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Abstract: A new era of plant biochemistry at the systems level is emerging, providing detailed
descriptions of biochemical phenomena at the cellular and organismal level. This new era is
marked by the advent of metabolomics—the qualitative and quantitative investigation of the
entire metabolome (in a dynamic equilibrium) of a biological system. This field has developed
as an indispensable methodological approach to study cellular biochemistry at a global level.
For protection and survival in a constantly-changing environment, plants rely on a complex
and multi-layered innate immune system. This involves surveillance of ‘self’ and ‘non-self,’
molecule-based systemic signalling and metabolic adaptations involving primary and secondary
metabolites as well as epigenetic modulation mechanisms. Establishment of a pre-conditioned
or primed state can sensitise or enhance aspects of innate immunity for faster and stronger
responses. Comprehensive elucidation of the molecular and biochemical processes associated with
the phenotypic defence state is vital for a better understanding of the molecular mechanisms that
define the metabolism of plant–pathogen interactions. Such insights are essential for translational
research and applications. Thus, this review highlights the prospects of metabolomics and addresses
current challenges that hinder the realisation of the full potential of the field. Such limitations include
partial coverage of the metabolome and maximising the value of metabolomics data (extraction of
information and interpretation). Furthermore, the review points out key features that characterise
both the plant innate immune system and enhancement of the latter, thus underlining insights
from metabolomic studies in plant priming. Future perspectives in this inspiring area are included,
with the aim of stimulating further studies leading to a better understanding of plant immunity at
the metabolome level.
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1. Introduction: Multi-Layered Molecular and Cellular Networks Ensure Effective Adaptation to
Changing Environments

Evolution dictates that living systems constantly adapt to ever-changing environments in
a context-dependent manner. Such adaptation and/or response to environmental or genetic alterations
implies complex and dynamic cellular reprogramming [1–3]. These biological responses—which can be
phenomenologically described by understanding the cellular or organismal physiological state—are kinetic
and highly dynamic events that span the whole cellular biological information network [4–7]. Reflecting on
the plant kingdom, one of the epitomes of such adaptation is the constant fine-tuning of physiologies and
cellular-scale morphologies, and the dynamic (and complex) biosynthesis of an array of structurally and
functionally diverse chemistries [8–10].
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Plants are seemingly as adept as animals in responding to environmental conditions. Of necessity,
considering their sessile nature, plants have developed dynamic, multi-layered molecular and cellular
networks for effective adaptation to unpredictably changing environments [10–12]. The latter is
a natural habitat of the continuously-evolving pathogenic microorganisms that represent a biological
threat to food security [13–15]. Furthermore, the sustainable production of food plants, considering the
exponentially growing world population, is currently one of the challenges facing humanity.
Crop losses due to plant pathogens can be quite substantial, with far-reaching effects. Moreover,
most of the classical methods for crop protection against pathogenic microorganisms have become
less effective and are environmentally unfriendly. Hence, the need for new strategies has led to
procedures/metabolites that aid plants in adapting and defending against stress [16,17].

Learning from nature, plant biologists have observed that the interaction of plants with necrotising
pathogens, beneficial microbes or agrochemicals can cause a sensitisation of the plant immune
system, resulting in a faster and stronger induction of resistance mechanisms upon subsequent
infections [18–21]. Memory of a past event may determine the response to future environmental stimuli,
thus resulting in phenotypic and stimulus-dependent plasticity of response traits [22]. This unique
physiological state in which plants are rendered capable (pre-conditioned) to better or more effectively
mount defence responses to biotic or abiotic stresses is termed ‘priming’ [20,23,24], and differs from
adaptation and acclimatisation phenomena in response to environmental stimuli [22]. In view of
the competition of plant resource allocation to defence vs. growth, priming demands a small fitness
cost that is, however, considerably surpassed by the benefits of an enhanced defensive capability to
ward off attacks by potential pathogens [22]. Furthermore, a primed defence state can be inherited
epigenetically from defence-expressing plants [19,25–28].

This immune stimulation of plants could be an alternative strategy that holds promise for
increasing the capacity of plants to cope with biotic and abiotic stresses. Most of the efforts in
characterising and defining the biochemical changes related to priming processes have been driven
by targeted approaches. Although these methodologies have played a vital role in elucidating the
main elements of priming that includes enhanced perception systems, dormant signal transduction
enzymes, chromatin modification and transcription factors [19,23,29–31], there are still gaps in
holistically understanding the dynamism and complexity of molecular mechanisms involved in
the entire priming event, considering the complexity of multi-layered biological information networks.
The phenomenological description of the physiological responses defining the ‘prime-ome’ is
thus rendered possible by systems biology approaches (-omics layers—genomics, transcriptomics,
proteomics and metabolomics) [22,24,32,33].

2. Metabolomics, a Systems Biology Approach: Prospects and Challenges

A recent resurgence of interest in metabolism and increasing awareness about the physiological
insights that can be obtained by measuring the total small-molecule complement of a biological system
have made metabolomics a central pillar in systems biology approaches [2,34,35]. Metabolomics can
thus be understood as a quantitative measurement of the multi-parametric metabolic responses
of living systems to genetic or environmental perturbations [36–38]. Such a description implies
that metabolomics can be regarded as the best trade-off for ‘functionally’ investigating metabolism,
offering the finest-grained details: a molecular-level convolution of all upstream biological information
(genomic, transcriptomic and proteomic) layers [38–41].

These small molecules (namely metabolites, with molecular masses ≤1500 Da) can be described
as the end products of gene expression and define the phenotype of a cell or tissue under defined
physiological conditions at a biochemical level. Metabolite profile patterns can thus provide a holistic
signature of the physiological state under study as well as deeper knowledge of specific biochemical
processes [42–45]. Furthermore, systems biology approaches imply an appreciation of the full
complexity and the multi-dimensionality of biochemical networks operating in a biological system to
produce physiological and phenotypic coherence (Figure 1). Hence, given that the biochemical actions
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of metabolites are far-reaching, including regulation of epigenetic mechanisms and gene expression,
involvement in signal transduction, post-translational modifications of proteins, protein transport and
active roles in defence mechanisms; metabolomics can thus be seen as a powerful tool to investigate
cellular biochemistry at the systems level [46–49].

Figure 1. Metabolomics in the context of biological information flow, illustrating the complexity of
multi-layered biological information networks and mutual interdependence. In biological systems,
large numbers of structurally and functionally diverse genes, proteins and metabolites are involved
in dynamic, linear and/or non-linear interactions. These interactions may involve a range of time
scales and intensities. Some of the types of reciprocal interactions include post-transcriptional control
of gene expression (dotted lines). Others include effects of downstream metabolites on transcription
through binding to regulatory proteins and feedback inhibition/activation of enzymes (solid lines).
Adaptive gene expression in response to environmental influences is ultimately reflected in changes in
the pattern and/or concentration of metabolites.

In this review, the term “metabolomics” refers to an untargeted methodology [34,45]. Thus,
metabolomics and untargeted or non-targeted metabolomics may be used interchangeably to mean
the global metabolic profiling of the entire (measurable) metabolome of the biological system under
consideration. This methodology differs from targeted analytical methods in various fundamental aspects
such as being a data-driven approach with predictive power that aims to assess (qualitatively and
quantitatively) all measurable metabolites without any pre-conception or pre-selection [41,45,50,51].

Being at the interface between biology, chemistry, chemometrics, statistics and computer science;
metabolomics is methodologically a multi-disciplinary skillset research field [40,45]. With the
innovative developments in analytical technologies, advancement in chemometric and statistical
methods, and the integration of orthogonal biological approaches, metabolomic studies have
provided remarkable insights into the biochemical mechanisms that underpin various physiological
conditions [51–53]. Furthermore, owing to the inherent sensitivity of the metabolome to genetic and
environmental perturbations, subtle alterations in biological pathways can be measured [41,50,54,55].

To attain this goal—holistic analysis of the metabolome, considering the complexity and
chemo-diversity thereof—a wide range of chemistries, chemometrics methods, novel computational
approaches and advanced analytical instrumentation that provide high degrees of sensitivity and
reproducibility, are required and employed in metabolomics [56–59]. In contrast to other -omics
methodologies, metabolomics faces several unique challenges that make the field particularly
demanding. These arise from the inherent characteristics of the metabolome: highly dynamic
(continuously changing at different rates), chemically diverse (dramatically different physicochemical
properties and biological functions of metabolites, as well as highly diverse and dynamic
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stereochemistries), a wide range of metabolite levels and the inherent bio-complexity of living systems
(biological cycles, organismal and cellular compartmentalisation) [40,45,60,61]. These challenges point
to the bottlenecks that have limited (untargeted) metabolomics so far (Figure 2), making the holistic
coverage of the whole metabolome currently unrealisable and subsequently impacting the biological
insights generated.

Figure 2. Bottlenecks in metabolomics workflows that limit biological insights. Despite the maturation
of metabolomics, driven by massive improvements in analytical technologies and impressive
advancements in computational and chemometric methods, the realisation of the goal of metabolomics
is still a challenge at different levels: metabolome coverage; information extraction from acquired data;
and systematic interpretation of complex metabolic changes and derived hypotheses about underlying
functional mechanisms.

These holdups can be summarised into three main aspects related to different steps of
the metabolomics workflow pipeline. Firstly, the analytical limitations, be it at the metabolite
extraction [62–64] or analytical platform level [65–68], hinder the metabolome coverage. The two
leading and successful analytical platforms in metabolomics are mass spectrometry (MS) and
nuclear magnetic resonance (NMR) spectroscopy. MS platforms provide high sensitivity and
detection specificity, thus enabling large-scale coverage of the metabolome. NMR, on the other
hand, offers a window into profiling all the most abundant metabolites in sample extracts; and the
strengths of this analytical platform include detection of poorly ionisable compounds, identification
of compounds with identical masses, and determining structures of unknown metabolites [45,69].
Evidently, MS (often coupled to chromatographic separation) and NMR approaches offer different
advantages, which are being explored synergistically [70,71]. However, despite the current analytical
advancements, and considering the inherent complexity of metabolomes, the realisation of holistic
coverage of the metabolome in toto, in a given biosystem, is not yet possible [69,72].

Secondly, extracting information from acquired data is still a major challenge, thus limiting
the maximisation of the value of metabolomics data. This can be at the level of data processing
steps: from pre-processing to chemometric and statistical analyses [34,56,58,73,74]; and at the
systematic identification of metabolites, with accuracy and high confidence levels [72,75–77]. Thirdly,
data interpretation and hypothesis generation are still a bottleneck, as comprehensive strategies
(computational and chemometrics) are still limited, and the integration of other biological information
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layers is still in the developmental phase and has limitations [3,54,78–80]. A detailed description of
these three constraints can be found in the cited literature herein.

Despite these challenges, the momentum and maturation of metabolomics have visibly
revolutionised life sciences. Innovative and collaborative efforts are continuously providing
suggestions to address these limitations: technological advancement, data mining strategies and tools,
systematic data interpretation and integration of orthogonal biological information [72,73,76,81,82].

The application of metabolomics spans a wide spectrum of life sciences (fundamental
and translational) research [40,44,45]. In the plant sciences, metabolomic approaches are
increasingly being used for investigating linkages between genotype and biochemical
phenotype [42,83,84], metabolic pathway studies [85–87], silent phenotypes of mutations [6,88],
plant–pathogen interactions [89–93] and, as emphasised here, plant priming [24,49,94]. As indicated
in the above sections, an overview and reflections on plant–pathogen interactions and priming are
articulated, highlighting the metabolomics inputs in decoding the plant priming molecular events. Thus,
the following section gives a succinct overview of plant defence mechanisms, briefly highlighting key
components and current models that describe plant defence responses.

3. Plant Defence Mechanisms—Core Concepts, Key Molecular Components and Current Models

Due to co-evolution between plant hosts and pathogens, plants have developed sophisticated
abilities to recognise pathogens and translate this perception into effective immune response strategies
for survival. Concurrently, pathogens have evolved their own strategies to evade the host’s immune
system. The plant–pathogen interactions are undeniably a never-ending evolutionary arms race,
and involve key elements for the survival of the host or the pathogen [95–98]. Understanding these
interactions at the biochemical level is necessary to develop strategies to aid plants to adapt and defend
against continuously evolving pathogens. It may suffice here to briefly point out some classical and
current components that define the plant defence mechanisms.

Plant cells are generally protected by an array of structural barriers (waxes, suberin, lignin,
etc.) that deny access to a wide range of microbes (Figure 3). This passive protective system can
also involve preformed antimicrobial chemicals (metabolites known as phytoanticipins) that form
a chemical barrier, in so doing preventing or attenuating invasion by potential attackers [99–102].
In addition to these non-specific defence mechanisms, active immune responses can be activated by the
perception of highly conserved molecular features of different classes of bacterial and fungal pathogens,
referred to as microbe/pathogen-associated molecular patterns (M/PAMPs) [103,104]. These non-self
M/PAMPs are recognised by cell surface-localised pattern recognition receptors (PRRs), which are
activated and, in turn, initiate downstream signalling events that ultimately result in the activation of
a defence response referred to as M/PAMP-triggered immunity (M/PTI) [105–107]. These responses
include newly synthesised antimicrobial metabolites (phytoalexins), antimicrobial hydrolytic enzymes
(e.g., ß-glucanases, chitinases) and small-molecule precursors of cell wall-strengthening polymers.
In this evolutionary arms race pathogens, on the other hand, can suppress M/PTI by transporting
effector molecules into the host cell to target response regulatory components of the immune system.
Furthermore, the invading pathogens can be protected by surface polysaccharides, and can produce
antioxidants and enzymes to scavenge or detoxify the M/PTI-related toxic reactive oxygen species
(ROS) [108–112].
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Figure 3. Priming, plant–microbe interactions and innate immunity. Physical barriers (waxes, suberin,
callose, lignin) and innate immunity defences (MTI, MAMP-triggered immunity, and ETI,
effector-triggered immunity, indicated by vertical red lines) may affect priming by biotic inducers.
Interactions can either be disease-related due to biotrophic or necrotrophic pathogenic microorganisms,
or beneficial due to plant growth-promoting rhizo microorganisms (PGPR) interactions with plant
roots. The red crosses indicate the inability of the interacting microbe to overcome the line of defence.

To counter this infection strategy, plants have evolved specialised immune receptors encoded by
resistance (R) genes that recognise these pathogen-specific effectors, thereby leading to an amplified
secondary immune response known as effector-triggered immunity (ETI) [113–115]. ETI is mostly
characterised by the induction of localised programmed cell death (referred to as the hypersensitive
response or HR) in order to limit the spread of the infection, activation of defence gene expression,
induction of local induced/acquired resistance (LAR) to contain the invader at the infection site,
and systemic acquired resistance (SAR), which induces defences in distal, non-infected parts of
the plant [116–118]. M/PTI, as the first facet of active plant defence, is the primary driving force
of plant–pathogen interactions, and has been shown to confer resistance to a wide spectrum of
pathogens [102,103,119]. Furthermore, experimental evidences indicate that, in some instances,
input and output responses of both M/PTI and ETI converge, pointing to an interplay between
M/PTI and ETI to coordinate plant immunity [120–122].

The active plant resistance system is highly complex and involves the coordination of a myriad
of highly regulated mechanisms, with phytohormone crosstalk networks as central signalling
systems [46,123–125]. These cellular (and biochemical) processes are spatially organised and highly
controlled in intracellular compartments, and temporally complex due to the highly dynamic
nature [126–128]. The molecular mechanisms of these prompted immune responses are not yet fully
understood. Current models indicate that plant defence mechanisms involve cellular and organismal
reprogramming expressed at the interconnected systems layers that collectively define the defensive
metabolism (the ‘defensome’) and subsequent physiological state [24,129–131]. Thus, the ability of the
pathogen to suppress the immune system of the host, and the capacity of the plant to recognise the
pathogen and activate effective defences, define the outcome of the plant defence reaction.

Although plant defence immunity has been extensively studied and some aspects have been
thoroughly explored, providing a wealth of detailed biochemical insights that have shaped our
understanding [33,103,132–134], the plant–pathogen interactions field still has grey areas and remains
an active field of research. Thus, elucidating host receptors and regulatory mechanisms that determine
certain responses, unravelling biochemical processes in specific phytopathosystems, elucidating the
environmental influences on diverse phyllosphere and rhizosphere interactions with microorganisms,
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and illuminating epigenetic regulatory mechanisms that result in passing on defensive traits to the
progeny are some of the topics that still need to be fully explored.

4. Plant Priming: What Drives the Pre-Conditioned State

Lacking specialised mobile immune cells, every plant (and cell) is theoretically capable of
establishing an active immune response upon an attack. Of necessity, such a plant immune system
is characterised by self-surveillance, systemic signalling and genetic changes as mechanisms to
provide successful protection and transgenerational survival [28,135]. Thus, one mechanism by
which plants can enhance their resistance capacity is by potentiating the responsiveness of the immune
system upon recognition of some danger-related signals from the environment. This phenomenon
is known as “priming” or “pre-conditioning”, and can be described as an induced state whereby
a plant is pre-exposed to an inducing agent, thus rendering it more resistant to secondary
stresses, i.e., the “primed” plant responds more rapidly and/or more efficiently to a subsequent
stress [23,24,30,33]. Priming agents thus act as response modifiers that can lead to a more intense
defence response, a faster response, an earlier response or a more sensitive response compared to the
non-primed response to the same stress condition [22].

Priming can occur as a result of interactions between the host plants and beneficial microorganisms
(rhizobacteria, mycorrhizal fungi) or virulent/avirulent pathogens, or by natural or synthetic compounds
such as certain agrochemicals. Following such interactions, plants are cellularly and organismally
reprogrammed in a long-lasting manner, and “remember” such events at a molecular level. Depending on
the initial stimulus and the target of priming, primed plants can deploy a diverse set of defence
mechanisms that are more rapid and stronger compared to non-primed plants [24,136–139]. Spatially,
the priming events involve multiple cellular compartments, and this induced state temporally consists
of three stages (Figure 4) namely (i) the priming phase (perception of stimulus), (ii) the post-challenge
primed state (challenges by secondary stimulus) and (iii) the transgenerational primed state (primed state
inherited from primed parents) [19,24]. These different physiological states (naïve, primed and primed
and pathogen-triggered) are reflected in changes to the metabolomes and can best be investigated through
untargeted metabolomics approaches [45].

Figure 4. Phases in priming events. Priming generally requires sequential environmental stimuli.
The priming phase is initiated by a triggering stimulus to last until the plant is exposed to a challenging
stress. During this phase, slight alterations in the levels of primary—and secondary metabolites,
(e.g., phytohormones, SA and JA) place the plant in a standby state of alertness. When challenged
with a secondary stress, primed plants move on to the post-challenge primed state, associated with
the induction and rapid deployment of defence reactions. This involves de novo biosynthesis of
antimicrobial compounds. Primed plant can revert to the naïve state, but a transgenerational primed
state may occur in plants when inherited from primed parental plants [12,22,24,33].
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Priming can involve various layers of induced defence mechanisms that are active during different
levels of plant–pathogen interactions. Such mechanisms result in a broad span of effectiveness:
ranging from early responses controlled by changes in hormone-dependent signalling pathways to
longer lasting mechanisms involving chromatin modification and DNA methylation. Despite the
grey areas in the mechanistic understanding of priming events; some characteristic key features of
priming processes have been elucidated and include ‘memory’, low fitness costs and more robust
defences. These are associated with enhanced levels of PRRs, proteomic and metabolic reprogramming
and histone modifications and resulting chromatin changes [22,28,33]. As highlighted in Figure 4,
studies have indicated that the priming status of a plant can be inherently stored and passed on to its
offspring, lasting for few generations and conferring improved defence responses and resistance to
biotic and abiotic stresses [140–142]. This transgenerational primed state implies mechanisms ranging
from epigenetic marks to the accumulation of (dormant) defence-related molecules [22,140–142].

Furthermore, as an induced state of resistance in plants, priming can be a result of SAR or induced
systemic resistance (ISR) or other forms of induced resistance mechanisms [30,33,143]. In simplified
terms, SAR is currently understood as the salicylic acid (SA)-dependent process, involving the
transduction protein NPR1 to establish a defensive state in uninfected systemic plant parts [116].
On the other hand, ISR is induced by beneficial microbes (such as growth-promoting rhizobacteria
and fungi) and orchestrates a defensive state that depends on other hormones such as jasmonate (JA)
and ethylene (ET). However, studies have demonstrated that the induced resistance (IR) state involves
interconnected mechanisms (more than just SAR and ISR), creating a network of defences that define
the plant immune system in toto. The biochemical and molecular details of these mechanisms are still
not yet fully formulated; however, with the advent and progress in systems biology methodologies,
in-depth insights are gradually being achieved [138,144–146].

These IR mechanisms imply reprogramming of cellular metabolism and the reciprocal
crosstalk with cellular regulatory machinery. Profiling metabolic changes is providing a wealth
of descriptive information that advances our understanding of priming mechanisms. These emerging
endeavours have pointed to the reprogramming of primary metabolism and differential biosynthesis
of secondary metabolites as characteristic processes involved in priming events [12,20,26,49].
Experimental evidences have shown that priming of Arabidopsis thaliana plants by β-aminobutyric acid
(BABA) involves alterations in tricarboxylic acids fluxes involving malate, oxoglutarate and fumarate,
and the intensification of phenylpropanoid biosynthesis and the octadecanoic pathway [146].

Comparative metabolomic analyses of chemically-induced priming by BABA in Arabidopsis
plants also demonstrated that the resultant defence priming significantly affected sugar metabolism,
cell-wall remodelling and levels of shikimic acid derivatives. This metabolic reprogramming
resulted in specific changes in amino acid profiles and accumulation of camalexin, indole-acetic acid
and indole-3-carboxaldehyde [147]. Similarly, an untargeted metabolomics analysis of A. thaliana
treated with a pathogen-derived priming agent, bacterial lipopolysaccharides, detailed the
importance of tryptophan-derived indolic metabolites that included camalexin, indoleglucosinolates,
indole-3-carboxylic acid and indole-acetic acid [92]. Furthermore, treatment of cultured tobacco cells
with different chemical—(acibenzolar-S-methyl, azelaic acid and riboflavin) and pathogen-derived
(chitosan, lipopolysaccharides and flagellin) inducers resulted in differential metabolic changes
involving early phenylpropanoid pathway intermediates and products. The activation hereof is shown
to be an important aspect of priming events, as well as the alterations in secondary metabolism
pathways involving conjugation of hydroxycinnamic acid derivatives to quinic acid, tyramine,
polyamines or glucose [49]. On the other hand, metabolic analysis of resistant progeny has shown
that transgenerational priming is associated with enhanced levels of primary metabolites such as
amino acids and sugars [20,22,148,149]. However, the altered pathways are highly dependent on
the pathogen characteristic, i.e., biotrophic stimuli seems to mainly impact primary metabolism
and involves SA signalling, while insects and necrotrophic fungi trigger secondary metabolism via
JA/ET-dependent pathways [150]. A recent study has demonstrated that the symbiotic relationship
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between Microbacterium sp. 3J1 and pepper plants confers to the latter protection against drought
through a metabolic reprogramming that involves production of osmo-protectants and antioxidants.
These metabolic alterations spanned changes in C and N metabolism, resulting in increased levels of
sugars and amino acids, phenolics and lignin precursors [151]. Another recent work, involving the
interaction of poplar roots with the ectomycorrhizal fungus Laccaria bicolor, revealed the systemic
adjustment of defence mechanisms in leaves, comprising transcriptional and metabolic reprogramming:
enhancement of chitinases, volatiles, nitrogen-bearing compounds and decreased levels of phenolics.
This mycorrhiza-primed state influences aboveground plant–insect interactions, conferring protection
to the plant [152]. Table 1 gives a summary of available metabolic information on the priming phase,
challenged phase and trans-generational priming induced by different stimuli.

These metabolomic studies (and other cited literature) indicate that multiple metabolic pathways
are involved in the priming phenomenon. The interconnectedness of metabolic pathways that initially
might seem distinct will increasingly be shown to have feedback loops that allow for quick activation
of cellular defences to potential attackers present in the external environment, attempted ingress
and resultant cellular damage. Furthermore, the combination of a multitude of biotic and abiotic
stresses that plants face, and adaptability of priming events, have made the elucidation of the
underlying molecular mechanisms a challenging endeavour. Thus, despite overlaps and similarities,
priming mechanisms can vary and the same phenotypic traits might be the result of unrelated
underlying events [24,138–152]. Unfortunately, most of the reported studies often assess just a few
defensive traits related to priming events and overlook the overall multi-layered mechanisms of naïve
versus primed plants.

Hence, elucidation of molecular mechanisms in priming events remains an active area of research.
Knowledge regarding intracellular metabolic networks that define the dynamic metabolism of priming
processes in a biosystem, pinpointing common and unique specific biochemical traits characterising
the primed state across species, is crucial for translational applications from model plants to food and
industrial crop plants.

Table 1. An overview of different stimuli and examples of metabolic changes involved in plant priming.

Priming Agent Plant Phase Classes of Induced Compounds References

Beta aminobutyric
acid (BABA)

Arabidopsis thaliana

Priming
TCA metabolites, amino acids, phytohormones, purines,
cinnamic acid derivatives and fatty acids. Amino acids,
indole compounds, polyamines, SA, ABA

[20]

Secondary
stimulus

-Plectosphaerella cucumerina
Enhanced levels of amino acids, indolic compounds and
polyamines. SA downregulation, enhanced levels of JA
and JA-Ile.

[147]

Hexanoic acid Solanum lycopersicum

Priming

Fatty acids, oxylipins, phospholipids, chlorophyll
metabolism (pheophorbide A), purines (adenosine
2′-monophosphate), sugars. Downregulation of TCA
intermediate (citrate) and some amino acids.

[153]

Secondary
stimulus

-Botrytis cinerea
Glycolytic intermediated and sugars, fatty acids,
ascorbate metabolism. Proline downregulation.

[153]

Secondary
stimulus

-Pseudomonas syringae
Serine upregulation. Downregulation of fatty acids,
phytohormones (abscisic acid), signalling molecules
(pipecolic acid) and amino acids (valine and threonine).

[153]

Lipopolysaccharide (LPS) Arabidopsis thaliana
leaves and cells Priming

Phytohormones (SA and JA) and their methyl esters and
sugar conjugates, glucosinolates, indolic compounds,
cinnamic acids derivative and other phenylpropanoids.

[92]

LPS, chitosan and
flagellin flg22 Nicotiana tabacum cells Priming Hydroxycinnamic acid conjugates of quinic acid,

shikimic acid, tyramine, polyamines or glucose. [49]

Acibenzolar-S-methyl,
azelaic acid, riboflavin Nicotiana tabacum cells Priming Cinnamic acid derivatives conjugated through ester and

amide bonds. [49]
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Table 1. Cont.

Priming Agent Plant Phase Classes of Induced Compounds References

Phenylacetic acid produced by
Bacillus fortis IAGS162

Tomato

Priming Amino acids and sugars. [154]

Secondary
stimulus

-Fusarium wilt
SA, sugars, amino acids, hexanoic acid, cinnamic acids
(caffeic acid), shikimic acid, quinic acid,
TCA metabolites, amino chlorocoumarin and
methylquercetin.

[154]

Pseudomonas fluorescens SS101 Arabidopsis thaliana Priming Indolic compounds and glucosinolates. [155]

Rhizophagus irregularis Tomato roots Priming

Upregulation of cinnamic acid derivatives (ferulic acid,
coniferyl alcohol and p-coumaroyl alcohol), lignin,
yatein and oxylipins, (Z)-jasmone, tuberonic acid,
tuberonic acid-12-β-glycoside, methyl-tuberonic
acid-12-β-glycoside. Downregulation of phenolic amino
acids, some cinnamic acids derivatives (p-courmaric acid
and p-coumaraldehyde) and α-linolenic acid.

[156]

Funneliformis mosseae Tomato roots Priming

Upregulation of cinnamic acid derivatives (ferulic acid,
coniferyl alcohol and p-coumaryl alcohol), lignin, yatein,
oxylipins, (Z)-jasmone, methyljasmonic acid,
jasmonoyl-isoluecine,
13-hydroperoxy-9,11,15-octadecatrienoic acid (HPOT),
tuberonic acid, tuberonic acid-12-β-glyc,
methyl-tuberonic acid-12-β-glyc. Downregulation of
phenolic amino acids, some cinnamic acid derivatives
(p-coumaric acid and p-coumaraldehyde),
α-linolenic acid.

[156]

Microbacterium sp 3J1 Pepper Priming
Glutamine and α-ketoglutarate, osmoprotectants,
antioxidants, sugars, amino acids, phenolics,
lignin precursors.

[151]

Tobacco mosaic virus (TMV) Nicotiana tabacum Trans-generational
state Sugars and amino acids [149]

5. Concluding Remarks and Perspectives

In this review, we give a brief overview of the current mechanistic understanding of the plant
innate immune system related to priming. Furthermore, the contribution of metabolomics in plant
priming studies is highlighted, pointing out where metabolomics can contribute to new insights and
deeper knowledge. Through increased technological advances, scientists are now better equipped
to study the detailed metabolomic changes associated with the underlying biochemical mechanisms
that support priming. In addition, the inherent constraints of this -omics methodology that represent
challenges to be addressed, are discussed.

As emphasised herein, defence priming is a complex natural phenomenon that pre-conditions
plants for enhanced defence against a wide range of pathogens. As such, it represents a sustainable
alternative or complementary strategy that can provide avenues for plant protection against disease.
However, a comprehensive functional and mechanistic understanding of the various layers of priming
events is still limited and hence offers opportunities for future research. Even though such studies are
still few in number, metabolic profiling of primed and naïve plants interacting with pathogens have
certainly provided highly informative insights.

The metabolomic studies thus far performed on priming-related scenarios indicate that this
strategy might involve multiple pathways and that the induced resistance state is often broadly
specific, and may vary from species to species and in different stressor–plant systems, thereby leading
to different outcomes. Depending on the initial stimulus and the target of priming, primed plants
can deploy a diverse set of defence mechanisms. This adaptability—‘stimulus-dependent plasticity of
response traits’ [22]—of priming events makes it difficult to exactly define underlying mechanisms.
Conversely, despite possible overlaps or similarities, priming mechanisms can and do differ, and the
same phenotypic traits might be the result of unrelated causal events. It is thus apparent that priming
can involve various ‘layers’ of induced defence mechanisms that are active during different ‘levels’ of
plant–pathogen interactions.

Major questions regarding priming remain, and here metabolomics techniques and approaches
can assist. These include (i) how the molecular dialogue between plant and priming agent
(particularly plant-beneficial microbes) drives enhanced stress resistance, yet still benefits plant
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development; (ii) the switching from normal growth to defence activation and subsequent deactivation
of the triggered defensive state; (iii) the dynamic traits of the defensive metabolism that describe
the transportation of induced resistance signals (to distal parts of the plant and neighbouring plants)
where the interactions between different metabolic networks in a spatial and temporal context need to
be dissected; and (iv) transgenerational priming knowledge still needs to be exploited. Furthermore,
environmental influences can affect how plant genetic programmes are realised and managed,
thus controlling the metabolomic phenotype. Meta-metabolomics, targeted at the phytobiome should
therefore be a future approach, i.e., inter-kingdom metabolomics aimed at unravelling the complexity
of chemical communication in the rhizosphere or phyllosphere.

Metabolomics, as applied in the plant sciences, is progressing beyond biomarkers towards
mechanisms. Here, chemometrics and network analysis can identify participating pathways,
and stimulation of pathways can be detected by comparison of metabolite profiles with subsequent
quantification of discriminatory biomarkers. Moreover, comparative studies of conserved and
unique metabolic pathways from different phyla (phylametabolomics) will help in the annotation of
metabolites as well as pointing to important new targets of investigation in plant priming studies.

A recent and future development is that of genome-scale models of metabolism to simulate and
comprehensively analyse the metabolism of cells. To attain this, algorithms that use inputs from
various-omics data types are used to construct cell-line and tissue-specific metabolic models from
genome-scale models. However, it may be more challenging to accurately simulate metabolism in
higher plants due to some enzymes being only active in specific cell or tissue types. In addition, it is still
unclear how algorithm and parameter selection (e.g., gene expression thresholds, metabolic constraints)
would affect model content and predictive accuracy. Further new developments are geared towards
a framework for the de novo prediction of metabolic capabilities of a cell or tissue, based on its gene
expression and metabolomic profiles. These insights will guide and promote development of tissue-
and cell type-specific models, and enable researchers to predict a cell’s phenotype from the genotype.
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