ence (32), as well as 5 patients from the longitudinal MS lesion 
segmentation challenge of the IEEE International Symposium 
on Biomedical Imaging (ISBI) conference (33). For training 
purposes, a 5‑fold cross validation strategy was utilized, in 
which five instances of the training were performed on 4/5th 
of each dataset and validated on the remaining 1/5th. For 
testing the implemented architecture, due to limited number of 
subjects 5‑fold cross validation was used. Study results report 
that MS lesion segmentation presented improved performance 
evaluation metrics by using asymmetry similarity loss func‑
tion rather than using the Dice similarity in the loss layer. 
Furthermore, authors reported that the proposed framework 
achieved improved precision‑recall trade‑off and average DSC 
scores of 69.9% and 65.74% for MSSEG 2016 and ISBI longi‑
tudinal MS lesion segmentation challenge correspondingly.

Gabr et al (34) investigated the performance of FCNN in 
segmenting brain tissues using a larger cohort of MS patients. 
The MRI protocols and the patient cohort used in this study, 
included a dual echo fast spin echo (FSE) sequence, a T1‑w 
sequence and FLAIR sequence from a cohort of 1,000 RRMS 
patients emanating from the CombiRx clinical trial, while 
training, validation and testing of the FCNN were based on 
the aforementioned data. Moreover, automated segmentation 
results were validated by two experts, while for cross‑valida‑
tion of the results, the leave‑one‑centre‑out approach was used. 
Results from this study, report high average Dice similarity 
coefficient for all segmented tissues (0.95 for WM, 0.96 for 
GM, 0.82 for CSF and 0.82 for T2 lesions), and high correla‑
tions among the DL segmented tissues and the annotations 
from the expert (R2>0.92). Finally, cross validation reported 
consistency of the results among the different centers.

Weeda et al (35) compared four different lesion 
segmentation methods to investigate the suitability of the 
DL CNN method nicMSlesions (36), in an independent 
dataset aiming to determine whether this method is suitable 
for larger, multi‑center studies. For this purpose, manual 
segmentation was performed in 14 MS subjects, while five 
different automated lesion segmentation methods were 
compared: i) unsupervised‑untrained LesionTOADS (37); 
ii) supervised‑untrained methods with threshold adjust‑
ment LST‑LPA (38) and nicMSlesions with default settings; 
iii) supervised‑untrained LST‑LPA with threshold adjustment; 
iv) supervised‑trained with leave‑one‑out cross‑validation 
nicMSlesions and BIANCA (39); and v) supervised‑trained on 
a single subject nicMSlesions. Results from this study report 
that the best volumetric and spatial agreement with manual 
annotations was obtained with the supervised and trained 
methods nicMSlesions and BIANCA, while the worst results 

was provided by the unsupervised, untrained method lesion‑
TOADS, concluding that input from a single subject to fine 
tune a DL CNN is sufficient for lesion segmentation.

McKinley et al (40) presented a segmentation framework 
based on a cascade of two CNNs, providing multimodal MR 
images segmentation into lesion, normal appearing white 
matter (NAWM) and normal appearing gray matter (NAGM) 
structures. For this purpose, MRI exams from 122 RRMS 
patients were used (90 patients for training and validation of 
the classifier, 32 patients for testing), while a second dataset 
including 10 MRI datasets was used for direct comparison 
with other centers. Results in the current study reported that 
both Dice coefficient as well as specificity and sensitivity 
are improved compared to previous approaches, while a 
good agreement with individual human raters was achieved. 
Moreover, authors concluded that the proposed method 
performed well on data emanating from different centers, 
scanners and field‑strengths that were not represented in the 
training dataset indicating good generalizability, while it was 
also reported that the classifier achieved to identify lesions 
missed by human raters.

Narayana et al (41) studied the dependence of DL segmen‑
tation accuracy on the training size, aiming to define the 
required training set for an adequate accuracy in brain MRI 
segmentation in MS patients. For this purpose, a 2D FCNN 
was trained using 16 different training sizes, while segmenta‑
tion accuracy was determined according to the training size, 
and network performance was evaluated by the dice similarity 
coefficient and lesion true‑positive and false positive‑rates. 
The presented methodology was evaluated in MRI data from 
a cohort of 1,008 MS patients, while the automatic segmen‑
tation results were assessed by two neuroimaging experts. 
Study results report that lesion segmentation showed stronger 
dependency to the sample size comparing with the GM, WM 
and CSF, concluding that excellent results were provided by 
a training set of 10 image volumes for GM, WM and CSF. 
Finally training size of at least 50 images was necessary 
for adequate lesion segmentation with DSC <0.68 while for 
150 sample size the DSC was 0.82.

Nair et al (42) presented a 3D MS lesion detection and 
segmentation CNN. The network was trained using a large 
scale, multi‑site, multi‑scanner clinical MS dataset consisted 
of 1,064 RRMS patients scanned annually over a period of 
24 months, while imaging protocol included T2w, T1‑w, 
FLAIR and proton density (PD) images. The network was 
trained using a weighted binary cross‑entropy loss, while the 
performance of the network was evaluated separately in i) a 
voxel‑level analysis; and ii) lesion‑level analysis. Study results 
report that uncertainty filtering vastly improves lesion detec‑
tion accuracy for small lesions.

In the same dataset, McKinley et al (43) trained two 
state‑of‑the‑art CNNs architectures, a 3D Unet consisting a 
reference implementation and a more recently proposed archi‑
tecture, the DeepSCAN, in order to segment multimodal MR 
images into lesion classes and NAWM and NAGM structures. 
Results from this study reported that both examined methods 
outperformed previous approaches in the literature related 
to the MSSEG dataset, while a good agreement among the 
automated segmentations and results from human ratters is 
reported. Moreover, DeepSCAN network found to achieve 
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the best performance in both lesion and anatomical labelling, 
while there is reported that this classifier recognized lesions 
that were missed by human ratters.

Narayana et al (44) investigated the effects that different 
combinations of multi‑contrast MR images may infer when 
serving as input to a CNN. To this end, U‑net, a fully CNN was 
used in order to automatically segment GM, WM, CSF and 
lesions in 1,000 MS patients. Image datasets included T1‑w 
images, FLAIR and dual echo turbo spin echo or fast spin echo 
images. For the assessment of the segmentation performance, 
the DSC was evaluated, while for lesions the true positive rate 
(TPR) and false positive rate (FPR) were also reported. Results 
from this study report that when segmentation input was a 
combination of all four image modality data, it was achieved 
the highest DSC for all tissue volumes, while high DSC results 
were also obtained when FLAIR protocol was included in 
the segmentation input. Finally, it was reported that lesion 
segmentation was poor when considering very small lesions.

Salem et al (45), proposed a FCNN in order to detect early 
T2‑w lesions in MR images. Patient cohort included 60 early 
MS and CIS patients, with a baseline and a follow‑up study 
for each patient, while new T2‑w lesions were found in the 
follow‑up exam. Authors concluded that the proposed meth‑
odology achieved increased accuracy regarding the detected 
newly formed T2‑w lesions, and therefore it has the potential 
to be used in the clinical practice for monitoring disease 
progression.

Brown et al (46) implemented a FCNN for automatic 
segmentation of orbital fat, tested on pediatric‑inset MS 
patients, while they introduced a preprocessing step of image 
calibration aiming to remove technical intensity artefacts. 
This method was evaluated on 1,018 scans form 256 partici‑
pants. Study results report that automatic segmentations 
agreed with manual segmentation from an expert, reporting 
estimated mean Jacard index 0.74, while the proposed image 
calibration contributed significantly in the performance of 
segmentation. Finally, the proposed methodology provided a 
robust serial calibration framework that allowed comparison 
of follow‑up studies of the patient, while it is considered to 
be a fast technique that may be applied to large as well as to 
small datasets.

Ackaouy et al (47) proposed an unsupervised domain 
adaptation framework based on optimal transport (3D‑Unet), 
Seg‑JDOT, adapting a deep model to samples from a source 
domain to a target domain that share similar representations. 
This study used the MICCAI 2016 MS lesion segmentation 
challenge dataset (48) that contains 53 MRI images from MS 
patients, splitted to 15 train and 38 test images. Results from 
this study with single and multi‑source training, indicated 
that model adaptation to a target site, can yield better model 
performance compared to the standard training.

Coronado et al (49) utilized a 3D CNN model based on 
multispectral MRI data of 1,006 RRMS patients, aiming to 
automatically segment gadolinium‑enhanced T1 lesions. The 
dice similarity coefficient, true‑positive rate, false‑positive 
rate indexes over all the enhancing lesions were 0.77/0.90/0.23 
when using FLAIR, T2 and pre‑ and post‑contrast T1‑w 
images, 0.72/0.86/0.31 when using only pre and post contrast 
T1‑w images and comparable performance when using only 
post‑contrast images.

La Rosa et al (50) proposed a framework for automatic 
segmentation of cortical and white matter lesions based on 
T1 and T2‑weighted MRI data, in a cohort of 90 MS patients 
including 728 gray and 3,856 white matter lesions. For this 
purpose, an FCNN architecture based on the 3D‑U‑Net was 
used. Results of the present study reported that the proposed 
framework was able to achieve a detection rate of 76% for 
both cortical and white matter lesions with a false positive 
rate of 29% in comparison to manual segmentation. Finally, 
it is reported that the proposed methodology achieved to 
adequately generalize the exams acquired in two hospitals 
with different scanners.

Gessert et al (51) examined a CNN model for lesion 
segmentation from two time points, using two path architec‑
tures. They stratified a cohort of 89 MS patients, with two 
MRI exams each, baseline and follow‑up respectively, while 
for validation and testing they used a 3‑fold cross‑validation. 
Results indicate that the proposed model outperformed classic 
methodologies, while it was reported a lesion‑wise false‑posi‑
tive rate of 26.4% at a true‑positive rate of 74.2%.

Essa et al (52) proposed an automatic segmentation frame‑
work, based on region‑based CNN (R‑CNN) model applied 
on T2‑w and FLAIR MR images, evaluated on the MICCAI 
2008 MS challenge (http://www.ia.unc.edu/MSseg). The 
proposed model shows competitive results compared with the 
state‑of‑the‑art MS segmentation methods, with average total 
score 83.25 and average sensitivity 61.8% on the testing set.

Finally, Barquero et al (53) developed a CNN architecture 
(RimNet) for automated rim lesion detection in MS. MR 
imaging data were acquired from three different scanners, 
in a cohort of 124 patients. The multimodal RimNet archi‑
tecture achieved to better classify lesions [area under curve 
(AUC)=0.943] compared to unimodal approaches, while 
sensitivity and specificity (70.6 and 94.9%, respectively) were 
comparable to the experts scores

4. Classification: Diagnosis

During the last years, DL techniques have been successfully 
applied for the diagnosis and classification of MS disease (54). 
These techniques can identify patterns of the imaging data 
without using an explicit feature extraction method, but instead 
using automatic feature extraction. Advantages stemming from 
the use of DL techniques in MS diagnosis include the incre‑
ment of diagnostic accuracy, early stage diagnosis, increase 
the reliability of the diagnosis, decrease disease related cost, 
and improvement in patient quality of life. In this section, the 
most significant research articles in the MS classification using 
DL techniques are reviewed.

Yoo et al (55) presented an automatic framework for 
detection of MS pathology at an early stage. In this approach, 
3D image patches extracted from myelin maps and the corre‑
sponding T1‑w MR images was used to train a latent joint 
myelin feature representation using an unsupervised four‑layer 
deep belief network (DBN) framework. This framework used 
55 RRMS patients and 44 healthy controls, while by using 
11‑fold cross validation, it achieved 87.9% average classifica‑
tion accuracy, and authors reported that suggested method was 
able to identify MS image features from normal appearing 
brain tissues.
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Wang et al (56) implemented a 14‑layer CNN combined 
with batch normalization, dropout and stochastic pooling tech‑
niques aiming towards early diagnosis and treatment of MS 
disease. Imaging data for the current study, included 38 MS 
patients from eHealth laboratory and 26 healthy controls (HC). 
Results reported that the proposed 14‑layer CNN network 
had sensitivity of 98.77%, specificity 98.76% and accuracy 
98.77%, while after comparison of the aforementioned method 
with maximum pooling, average pooling, five traditional AI 
methods and a DL method, it was shown that the proposed 
method outperforms all the above‑mentioned techniques.

Zhang et al (57) developed a DL algorithm based on CNN 
that combined parametric rectified linear unit (PReLU) and 
dropout techniques, in order to accurately separate MS from 
HC. This study stratified 676 MS brain slices and 681 HC 
slices, while data augmentation technique was used in order 
to increase the size of the training set. The 10‑layer deep 
convolutional neural network used in this study was consisted 
of 7 convolution layers and 3 fully‑connected layers. The 
proposed method achieved 98.22% sensitivity, 98.24% speci‑
ficity and 98.23% accuracy, while the dropout method 
increased accuracy by 0.88%, PReLU increased accuracy by 
1.92% compared to ordinary ReLU and by 1.48% compared 
to leaky ReLU.

Talo et al (58) implemented a deep transfer learning frame‑
work to automatically classify normal and abnormal brain MR 
images via using a ResNet34 CNN DL model featuring data 
augmentation, optimal learning rate finder and fine‑tuning 
to adapt a pre‑trained model. This study stratified a cohort 
of 42 subjects (2 HC and 40 patients with cerebrovascular, 
neoplastic, degenerative, and inflammatory disease types), 
resulting in 613 images, 27 normal and 513 abnormal, for 
training and validation. Results from the current study report 
that they achieved 100% classification accuracy.

Lu et al (59) presented a transfer learning technique for 
automatic detection of pathological brain, by utilizing a 
pre‑trained model featuring AlexNet architecture. In this 
study brain MR images from 38 HC and 177 pathological 
were used, including pathologies such as Alzheimer, Glioma, 
Huntington, AIDS dementia, MS, and Pick. Results reported 
that the proposed method achieved accuracy of 100% which, 
outperformed state‑of‑the‑art approaches.

McKinley et al (60), investigated the ability of DL 
algorithm to discriminate radiologically progressive from 
radiologically stable patients, in 3 different private datasets. 
To this end, DeepSCAN MS classifier, a fully‑convolutional 
neural network was utilized. The methodology that was used 
in this study, achieved to temporally track lesion load changes 
by leveraging measures of uncertainty in the location of 
lesion boundaries. Results from the present study, disclosed 
that the proposed framework was able to separate progressive 
from stable time‑points (AUC=0.999) and changes in lesion 
volume (AUC=0.71). Moreover, method validation on two 
external datasets confirmed the performance of this method 
by achieving accuracies 75 and 85% in separating stable and 
progressive time‑points.

Marzullo et al (61) introduced a graph convolutional neural 
network (GCNN) to classify MS patients on four clinical profiles, 
(CIS, RR, secondary‑progressive SP, primary‑progressive PP). 
Methodology in the present study used structural connectivity 

information by DWI and evaluated the classification perfor‑
mance using unweighted and weighted connectivity matrices. 
Moreover, the role of graph‑based features aiming to better 
characterization and classification of the MS pathology were 
investigated. For the purposes of this study, 90 MS patients 
(12 CIS, 30 RRMS, 28 SPMS and 20 PPMS) and 24 healthy 
controls were included in the analysis. Results demonstrated 
that the aforementioned NN framework offers very good 
performance in clinical profiles classification, while graph 
weights representation of brain connections offer significant 
information for clinical profiles discrimination.

Eitel et al (62) presented a DL framework based on a 3D 
CNN and a layer‑wise relevance propagation (LRP) in order 
to accurately diagnose MS disease. In this study, LRP was 
used as an additional tool aiming to reveal further relevant 
image features that will be afterwards forwarded to the trained 
CNN. The CNN model was trained using MRI data from the 
Alzheimer Disease Neuroimaging Initiative (921 patients) 
and afterwards the CNN was used to discriminate among 
MS (76 patients) and controls (71 healthy controls). Authors 
reported that the presented methodology showed accuracy 87% 
and AUC 96%, concluding that LRP in conjunction with 
proposed CNN is a framework capable of sufficiently classify 
MS patients and healthy controls.

Narayana et al (63) used a CNN in order to evaluate the 
performance in predicting enhanced MR lesions without 
using contrast agents. To this end, a CNN was used for clas‑
sifying lesions from MR images as enhanced or unenhanced. 
In this study, 1,008 MS patients were involved, while at least 
one enhancing lesion was observed for 519 participants. MR 
demyelinating lesions were classified in two classes, enhanced 
and unenhanced, while performance was assessed by using 
fivefold cross‑validation. Results report sensitivity 78%, 
specificity 73%, AUC 0.82 for slice‑wise prediction, while for 
participant‑wise these were 72%, 70% and 0.75, respectively.

Maggi et al (64) proposed a DL based prototype for 
automated assessment of the central vein sign (CVS) in 
WM MS lesions. This study included 80 subjects from three 
different sites, 42 MS, 33 MS mimics with diseases that are 
described by WM abnormalities similar to MS, and 5 patients 
with uncertain diagnosis. To this end, a 3D CNN (‘CVSnet’) 
was designed, trained on 47 examinations and tested on the 
remaining 33. Authors reported that the proposed framework 
achieved human expert performance, achieving lesion‑wise 
median balanced accuracy of 81% and subject‑wise balanced 
accuracy of 89% on the validation and 91% on the test set, 
while evaluation on data from different hospitals‑scanners is 
promising for larger multi‑center trials using the CVS marker 
in the MS diagnostic criteria.

Wang et al (65), utilized a CNN framework in order 
to discriminate neuromyelitis optical spectrum disorder 
(NMOSD) (41 patients) from MS (47 patients), a challenging 
classification problem considering that NMOSD is a rare 
disease thus there is a limitation in the availability of exams, 
as well as the lesions in the above mentioned diseases are 
scattered and overlapping, adding an extra embodiment in the 
classification procedure. Study results reported that the novel 
proposed CNN model achieved to better discriminate NMOSD 
from MS compared to conventional CNN models. More 
specifically, the proposed method exhibited accuracy 0.75, 
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sensitivity 0.707, and specificity 0.759, while traditional 3D 
CNNs that tested on the same problem did not achieve to 
distinguish the different classes.

Roca et al (66) used a DL network in order to predict 
the expanded disability status scale (EDSS) in a cohort of 
1,446 MS patients, partitioned in 971 subjects for training, and 
475 subjects for testing. The proposed framework consisted 
of a CNN model and a classical ML predictor. They finally 
reported that the proposed method was able to predict two‑year 
EDSS score, based on FLAIR MRI imaging data, while 
the more informative variables were age, volume of lateral 
ventricles and the lesion load in main white matter tracts.

Lopatina et al (67) utilized a CNN model aiming to iden‑
tify MS patients by analyzing susceptibility weighted images, 
considering that in this protocol vein patterns are identifiable 
and it is also able to indicate extensive demyelination and 
iron accumulation. The stratified cohort was composed by 
66 MS patients and 66 healthy controls, while results indicate 
that veins located in the anterior medial and lower peripheral 
regions, are most relevant for the classification decision.

5. Post processing techniques and image enhancement 
methods

Reducing rescans and recalls is of great importance for the 
optimization of health care management, since low image 
quality MR acquisitions often need to be repeated, thus leading 
to increased hospital costs and extended MR examination 
times. Furthermore, visual inspection of the related examina‑
tions aiming to assess image quality, is impractical in large 
multi‑center studies as well as prone to errors emanating from 
intra‑observer variability. In recent years, computational tools 
that assess the image quality of the examinations have been 
developed based on automated assessment of image quality 
metrics. To this purpose, computer algorithms have been 
implemented during the last years, aiming to automatically 
assess image quality as well as acquisition parameters. In this 
section, recent studies focusing on solving the aforementioned 
problems by using DL techniques in MR imaging of neurode‑
generative diseases are reviewed.

Sreekumari et al (68) developed an automated method 
for assessing the need of rescan, in motion corrupted brain 
scans. Authors developed a CNN with 7 convolutional layers, 
4 max pooling layers, and 3 batch normalization layers that 
computed the probability for a MR series to be clinically 
useful, while by combining this probability with a scan 
dependent and radiologist defined threshold, they determined 
whether a series need to be rescanned. Moreover, the classifi‑
cation performance was compared with that of 4 technologists 
and 5 radiologists in 49 series, stemming from MS and 
stroke patients, characterized by low and moderate motion 
artefacts. Results indicated that radiologists ‑ technologists 
produced mean ratio of rescans/recalls of (4.7_5.1)/(9.5_6.8) 
for MS and (8.6_7.7)/(1.6_1.9) for stroke, while DL produced 
(7.3_2.2)/(3.2_2.5) for MS, and (3.6_1.5)/(2.8_1.6) for stroke, 
concluding that this technology independent method can reli‑
ably decrease rescan and recall rates.

Sujit et al (69) developed a DCNN aiming to automati‑
cally evaluate the quality of multicenter structural brain MRI 
images, using 1,064 images from autism patients from ABIDE 

database (60% training, 20% validation and 20% test) while 
they tested on a cohort of 110 MS patients from the CombiRx 
dataset (70). The results demonstrated the high accuracy of 
the proposed method to evaluate image quality of structural 
brain MRI in multi‑center studies (ABIDE dataset achieved 
AUC 0.90, sensitivity 0.77, specificity 0.85, accuracy 0.84, 
PPV 0.42, and NPV 0.96 while for the CombiRx there were 
AUC 0.71, sensitivity 0.41, specificity 0.84, accuracy 0.73, 
PPV 0.48, and NPV 0.80).

In many applications, the compromise between spatial 
resolution, SNR, as well as temporal resolution in specific 
protocols, is limiting the clinical and research applicability 
of the MR modality. An ordinary approach to overcome this 
problem is to acquire images with adequate in‑plane resolution 
and low through‑plane resolution and afterwards interpolate 
data, by using super‑resolution techniques, in order to obtain 
isotropic voxels. To this purpose, Zhao et al (71) developed 
a DL method, called SMORE, that accomplished both 
anti‑aliasing and super‑resolution using no external atlases. 
Authors demonstrated the performance of the proposed 
algorithm in four applications: i) improve visualization of 
the brain WM lesions in MS patients; ii) improve the visu‑
alization of scarring in cardiac left ventricular remodeling 
after myocardial infarction; iii) performance on multi‑view 
images of the tongue; and iv) improve performance in brain 
ventricular system parcellation. Regarding the MRI visualiza‑
tion of MS lesions, that is speculated in the present review 
article, authors examined whether the SMORE computa‑
tionally enhanced FLAIR images can provide additional 
diagnostic information compared to a conventional inter‑
polation. For this purpose, FLAIR data was reconstructed 
from initial resolution of 0.828 x 0.828 mm x 4.4 mm onto a 
0.828 x 0.828 mm x 0.828 mm digital grid by a conventional 
b‑spline interpolation, the JogSSR approach that is a super reso‑
lution method which improves resolution in the through‑plane 
direction (72), as well as the proposed SMORE algorithm. 
Authors reported that both JogSSR and SMORE resulted in 
sharper edges compared to the conventional b‑splines inter‑
polation, while SMORE results appeared to be more realistic, 
however results in this part of the study were assessed only by 
visual inspection while authors do not provide any quantitative 
measurement.

Another aspect that has recently gained interest, is the 
generation of synthetic MR images by using computational 
techniques. This is an interesting and emerging area of 
research especially considering that some protocols may be 
time‑consuming and some sequences may be missed due to 
limited scanning time or patients' interruptions in case of 
anxiety and confusion. Also, the ability to synthesize informa‑
tion related to different imaging modalities directly from MRI 
has gained the attention of many researchers in the field of DL 
in medical imaging.

To this purpose, Wei et al (73) used a 3D FCNN to predict 
FLAIR pulse sequence from other MRI protocols. For this 
study, 20 MS patients and 4 healthy controls were involved, 
including T1‑w, T2‑w, PD, FLAIR, T1 SE and double inver‑
sion echo sequences. The performance of the proposed 
method was compared qualitatively and quantitatively with 
four state‑of‑the‑art approaches: modality propagation (74), 
random forests including 60 trees (75), U‑Net (76) and voxel 
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wise multilayer perceptron consisted of two hidden layers and 
100 hidden neurons for every layer. Results from this study 
indicated that the proposed FLAIR synthesis method provides 
competitive performance to previous techniques. In more 
detail, the proposed technique was statistically significantly 
better than the other methods (P<0.05) in average, by providing 
MSE (SD) 918.07 (41.70) and SSIM(SD) 0.860 (0.031). Finally, 
authors compared the aforementioned methods in a MS 
lesion detection task, by evaluating the MS lesion to NAWM 
as well as to the surrounding NAWM tissue contrast. Also, 
in this task the proposed method outperformed the competi‑
tive techniques on both ratios, revealing that it provides better 
contrast for MS lesions.

Salem et al (77) proposed a synthesis method for MS 
lesions on MR images aiming to improve the performance 
of supervised machine learning algorithms, thus avoiding 
the lack of ground truth. To this end, they used a two‑input 
two‑output FCNN for MS lesion synthesis, in which the 
lesion information was encoded as discrete binary intensities 
level masks. For this purpose, authors assessed the proposed 
methodology in two cohorts of patients, by evaluating the 
similarities among real and synthetic images, as well as by 
measuring the performance of lesion detection by segmenting 
both the original and the synthetic images. The two cohorts 
used included 15 HC and 65 patients with CIS or RRMS, and 
the ISBI2015 dataset (24) comprising 5 training and 14 testing 
subjects with 4 to 5 follow‑up studies for every subject, while 
they also used data augmentation techniques. The effect of 
data augmentation was demonstrated in both analyzed data‑
sets, while results showed the effectiveness of using synthetic 
MS lesions. Finally, regarding the ISBI2015 challenge, the 
model was trained using a single image and the synthetic data 
augmentation and performed similarly to other CNN methods 
that were fully trained.

Wei et al (78) proposed a method to predict positron emis‑
sion tomography (PET)‑derived myelin content map from 
multimodal MR imaging data, by introducing a new approach 
called Sketcher‑refiner GANs with a specially designed adver‑
sarial loss function, in which the Sketcher network generated 
global anatomical and physiological information, while the 
Refiner model refined and generated the tissue myelin content. 
For this purpose, a dataset including 18 MS patients and 10 HC 
was used, while both MR and PET images were available. It 
was reported that regarding image quality and myelin content, 
the proposed approach outperformed the state‑of‑the‑art 
methods, as well as that prediction results were comparable 
to PET derived gold standard both in global and voxel‑wise 
levels.

Finck et al (79) implemented a diamond shape topology 
generative adversarial NN (DiamondGAN) in order to produce 
synthetic double inversion recovery (synthDIR) images while 
the diagnostic performance of the proposed images was 
compared to conventional MR images. This study recruited 
100 MS patients, while the DiamondGAN was trained in a 
subset of 50 MS patients and an additional 50 images of 
generated synthetic data. Results indicate that synthetically 
generated DIR images resulted in improved detection of juxta‑
cortical lesions, leading to improvement on lesion detection.

Finally, the last category is related to computational 
methods that are focusing on post‑processing MR images 

for image reconstruction, and computational analysis. These 
methods are of great interest considering that they can bypass 
unreliable computational methods and ill‑conditioned math‑
ematical problems, as well as combine large‑scale information 
from multi‑site studies by providing quantitatively and qualita‑
tively consistent images to automated algorithms.

Yoon et al (80) presented a DL network (QSMnet) with a 
modified U‑net structure able to generate high quality suscep‑
tibility source map from single orientation data. A total of 
12 healthy controls were used for training, using COSMOS 
QSM maps, while for evaluation data from a microbleed, a MS 
and a patient with intraparenchymal hemorrhage were used. 
Results demonstrated that QSMnet provided superior image 
quality results compared to TKD and MEDI, while the image 
quality is comparable to COSMOS.

Bollman et al (81) trained a FCNN, DeepQSM, in order to 
invert the magnetic dipole kernel convolution, and to provide 
a QSM framework that determines the composition of myelin 
sheaths of nerve fibers in the brain, as well as to assess quan‑
titative information on iron homeostasis and its dysregulation. 
This network was trained on synthetic examples, while for 
testing procedure there were performed four experiments with 
synthetic data, a single orientation background field corrected 
tissue phase image and an STI susceptibility map, and finally 
clinical data from a patient with MS. Study results showed that 
the proposed methodology enabled identification of deep brain 
structures, not visible in MRI data. Furthermore, study results 
revealed that the presented methodology provides information 
for magnetic tissue properties, and finally showed increased 
sensitivity in identifying WM lesions regarding the MS patient.

Dewey et al (82) proposed a contrast harmonization 
method, DeepHarmony, by using U‑Net DL technique in 
order to provide images with consistent contrast. To this 
end, 12 subjects (10 MS and 2 HC) were scanned twice 
within 30 days, and longitudinal data were retrospectively 
collected from 45 RRMS patients, while both cohorts were 
based on two different scanning protocols. Results suggested 
that DeepHarmony harmonized images showed significant 
improvement, as well as reduced dependency of atrophy calcu‑
lations when using DeepHarmony method.

Liu et al (83) implemented a fast myelin water fraction 
(MWF) maps data analysis method, that was based on Myelin 
Water Imaging data acquired by a 32‑echo 3D gradient and 
spin echo sequence. For this purpose, an NN model was used 
on data stemming from 4 healthy controls, while for testing 
there were utilized 1 MS brain, 1 healthy spinal cord, and 2 
healthy brains acquired from a different scanner. Results 
proposed that time for calculation of MWF maps was dramati‑
cally reduced while their quality was similar to ground truth 
levels.

6. Discussion

This review paper aims to shed light on DL applications 
related to MR imaging in MS and CIS. For this purpose, an 
extensive search led to 45 original research papers focused 
on this subject, that were further grouped in three categories 
i.e. segmentation, classification and a broader category related 
to image optimization and post processing techniques in MS 
and CIS. Findings of the current review indicate that there is 
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Table I. Summary and performance metrics of the reviewed publications relevant to detection‑segmentation tasks.

Author (Ref.) Year Performance Architecture Dataset, #patients (training/test)

Valverde et al (22) 2017 Competition score 87.12 A cascade of two 3D 45 patients with MS
  Volume difference down to 40.8 patch‑wise CNNs from MICCAI 2008 dataset,
  TPR up to 68.7  and two private MS
    clinical datasets
Birendaum et al (23) 2017 Dice similarity CNNs based on the single 2015 Longitudinal Multiple
  coefficient 0.627 view CNN (V‑Net) and the Sclerosis Segmentation
   longitudinal network Challenge
   (L‑Net) 
Gros et al (25) 2019 DSC up‑to 0.604 A sequence of two CNNs 1,042 subjects; 459 HC, 471 MS, 
    112 with other spinal
    pathologies
Aslani et al (28) 2019 DSC up‑to 0.611 (ISBI) Deep end‑to‑end 2D CNN 37 MS private dataset, and
  DSC up‑to 0.6655 (private)  14 patients with MS from ISBI
    2015 longitudinal MS lesion
    segmentation challenge dataset
Sander et al (29) 2019 Mean % change/SD test‑ MD‑GRU 50 patients with MS and 17 HC,
  retest 0.45%/0.005 (brainstem)  20 independent patients with MS,
  Dice score/SD 0.97/0.005 for   50 patients with Alzheimer's
  brainstem, 0.95/0.0131 for  
  mesencephalon, 0.98/0.006  
   for pons, 0.95/0.015 for medulla  
  oblongata  
Hashemi et al (31) 2019 DSC 0.703 3D FCNN (FC‑DenseNet) 15 patients from the MSSEG of
    the 2016 Medical Image
    Computing and Computer
    Assisted Intervention conference, 
    five patient data from the
    longitudinal MS lesion
    segmentation challenge of
    ISBI conference
Gabr et al (34) 2019 T2 lesion 0.82 FCNN 1,000 patients with RRMS from
    the CombiRx clinical trial
Weeda et al (35) 2019 SN up‑to 0.698 DL CNN method 14 patients with MS 
   nicMSlesions 
McKinley et al (40) 2019 DSC 0.58 A cascade of two 122 MRI exams from patients
   convolutional neural with RRMS (90 patients for
   networks CNNs training and validation of the
    classifier, 32 patients for testing), 
    while a second dataset including
    10 MRI datasets was used for
    direct comparison with other
    centers
Narayana et al (41) 2020 DSC up‑to 0.86 FCNN 1,008 patients with clinically
    definite MS
Nair et al (42) 2020 TPR 0.8, FDR 0.2 3D CNN WITH dropout 1,064 patients with RRMS 
McKinley et al (43) 2020 DSC 0.661 Two state‑of‑the‑art CNNs 2016 MSSEG training dataset, 
   architectures, a 3D Unet retrained on a larger dataset
   consisting of a reference comprising of 122 patients with
   implementation and a MS (50 training, 40 validation
   more recently proposed and 32 patients for testing)
   architecture, the DeepSCAN 
Narayana et al (44) 2020 DSC up‑to 0.91 (FLAIR) U‑net, a fully CNN 1,000 patients with MS
  DSC up‑to 0.90  
  (FLAIR, PD, T1, T2)  
  DSC up‑to 0.60 (PD)  
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a growing interest during the last years towards applying DL 
techniques for segmentation and classification related to MS 
imaging studies.

A performance analysis was conducted by grouping the 
studies into three main categories based on imaging tasks 
such as segmentation in Table I, classification in Table II and 
various image processing tasks (synthesis, quality assessment, 
image enhancement, etc) in Table III. A few important issues 
in comparing these studies namely are: i) the lack of a clear 
data stratification protocol (57‑59); ii) applying ‘good prac‑
tices’ such as use of separate internal and external validation 
sets (28); iii) incorporating an adequate number of patients for 
DL model convergence (35,83); iv) evaluating with appropriate 
metrics (42,59) like AUC in addition to ACC in binary clas‑
sification tasks; and v) incorporating different metrics for the 
same task such as DSC (23) versus VD (22) in segmentation. 
Thus, reporting the aforementioned performance measure‑
ments was a difficult task which included interpreting figures, 
highly variable experimental settings and, most importantly, 
identifying metrics on unseen testing sets (if available) versus 
internal validation sets which were also used in optimizing 
the models. Nevertheless, Narayana et al (44) proposed a 
FLAIR‑based lesion segmentation with a testing DSC of 0.91 
and Sander et al (29) utilized a multi‑dimensional gated recur‑
rent unit model achieving a performance up‑to DSC 0.97. In 
MS classification, McKinley et al (60) achieved sensitivity 
up‑to 0.72 on two different external validation sets, similar to 
Narayana et al (63) (SN 0.72) on patient‑basis versus SN 0.78 
on a slice‑basis in the same study.

Concerning the limitations of the reviewed papers, the most 
pronounced are associated with the absence of ground truth, 
the small available cohorts, and the lack of generalization of 

the results in multi‑center data from diverse vendors, in Fig. 4 
presents the limitations of the reviewed literature grouped 
in a chart pie. Finally, another noticeable limitation of DL 
techniques is the lack of explainability, which is particularly 
critical for the clinical translation of such methods to clinical 
practice as well as for adding precision in MS and CIS 
diagnosis and disease management.

Considering the segmentation procedure, the funda‑
mental MRI protocols, Τ1‑w, T2‑w and PD can be 
characterized based on their advantages concluding that, 
T1‑w images enclose detailed anatomical information and 
thus facilitate image registration tasks involved in e.g. 
development of brain atlases. On the contrary, T2‑w images 
are beneficial for highlighting WM lesions which appear as 
bright areas, thus assisting lesion detection tasks. However, 
the main drawback of these techniques is the insufficient 
differentiation of CSF, GM and lesions in terms of image 
contrast. Finally, PD‑w images are beneficial in revealing 
MS lesions as areas of increased contrast compared to WM, 
even better than T2‑w, but still the relative image contrast 
between MS lesions and CSF are in the same range of 
intensities. A major limitation for accurate image segmen‑
tation is pixel misclassification due to the partial volume 
effect generated from the low spatial resolution of the MR 
protocols which renders difficult the accurate delineation 
of brain regions and decreases the accuracy of volumetric 
studies. Finally, inter‑observer variability is a major 
problem when trying to generate ground truth label data, 
while some of the factors that may hamper this task include 
image quality, different levels of user expertise and domain 
knowledge. Concerning the reviewed research studies, in 
Narayana et al (41) segmentation results were assessed by 

Table I. Continued.

Author (Ref.) Year Performance Architecture Dataset, #patients (training/test)

Salem et al (45) 2020 DSC for detection 0.83, FCNN 60 early patients with MS and
  DSC for segmentation 0.55  CIS
Brown et al (46) 2020 Not applicable. FCNN similar to U‑net 1,018 scans form 256 participants
    in a study of pediatric‑onset MS
Ackaouy et al (47) 2020 No table with absolute 3D‑Unet 53 patients with MS from
  measurements, too many  MICCAI 2016 MS lesion
  combinations of multi‑centric  segmentation challenge
  experiments, only boxplot results  
Coronado et al (49) 2020 DSC 0.77 3D CNN 1,006 patients with RRMS 
La Rosa et al (50) 2020 DSC 0.62 FCNN architecture based 90 patients with MS
   on the 3D U‑Net 
Gessert et al (51) 2020 DSC up‑to 0.656 CNN 89 patients with MS
Essa et al (52) 2020 VD down to 0.451, TPR 0.681, Region‑based CNN  45 patients with MS from
  FPR 0.632  MICCAI 2008
Barquero et al (53) 2020 DSC 0.835 CNN (RimNet) 124 patients with MS

CNNs, convolution neural networks; MS, multiple sclerosis; MD‑GRU, multi‑dimensional gated recurrent units; SD, standard deviation; HC, 
healthy controls; DSC, Dice Similarity Coefficient; ISBI, International Symposium on Biomedical Imaging; TPR, true positive rate; FCNN, 
fully convolutional neural network; MSSEG, MS lesion segmentation challenge; RRMS, relapsing‑remitting multiple sclerosis; SN, sensi‑
tivity; MRI, magnetic resonance imaging; FLAIR, fluid‑attenuated inversion recovery; PD, proton density; CIS, clinically isolated syndrome; 
MICCAI, medical image computing and computer assisted intervention society; VD, volume difference.
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two experts, while in the study from Brown et al (46) results 
were evaluated with manual segmentations stemming from 
only one expert.

Considering the classification related task, initially it can 
be reported that fundamentally this is not a binary problem. 
CIS diagnosis adds another level of complexity to the clas‑

sification problem, which can be treated as multiple binary 
comparisons, i.e., controls vs. MS, controls vs CIS, CIS vs MS, 
while for each problem a different classifier can be developed. 
Furthermore, considering the constantly increasing imaging 
databases, especially those including longitudinal data, 
research studies may shift to the development of CAD based 

Table II. Summary and performance metrics of the reviewed publications relevant to classification tasks.

Author (Ref.) Year Performance Architecture Dataset, #patients (training/test)

Yoo et al (55) 2018 ACC 0.879, SN 0.873,  Unsupervised 55 patients with RRMS and
  SP 0.886, AUC 0.88 four‑layer DBN 44 HC
Wang et al (56) 2018 ACC 0.988, SN 0.988,  14‑layer CNN combined 38 patients with MS from
  SP 0.988 with batch normalization,  eHealth laboratory and 26 HC
   dropout and stochastic 
   pooling techniques 
Zhang et al (57) 2018 ACC 0.982, SN 0.982,  10‑layer deep convolutional 676 MS brain slices and
  SP 0.982 neural network used in 681 HC slices
   this study was consisted of 
   7 convolution layers and 
   3 fully‑connected layers 
    
Talo et al (58) 2019 Stage‑1: ACC 0.979, SN 0.778, CNN based ResNet34 42 subjects (2 HC and 40
  Stage‑2: ACC 0.979, SN 0.74  patients with cerebrovascular,
  Stage‑3: ACC 1, SN 1  neoplastic, degenerative and
    inflammatory disease types)
Lu et al (59) 2019 ACC 1 AlexNet structure and MR images from 38 HC and
   stochastic gradient descent 177 pathological, including
   with momentum transfer pathologies such as Alzheimer's,
   learning technique glioma, Huntington's, AIDS
    dementia, MS and Pick's
McKinley et al (60) 2019 External validation sets: DeepSCAN MS classifier, Bern (train‑test), Zurich and
  Zurich: ACC 0.75, SN 0.60 a fully‑convolutional Munich datasets
  Munich: ACC 0.85, SN 0.72 neural network 
Marzullo et al (61) 2019 F1 0.74, PR 0.76, RC 0.75 Graph CNN 90 patients with MS (12 CIS,
    30 RRMS, 28 SPMS and
    20 PPMS) and 24 HC
Eitel et al (62) 2019 ACC 0.87, AUC 0.96  3D CNN and a LRP 921 patients with Alzheimer's
    disease for training, validation in
    76 MS and 71 HC
Narayana et al (63) 2020 Slice: AUC 0.82, SN 0.78,  CNN (fully connected) 1,008 participants with MS
  SP 0.73  
  Patient: AUC 0.75, SN 0.72,  
  SP 0.70  
Maggi et al (64) 2020 ACC 0.91, SN 0.89, SP 0.92 3D CNN (‘CVSnet’) 42 MS, 33 MS mimics and
  Vesselness: ACC 0.69,  5 patients with uncertain diagnosis
  SN 0.61, SP 0.77  
Wang et al (65) 2020 ACC 0.75, SN 0.707, SP 0.759 CNN 41 patients with NMOSD and 47
    patients with MS
Roca et al (66) 2020 MSE 3 CNN 1,446 MS (971 training,
    475 testing)
Lopatina et al (67) 2020 ACC up‑to 0.95 (echo 1) CNN 66 MS and 66 healthy controls

SP, secondary progressive; AUC, area under curve; DBN, deep belief network; HC, healthy controls; CNN, convolution neural networks; MS, 
multiple sclerosis; MR, magnetic resonance; CIS, clinically isolated syndrome; LRP, layer‑wise relevance propagation; NMOSD, neuromy‑
elitis optical spectrum disorder; MSE, mean square error; ACC, accuracy; SN, sensitivity; RRMS, relapsing‑remitting multiple sclerosis; PR, 
precision; RC, recall; SPMS, secondary progressive multiple sclerosis; PPMS, primary progressive multiple sclerosis.
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systems for early detection of the MS disease. In addition, clas‑
sification techniques can be grouped in class‑based methods in 
which MS lesions are separated in WM, GM and CSF lesions, 
and outlier‑based methods in which GM, WM, and CSF are 
distinct classes from MS lesions.

Furthermore, images stemming from different centers, 
scanners and protocols, provide a basis in order to build 
robust algorithms that can generalize the aforementioned 
tasks. However, in the small dataset setting, transfer learning 
techniques are methods used for alleviating the limited avail‑
ability of training samples by tuning parameters of pre‑trained 
networks with less data in order to adapt existing models in 
new domains and achieve higher level of generalization. In 
domain adaptation techniques, optimal transfer is established 
through a source and a target domain in order to deploy a 
model on the target site that was not included in the training 
process, and this is a promising research field for providing 
integrated solutions.

Moreover, according to best practices that must be 
followed in order to build a robust DL methodology, some 
research studies mentioned in this review article might not 
satisfy these prerequisites. More specific, Ackaouy et al (47) 
and Talo et al (58) methodology did not follow the universally 
accepted best practices in DL training, considering the data 
splitting. Data should be split into training set, validation set 
and testing set in order to ensure that the model will not be 
over‑fitted. External validation set is necessary in order to 
enhance reproducibility and generalizability of a prediction 
model to new patients. In the reviewed research articles, only 
a few used external validation set in order to check reproduc‑
ibility and enhance generalizability (29,34,40,60,71).

Finally, data imbalance problem is very common in MS 
machine learning applications and can lead to a training 
network with sufficient high prediction but low recall, thus 
biased to the class with the most data. Techniques such as 
two‑step training, sample re‑weighting, balance sampling and 
similarity loss functions are promising for bypassing such 

problems, while they can, also, provide computational tech‑
niques suited to highly unbalanced problems.

Future DL research work on MS considering also the 
aforementioned limitations, should focus on three different 
directions. The first direction regards the formation of large 
and more diverse datasets, with optimized protocols, for 
providing a ground truth validation framework of existing 
and future techniques. The second direction concerns 
the need for MS imaging data harmonization techniques 
for reducing the inherent information heterogeneity of 
multi‑centric data due to different vendors and protocols 
and enabling the development of more robust and accurate 
AI models. Finally, the development of CAD systems for 
early detection of MS disease is of great importance based 
on the increased availability of larger datasets. Such systems 
offering cloud‑based AI services, can provide an enhanced 
diagnostic experience to clinicians and offer better diag‑
nostic opportunities especially in rural areas that usually 
lack access to specialists. All these directions regarding the 
future of DL in MS have to promote explainability and trust‑
worthiness, and not only target increased performance, in 
order to realize the vision of real‑world use of AI algorithms 
in clinical practice.
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