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Abstract: Since the application of silicon materials in electronic devices in the 1950s, microprocessors
are continuously getting smaller, faster, smarter, and larger in data storage capacity. One important
factor that makes progress possible is decreasing the dielectric constant of the insulating layer within
the integrated circuit (IC). Nevertheless, the evolution of interlayer dielectrics (ILDs) is not driven
by a single factor. At first, the objective was to reduce the dielectric constant (k). Reduction of
the dielectric constant of a material can be accomplished by selecting chemical bonds with low
polarizability and introducing porosity. Moving from silicon dioxide, silsesquioxane-based materials,
and silica-based materials to porous silica materials, the industry has been able to reduce the ILDs’
dielectric constant from 4.5 to as low as 1.5. However, porous ILDs are mechanically weak, thermally
unstable, and poorly compatible with other materials, which gives them the tendency to absorb
chemicals, moisture, etc. All these features create many challenges for the integration of IC during
the dual-damascene process, with plasma-induced damage (PID) being the most devastating one.
Since the discovery of porous materials, the industry has shifted its focus from decreasing ILDs’
dielectric constant to overcoming these integration challenges. More supplementary precursors (such
as Si–C–Si structured compounds), deposition processes (such as NH3 plasma treatment), and post
porosity plasma protection treatment (P4) were invented to solve integration-related challenges.
Herein, we present the evolution of interlayer dielectric materials driven by the following three
aspects, classification of dielectric materials, deposition methods, and key issues encountered and
solved during the integration phase. We aim to provide a brief overview of the development of low-k
dielectric materials over the past few decades.

Keywords: low dielectric constant; dielectric interlayer; organosilicon; thin film; IC circuit; porous material

1. Introduction

Gordon Moore predicted, in the 1960s, that the number of transistors in a dense IC
microprocessor within a modern electronic device would double every 18–24 months.
This has been widely recognized as ‘Moore’s Law’ and, indeed, has held true for the
past few decades [1]. Initially, this was done by shrinking the sizes of silicon chips to
increase the number of transistors per wafer. However, starting from the early 2000s, this
progression was limited by the fundamental properties of the materials used in fabricat-
ing these chips. Hence, the requirements for these materials are becoming increasingly
delicate and finicky. Typically, modern IC chips consist of three main parts, semiconduct-
ing materials, including silicon, doped silicon, and other compounds that have similar
properties (such as germanium); conductors, which are metals with high conductivity
such as copper and aluminum; and insulators, which are placed between semiconductors
and conductors as interlayer/barrier dielectrics to separate and protect the active area [2].
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With the continuous scaling down of chip size dimensions and the technology node of ICs,
the resistance-capacitance (RC) delay increases, leading to enhanced signal propagation
delays, line-to-line crosstalk noise interference, and power dissipation to the invalidation of
electronic devices. Therefore, the interconnecting insulator, usually called a low dielectric
constant (low-k) interlayer, is becoming more and more important in order to reduce the
RC delay, especially with the high frequency and high-speed signal transmission under the
new circumstance of fifth-generation mobile communications technology (5G technology).
Traditionally, silicon dioxide (SiO2) is the material of choice for this duty. However, the
dielectric constant (k) of SiO2 is relatively high (k = 3.9–4.2), not meeting the demand of
dielectric packaging materials for ultra-large-scale integrated circuits (ULSI) and 5G tech-
nology. Therefore, it is of great challenge to replace SiO2 with other promising candidates,
e.g., organosilicons and porous organosilicons, to afford a lower dielectric constant layer
(k < 3.9). Furthermore, the chemical vapor deposition (CVD) method has been adopted as
mainstream in the formation of a high-quality, high-performance, low-k dielectric interlayer.
Hence, the incorporation of organosilicon precursors with low processing temperature
deposition is becoming more favorable by the semiconductor industry.

This review focuses on the progress of organosilicon dielectric materials from the orig-
inal SiO2 to porous SiCOH materials, as well as integration challenges that occurred along
with the incorporation of novel low-k materials and processing methods to overcome these
challenges. Novel porous low-k materials have poor compatibility, are highly hydrophilic,
and have worse physical, chemical, and thermal stabilities compared to traditional SiO2. All
these features provided challenges for traditional integration processes. Therefore, after the
discovery of porous low-k organosilicon materials, the focus was shifted to re-engineering
the integration process. From such a perspective, the evolution of dielectric materials is a
continuous process of combining chemistry progression and engineering refinement.

2. General Classification of Organosilicon Dielectric Material
2.1. SiO2

The SiO2 was initially deposited by a plasma-enhanced chemical vapor deposition
(PECVD) technique with silane (SiH4) and N2O as precursors [2] (Figure 1a). The main
disadvantage with this deposition method is the high fabrication temperature (usually up
to 1000 ◦C) during integration. Such temperatures can easily disintegrate some of the previ-
ously deposited layers. Therefore, attempts were made to develop different chemistries and
precursors to lower the temperature of the PECVD process [3]. Silicon alkoxide precursors
soon had attracted people’s attention. The iconic ones include branched and cyclic silicon
alkoxide such as tetraethylorthosilicate (TEOS) [4,5] and tetramethylcyclotetrasiloxane
(TOMCATS®) [6]. They were used as alternative precursors for silane (SiH4) to lower the
processing temperature (less than 500 ◦C) required for SiO2 deposition [2]. The reaction of
silicon dioxide layer deposition with TEOS precursor is shown in Figure 1b. However, as
the IC size shrunk to sub 180 nm dimension with the dielectric constant requirement of
less than 3.0, silicon dioxide was destined to be replaced by other novel low-k materials, as
shown in Table 1.
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Table 1. Dielectric constants of various contemporary low-k materials [7].

Classification Material Fabrication Dielectric Constant (k)

Silicon dioxide SiO2 CVD 3.9–4.5

Silsesquioxane-based Hydrogen–Silsesquioxane (HSSQ) Spin-on 2.9–3.2
Methyl–Silsesquioxane (MSSQ) Spin-on 2.6–2.8

Silica-based
FSG CVD 3.2–4.0

SiCOH CVD 2.7–3.3

Porous
Porous HSSQ Spin-on 1.7–2.2
Porous MSSQ Spin-on 1.8–2.2
Porous SiCOH Spin-on/CVD 1.5–2.5

Air gaps Air - 1.0

2.2. Silsesquioxane (SSQ) Based Materials

The semiconductor industry first attempted to replace SiO2 with SSQ materials. SSQ
materials are members of organosilicon compounds with the chemical formula [RSiO3/2]n
(R = H, alkyl, aryl, or alkoxyl), usually adopting cage-like or ladder-like geometric struc-
tures. As a kind of typical SSQ material, polyoctahedral silsesquioxanes (POSS) have
attracted lots of attention as preceramic polymer precursors to ceramic materials and
nanocomposites, as demonstrated in Figure 2b. In general, alkyl and aryl groups exhibit
lower dielectric constants and better mechanical properties than hydrogen atoms or alkoxyl.
This is because their Si–C bonds, compared to Si–O and Si–H bonds, can create larger spatial
volumes and lower polarizability. Such effects are demonstrated in Table 1, which indicates
that methyl–Silsesquioxanes (MSSQs) generally have a lower dielectric constant (~2.7)
than hydrogen–Silsesquioxane (~3.0). Manufacturing-wise, methyl–Silsesquioxanes have
been examined to be suitable for spin-on technique fabrication [8–10]. Despite SSQ-based
materials having attractive low dielectric constants (2.6–3.2), the integration issues (due
to their low thermal stability and weak mechanical strength) have ruled them out from
the semiconductor industry’s production line [11]. For example, hydrogen-terminated
SSQ materials (HSSQ) are thermally unstable at 400 ◦C. Fully cured MSSQs show intrinsic
dielectric constants between 2.7 and 2.9, thermal stability up to at least 500 ◦C, low moisture
absorption, and attractive adhesion to metals. Unfortunately, the reduced network connec-
tivity dramatically diminishes the mechanical properties compared to silicon dioxide. For
example, Sang et al. reported that the hardness for a 100 nm thick MSSQ film only ranges
from 0.29 to 0.54 GPa [12].

Figure 2. General classification of dielectric materials: (a) SiO2; (b) silsesquioxane (SSQ); (c) fluorinated silicon glass (FSG);
(d) carbon-doped silica-based materials (SiCOH).
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2.3. Silica-Based Materials

Silica-based materials have been successfully integrated into micro-transistors due to
their outstanding chemical and thermal stabilities [11]. Such materials have the tetrahedral
shape of silicon dioxide (Figure 2c,d). The density of different silica-based materials is
usually between 2–3 g/cm3 [8]. Compared to silicon dioxide, such materials replace the
high-polarity Si–O bonds with low-polarity Si–F bonds and Si–C bonds. The first generation
of low-k materials applied in the semiconductor industry was fluorinated silicon glass
(FSG), fabricated by chemical vapor deposition of TEOS, oxygen, and SiF4. The dielectric
constant of FSG was significantly lower than SiO2 due to its less polarizable Si–F bonds.
Furthermore, fluorine-containing organic groups such as CF3 are hydrophobic, which can
protect silica from moisture contamination. This low-k material was used as a 0.18 µm
technology node with the dielectric constants ranging from 3.5 to 3.8, depending on the
molar ratio of the Si–F bond [13,14]. Generally, to fabricate FSG ILDs, a TEOS precursor
would be used as the Si–O source, and a SiF4 precursor would be used as the Si–F source.
Unfortunately, due to the presence of weak Si–F bonds, fluorine-doped silica materials
do not possess sufficient thermal stability under high temperatures, not suitable for later
integration steps. Moreover, neither silicon dioxide nor fluorinated silicon glass fit in the
category of organosilicon materials. Their detailed electrical and mechanical properties
have been discussed in a previous publication [8], which will not be included here.

The second generation of silica-based low-k materials is carbon-doped silica-based
materials (SiCOH). As the structure in Figure 2d suggested, the SiCOH materials are
produced by introducing lower polarity Si–C bonds into the tetrahedral silicon dioxide
matrix. As shown in Table 1, these materials show excellent dielectric properties with
k ranges from 2.7–3.3, depending on the concentration of carbon present in the deposited
ILD. Moreover, the CH3 groups enlarge the inter-atomic distance of silica, which allows
more free volume to further decrease the dielectric constant [11,15]. The existing SiCOH
ILDs have been successfully integrated into 130 nm and 90 nm products [11].

The fabrication of silica-based ILDs requires a high concentration of Si–C bonds
within their matrix. Therefore, precursors with one or more Si–C bonds were developed
to meet such requirements. During the CVD step, these precursors are incorporated,
with a certain ratio of oxidant precursors (such as O2, O3, N2O, or NO), under an in-
ert gas atmosphere to create a layer of low-k thin film containing Si–C, Si–O, and Si–H
bonds. It is also possible to combine alkyl siloxane precursors with oxidant precursors
together and create a single precursor that has all the required components. One im-
portant factor that should be noted is that all of the atoms being introduced into the
CVD chamber are important during the CVD process. Therefore, it is important to
choose precursors with only Si, O, N, and H atoms. Here are some of the iconic ex-
amples of SiCOH precursors, diethoxymethylsilane (DEMS) [16,17], methyltriethoxysilane
(MTES) [18], dimethoxymethylsilane (DMOMS), tetramethylcyclotetrasiloxane (TMCTS
or TOMCATS®), octamethylcyclotetrasiloxane (OMCTS), dimethyldioxosilycyclohexane
(DMDOSH), dimethyldimethoxysilane (DMDMOS) [19], and trimethylsilane (3MS) [20,21].
Table 2 shows molar ratios of Si–C, Si–O, and Si–H bonds with a silicon atom within
each precursor molecule, respectively. The hardness and dielectric constant of the final
ILDs corresponding to these precursors is shown in Figure 3 [2]. According to Figure 3,
DEMS shows an excellent dielectric constant and hardness over other precursors. In 2003,
Vincent et al. fabricated a dielectric layer with a DEMS precursor, demonstrating a Young’s
modulus of 16.5 GPa and hardness of 2.8 GPa, while that based on 3MS and DMDMOS
only showed a Young’s modulus of 8.76 GPa and hardness of 1.44 GPa, and Young’s
modulus of 6.68 GPa and hardness of 1.2 GPa, respectively (Table 3) [22]. Besides DEMS,
ring-structured DMDOSH also gained a lot of interest in mechanical strength enhance-
ment. The ring-opening of such a structure may facilitate crosslinking during the CVD
processes [22] (Figure 4). In theory, any volatile molecule (boiling point below about 250 ◦C)
containing silicon and organic groups can be used as a SiCOH precursor. Vincent et al.
systematically summarized some of the iconic organosilicon precursors in his patent [22].
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For the semiconductor industry, finding a suitable alkyl siloxane precursor requires the
ability for film formation to have good electrical and mechanical properties, as well as
commercial availability or low cost to manufacture.

Table 2. Molar ratio of Si–C, Si–O, Si–H bonds with Si within typical organosilicon precursors.

Molecule Si–C:Si Si–O:Si Si–H:Si Structure

DEMS 1:1 2:1 1:1

MTES 1:1 3:1 1:1

DMOMS 1:1 2:1 1:1

TOMCATS® 1:1 1:1 1:1

OMCTS 2:1 1:1 -

DMDOSH 2:1 2:1 -

DMDMOS 2:1 2:1 -

3MS 3:1 - 1:1

Figure 3. Dielectric constant vs. hardness for different precursors [2].
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Table 3. The preparation conditions and dielectric properties of ILDs made with DEMS, 3MS, and
DMDMOS precursors [22].

Classification DEMS 3MS DMDMOS

RF Power 300 600 450
Dielectric constant 2.90 2.85 2.88
Precursor flow rate 1000 (mg/min) 540 (sccm) 1500 (mg/min)

He (sccm) 150 N/A 500
O2 (sccm) 0 90 50

CO2 (sccm) 0 N/A N/A
N2O (SCCM) N/A N/A 0

Young’s modulus
(GPa) 16.5 8.76 6.68

Hardness (GPa) 2.8 1.44 1.2

Figure 4. Ring-opening and expansion of DMDOSH.

Though SiCOH has excellent mechanical stability for later integration steps, the
dielectric constant of such materials is bottlenecked at 2.6 [2,11]. Achieving an even lower
dielectric constant requires the introduction of pores into the dielectric matrix. The pores
are filled with air, as shown in Table 1, since air has the lowest dielectric constant of 1 [2].

2.4. Porous Organo–Silicon Materials

The semiconductor industry constantly demands ultra-low-k materials (k < 2.6).
Any further reduction of the k value would require introducing a pore structure into the
dielectric material. Such pore structures can be obtained by either constitutive or subtractive
methods [23–25]. Constitutive porosity, according to the International Union of Pure and
Applied Chemistry (IUPAC) nomenclature, refers to pores created during deposition of
an ILD without any post-fabrication treatment, and the pore structure depends on the
original, as-deposited arrangement. Both SSQ and silica-based ILDs can have constitutive
porosity. The pores are created mainly from the arrangement of atoms during the CVD
step, which will be covered in later sections. Subtractive porosity involves the selective
removal of part of the material from prefabricated films. In other words, subtractive
porosity is created by incorporating an additional porogen precursor during the deposition
process. The porogen precursors are hydrocarbons containing at least one alkene, alkyne,
strained epoxy group, or carbonyl functional group. Porogen precursors will eventually
be removed during the post-deposition-curing process [26,27]. The curing process can
be done either thermally [28] or using an electron beam or ultraviolet radiation [29,30].
Some SiCOH precursors can even have built-in organic porogens. The reactive functional
groups within precursors can readily generate radicals under plasma conditions, which
may aid the incorporation of organic phases into the matrix. Nguyen et al. and Vincent
et al. have systematically categorized the most common SiCOH precursors with embedded
porogen organic groups in their patents [22,31]. Table 4 shows some of the most iconic
SiCOH precursors with build-in organic porogens. The main difference between precursors
shown in Tables 2 and 4 is that these organosilicon precursors have one or more porogen
functional groups.
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Table 4. SiCOH precursors with embedded porogen organic groups.

Name Porogen Functional Group Structure

vinylmethyldiethoxysilane alkene group

vinyltriethoxysilane alkene group

vinyldimethylethoxysilane alkene group

cyclohexenylethyltriethoxysilane cyclohexene group

1,1-diethoxy-1–Silacyclopent-3-ene silacyclopent-3-ene

divinyltetramethyldisiloxane alkene group

2-(3,4-epoxycyclohexyl) ethyltriethoxysilane epoxy group

2-(3,4-epoxycyclohexyl) ethyltrimethoxysilane epoxy group

hexavinyldisiloxane alkene group

trivinylmethoxysilane alkene group

Trimethylsilyloxy-acetylen alkyne group

1-(trimethylsiloxy)-1,3-butadiene 1,3-butadiene

di-t-butoxydiacetoxysilane carboxyl group

The pore diameter plays a very important role in ILD manufacturing. When the pore
diameter gets too big, other layers of films deposited during the dual-damascene process,
such as metal barrier layer material, can easily penetrate the dielectric layer and ruin its
dielectric properties. Moreover, large pores also cause low hardness and elastic modulus
on ILDs, which would bring difficulties for later integration. When the pore diameter gets
too small, the pores would not be effective enough for lowering the dielectric constant.
According to the definition of the International Union of Pure and Applied Chemistry
(IUPAC), pore sizes are classified as micro- (φ < 2.0 nm), meso- (φ~2–50 nm), and macro-
pores (φ > 50 nm). Generally, SiOCH films have a constitutive porosity of about 5–15%,
with a pore size of about 1 nm [32]. For dielectric applications in microelectronic devices,
the ideal pores are uniformly around 1–4 nm in size. The pore size is highly dependent on
the size of the porogen precursor molecule [33]. Typically, SiCOH precursors with built-in
organic porogens can only deposit films with very small pores (~1 nm) and relatively
low pore density (15%). Subtractive porosity can be as high as 90%, and pore sizes vary
from two to tens of nanometers [15]. Furthermore, the pore size and density are more
controllable during fabrication.

In general, the dielectric films with subtractive porosity have better mechanical and
electrical properties than those with constitutive porosities. However, constitutive poros-
ity can retain higher carbon content after deposition, which has more plasma damage
resistance. Grill et al. reported a comparative experiment on mechanical and electrical
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properties of ILDs deposited with a mixture of alkyl siloxane (DEMS), porogen precur-
sor bicycloheptadiene (BCHD), and porogen-embedded organosilicate precursors [27] As
shown in Table 5, the V2 and V4 films contain trimethylsilylmethyl dimethoxymethylsilane
(TDMMS) additive to relief plasma-induced damage (PID), which will be discussed in the
3rd part of this review. From the comparative data between V1.a and V3, the V1.a shows
superior electrical and mechanical properties with higher breakdown voltage, hardness,
and adhesion. However, the low carbon content of V1.a, along with higher pore density
and larger pore size, increased its plasma-induced damage ratio.

Table 5. Comparison among pULK ILDs fabricated with different precursors [27].

Classification DEMS + BCHD DEMS + BCHD + TDMMS Embedded Porogen Embedded Porogen + TDMMS

Batch code V1.a V1.b V1.c V2.a V2.b V2.c V3 V4.a V4.b
k (@150 ◦C) 2.53 2.4 2.2 2.56 2.35 2.2 2.46 2.53 2.42

Breakdown voltage
(MV/cm) >7.3 >6.0 >6.5 >6.0 >7.0 7.0

Elastic modulus (GPa) 7.2 4.9 4.7 6.5 4.73 3.04 6.64 10.2 6.64
Adhesion (J/cm2) 4.5 4.4 3.9 4.4 3.9

Carbon percentage (%) 15.7 15.5 20.6 23.2 35.0 21.1 16.3 17.4
Porosity (%) 16.3 24.5 29 19 22 26.5 14.4 17.9 19.7

Pore diameter (nm) 1.2 1.2 2.4 1.2 1.2 1.32 1 1.1 1.3
PID (ratio control) 0.67 0.9 1 0.57 0.55 ~0.5 0.57 0.49 0.65

The choice of porogen precursor is essential for producing porous ultralow-k (pULK)
ILDs with desired mechanical and electrical properties. In theory, any hydrocarbon con-
taining unstable functional groups with sufficient volatility to enable delivery as a gas to
the PECVD reactor could be used as a porogen [29,34]. Two of the most common func-
tional groups on porogen precursors are the vinyl group and the three-membered epoxy
group. Favennec et al. conducted a comparative experiment between three porogens,
hexene, hexadiene, and cyclohexene oxide [35,36], with decamethylcyclopentasiloxane as
the SiCOH precursor. Table 6 shows the results of the matrix/porogen ratio and dielectric
constant of the three deposited films before and after porogen removal [33]. From the
results, a cured ILD deposited with cyclohexene oxide has the lowest dielectric constant
(k = 2.2).

Table 6. Results of matrix/porogen ratio and dielectric constant of the three deposited films before and after porogen
removal [33].

Molecule Structure As Deposited after 390 ◦C Anneal under N2

Matrix %/Porogen % k (Hg 25 ◦C) Matrix %/Porogen % k (Hg 25 ◦C)

1-Hexene 82/18 2.8 92/8 2.3

Hexadiene 69/31 2.8 91/9 2.4

Cyclohexene oxide 75/25 2.6 89/11 2.2

The industry has adopted α-terpinene (ATRP) [37] and bicycloheptadiene (BCHD) [38]
as sacrificial porogens [27,29]. Both porogens have been successfully incorporated into a
28 nm technology node for pULK film manufacturing, with dielectric constants ranging
from 2.4–2.6. Ming et al. reported a comparative study between porous thin films deposited
with DEMS using ATRP and BCHD as porogens (Table 7). The data suggested that the
hardness, Young’s modulus, and interfacial adhesion of the pULK film deposited with the
ATRP porogen were 1.0 GPa, 7.1 GPa, and 5.9 J/m2, respectively, which were slightly higher
than that deposited with BCHD (0.7 GPa, 5.1 GPa, and 5.4 J/m2). However, the pULK film
fabricated with ATRP showed a slightly higher dielectric constant; the post-integration
resistance-capacitance (RC) test results indicated that the k recovery effect of the ILD from
the ATRP was better than that from the BCHD precursor. Figure 5 shows the RC curves of
the post-integration pULK films from the ATRP and BCHD precursors, respectively. The
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pULK film from BCHD has a higher capacitance at the same resistance level compared to
that from the ATRP precursor, indicating that the BCHD ILD was likely damaged by the
plasma process during post-deposition integration [25].

Table 7. Performances of pULK dielectric films from DEMS with ATRP and BCHD [25].

pULK Performance (I)

Porogen Thickness (Å) Uniformity
(1 Sigma%) Stress (MPa) Shrinkage (%) Shrinkage

Uniformity k Value Refractive
Index

BCHD 4930 1.4 50 17.2 3.44 2.48 1.355
ATRP 4920 1.3 60 15.4 3.40 2.59 1.335

pULK Performance (II)

Porogen Pore Size (Å) Porosity (%) Hardness
(GPa)

Young’s
Modulus

(GPa)
Adhesion

(J/m2)
Deposition

Rate (Å/min)
SiCH3/SiO

(Area)

BCHD 11.8 25 0.7 5.1 5.4 6000 3.6
ATRP 9.5 23 1.0 7.1 5.9 4000 2.6

Figure 5. RC curve of ATRP and BCHD pULk films [25].

During the incorporation of SiCOH precursors with organic porogen precursors, it is
important to consider if the removal of the porogen could cause any deformation of the
ILDs. Favennec et al. studied the shrinkage of pULK SiCOH film after porogen removal.
They chose decamethylcyclopentasiloxane (DMCPS) and DEMS as the SiCOH precursor
and cyclohexene oxide as the organic porogen precursor. The DMCPS pULK film shrank
by 33% after the thermal annealing (porogen removal) process, which led to a dielectric
constant of 3.1. Such severe shrinkage resulted in no porosity on the final thin film. The
DEMS pULK film, on the other hand, showed less than 20% shrinkage after annealing,
which led to 13% porosity with a dielectric constant of 2.6. They further optimized the
DEMS and cyclohexene oxide matrix by introducing an O2 precursor to increase the Si–O
bond density within the matrix. As a result, the pULK film’s shrinkage decreased to less
than 8%, and the porosity was increased to 25%, which further decreased its dielectric
constant to 2.4. The exact reason for such results and the mechanism during fabrication
remain unclear, but one possible explanation is the type of Si–O bonds within the pULK film
matrix. As shown in Figure 6, O2–Si–Me2 (a) and O3–Si–Me (b) correspond to 1260 cm−1

and 1270 cm−1 in the FTIR spectrum, respectively. The FTIR peak position of Si–Me in
DMCPS + cyclohexene oxide hybrid showed up at 1261 cm−1, suggesting that the Si–Me
bonds are only in the O2–Si–Me2 configuration (Figure 6c). For the DEMS + cyclohexene
oxide hybrid, the Si–Me signal can be split into two parts, a major contribution at 1270 cm−1
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corresponding to O3–Si–Me and one minor at 1257 cm−1 corresponding to O2–Si–Me2
(Figure 6d). In the case of the DEMS + O2 + cyclohexene oxide hybrid, the Si–Me signal
only appeared at 1271 cm−1, which corresponds to the O3–Si–Me configuration (Figure 6e).
The additional Si–O bond within the O3–Si–Me tetrahedral shape might be a major factor
for the film strength because it shares more similarities with the SiO2 crystalline structure.
All the Si–O–Si structures within the network are crosslinked instead of linearly linked,
which might, in turn, enhance the film’s strength and prevent it from collapsing after the
annealing step [39].

Figure 6. Top: schematic of two silicon matrixes, O2–Si–Me2 group (a) and O3–Si–Me group (b). Bottom: decomposition
of Si–Me peak of FTIR spectra of DMCPS + porogen hybrid (c), DEMS + porogen hybrid (d), and DEMS + O2 + porogen
hybrid (e) [39].

Choosing the right ILD precursors can be very interesting because everything needs
to come together in a harmonious way. During deposition, each atom and bond matters,
and changing even the slightest factor could end up with drastically different results. The
same principle may apply to deposition and integration as well.

3. Deposition Methods

To understand why modifications would be needed on SiCOH precursors, we should
first discuss the evolution of the insulating layer dielectric (ILD) deposition process and
integration challenges over time. There are many ways to fabricate thin films, such as
electroplating, dip coating, physical vapor deposition (PVD), atomic layer deposition
(ALD), spin coating, and chemical vapor deposition (CVD). Electroplating is only suitable
for depositing thin layers of noble metals such as copper, gold, and platinum. In the
semiconductor industry, electroplating is frequently used for depositing copper wirings
in the dual-damascene process, which will be covered in later sections. Dip coating
works similar to spin-on coating except that the substrate will be completely submerged
in the organosilicon solution, which brings difficulties for subsequent processes. The
gentle conditions of physical vapor deposition do not change the chemical structure of the
precursors, which can neither polymerize precursors nor turn them into a stable film. ALD
is an ultra-thin film deposition technique that can uniformly deposit conformable films with
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a controlled thickness. However, the film growth rate of ALD is low because this method
requires a longer period for chemical reactions of two or more precursors. Furthermore, it
also has high material and energy waste during deposition. In IC manufacturing, two of the
most common ways for fabricating low-k ILD are the sol-gel spin-on technique and CVD,
which are usually enhanced by plasma [15]. Figure 7 shows the simplified demonstration
of these two methods.

Figure 7. Schematic demonstration of spin-on deposition (a) and the PECVD method (b).

3.1. Spin-On Deposition

The spin-on deposition is particularly suitable where deposition with a good planariza-
tion and gap-fill properties are required [8]. Furthermore, the sol-gel spin-on technique has
several advantages over CVD because it can produce ILDs with a high degree of porosity
which can achieve an extremely low dielectric constant around 2.0 [40–42]. The technique is
performed by dispensing prepolymer (usually a viscous liquid) on the center of a spinning
substrate. The centrifugal force from spinning would allow the prepolymer to expand uni-
formly on the substrate. The film thickness, in this case, is controlled by the spinning speed
and prepolymer viscosity [8]. After spinning, the viscosity of the prepolymer increases,
which will eventually turn into a “wet gel”. The wet gel is an incomplete-rigid structure
containing a small amount of solvent or moisture. This is an example demonstrating the
formation of TEOS wet gel (Figure 8) [43]. The TEOS molecule undergoes a hydrolysis
process with water under acidic conditions producing a hydroxy group attached to the
center silicon atom. The hydrolyzed TEOS would later condense with itself and Tween 80
(a porogen) as a pre-polymerized coating solution during the condensation process. This
solution is subsequently spun on a precleaned wafer at 3000 rpm for 30 s. After that, the
“wet gel” further forms between Si–OH and other free hydroxy groups [44]. The wet gel
will undergo thermal treatment, typically below 250 ◦C, to remove any solvent present in
the matrix, followed by a thermally initiated curing step, with temperatures varying from
350 to 600 ◦C to finish all the cross-linking among molecules. The final curing process can
also simultaneously remove any porogen that is existing in the system and create a thin
layer of porous film [8,43,45]. However, the sol-gel spin-on technique is not an efficient
deposition method for mass production. During a dual-damascene integration process,
many layers of different electrical components will be deposited on top of each other. The
engineering of a production line that can switch between spin-coating and various CVD
chambers is extremely complicated and expensive. Furthermore, the high temperature
from the final thermal annealing step will inevitably damage other electronic components.
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Figure 8. Synthetic route for porous TEOS “wet gel” [43].

3.2. Chemical Vapor Deposition (CVD)

While the spin-on technique is simpler, inexpensive to implement, and can benefit
from the engineering of molecules and polymers made by chemists, the CVD (often en-
hanced by a plasma known as PECVD), is a standard in the field of dielectric deposition
in micro-electronics and is often preferred by manufacturers [46,47]. The industry favors
fabricating ILDs with the CVD method for several reasons. First, the film made by this
method has a structure that resembles the structure of monocrystalline silicon (better
conformality), which is capable of filling small gaps. Second, this technique can achieve
sub-20 nm level film thickness, which can provide higher wiring density and complexity.
Furthermore, such a technique can easily be adapted to industrial mass production without
excessive modifications of the existing production lines. The fundamental principles of
CVD involve gas-phase reaction chemistry, thermodynamics, heat and material transfer,



Materials 2021, 14, 4827 13 of 20

fluid mechanics, surface and plasma reactions, thin-film growth mechanism, and reac-
tor engineering [8]. During the PECVD process, a significant percentage of precursor
atoms and molecules within the carrier gas is ionized and oxidized inside the chamber
(Figure 7b). These gas-phase active silane intermediates flow on the surface of the substrate
and proceed with a series of chain-branch reactions [48–50]. The main advantage of plasma
enhancement is that the electrons created from ionization are extremely light compared to
the weight of the atoms. This makes the energy exchange between electrons and neutral
gas very inefficient, which, in turn, enables the electrons to maintain a very high energy
level (equivalent to the energy level at thousands of kelvins), while the neutral atoms
remain at the ambient temperature. Such characters allow PECVD to be the most suitable
deposition technique for fabricating films onto substrates containing metal layers or other
temperature-sensitive structures.

4. Integration Challenges

The replacement of silicon dioxide in large-scale integrated (VLSI) interconnected
dielectrics (with low-k and pULK) added significant complexity to the integration of
the interconnected structure. While it is relatively easy to fabricate porous thin films
with a dielectric constant lower than 2.4, the real challenge is successfully integrating the
fabrication of the thin film into the current chip manufacturing process. Porous ILDs,
unlike SiO2, have low mechanical strength, thermal stability, and adhesive strength [15,27].
Furthermore, their porous structure makes them tend to trap other chemicals. As said
by Thomas Abell, the integration of low-k materials is comparable to building a fire and
waterproof wall out of sponge rather than concrete [15]. All the physical features of porous
low-k dielectrics bring challenges to latter integration processes.

4.1. Improving Adhesion

The first challenge of the integration is strengthening the pULK layers’ interfacial
adhesion. The stickiness of the porous dielectric layer is relatively low. This is caused by
a high carbon concentration during the PECVD process. To eliminate such a problem, a
transition layer that chemically resembles the pULK layer with improved adhesiveness
must be present on the surface of the dielectric layer. Grill et al. reported a process
where the precursors for the fabrication of the ILD were introduced gradually into the
PECVD reactor while an oxygen-containing plasma was already active in the chamber [27].
After the completion of the initial oxidized layer, the oxygen flow was then reduced, and
the precursor flow was adjusted to the regular deposition flow of the bulk ILDs. This
process created an initial oxide layer in contact with the dielectric cap (SiCNH), followed
by a smooth graded layer where the C concentration increased from almost 0% to its
concentration in the bulk ILD [27,51]. Making such an interlayer only requires changing
deposition parameters of the CVD chamber, but the parameter adjustment becomes more
complicated for the pULK film with subtractive porosity (SiCOH precursor + porogen
precursor). The detailed description can be found in the published patents [52,53].

4.2. Dual-Damascene Process and Plasma-Induced Damage

Plasma technology has been very prevalent in micro-electronic manufacturing pro-
cesses, including cleaning, surface treatment, dielectric etching, metal barrier deposition,
and metal deposition [11]. One important point is that these are post-fabrication plasma
treatments, which are not part of the thin film fabrication process. The degradation of
porous ILDs caused by the plasma-related treatment is known as Plasma-Induced Dam-
age (PID). Compared to crystalline silicon dioxide, pULK materials’ spongy nature has
made them mechanically weak, thermally unstable, and hydrophilic. To better understand
where PIDs come from, it is necessary to know the basic integration process known as
the dual-damascene process. The first task is to incorporate copper into the system. The
IC industries replaced aluminum wiring with a lower resistance copper to minimize the
resistance-capacitance (RC) delay of transistors [54,55]. The replacement of aluminum
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introduced more complications on the damascene process because copper is not suitable
for reactive ion etching due to the low volatile by-products that can diffuse into the pores
from the ILDs. To solve this problem, a Cu barrier layer, usually TiN [56], TaN, or Ta, is
deposited onto the surface of the dielectric layer prior to the deposition of copper (blue
portion in Figure 9). The Cu barrier layer is deposited by physical vapor deposition (PVD)
with sputtering enhanced by plasma. After this step, a Cu seed layer is also deposited
with the same method, followed by electrochemical plating (ECP) of Cu [57,58]. After Cu
deposition, chemical mechanical polishing (CMP) was performed on top to grind down the
extra portion of Cu and expose the porous dielectric layer [59,60]. An NH3 or H2 plasma
clean is performed to remove copper oxides prior to the deposition of the cap layer for ad-
hesion improvement [61,62]. Both of these steps can cause PID on the pULK layer. Another
pULK layer will be deposited on top of the cap layer for the subsequent patterning of the
copper wire. O2 plasma is widely used during the photoresist (PR) patterning process, and
the presence of oxygen radicals can easily damage the low-k dielectric film’s surface. To
limit the PID from this process, H2 can also be used as an alternative plasma gas to replace
O2 [63,64]. After the removal of the photoresist layer, an anti-reflective coating (ARC)
material is filled in the gap between dielectric layers with the spin-on method to protect
the silicon nitride layer. This material can later be removed as a part of the photoresist
stripping process [65]. The deposition cycle can be repeated for multi-layer fabrications.

Figure 9. Dual-Damascene process flow for Cu/low-k interconnects [11].

4.3. PID Prevention

Over the past two decades, while the dielectric constant keeps getting lower, the
integration challenges, such as PID, motivate the innovation of precursors and deposition
techniques. Various modifications of silane and siloxane monomers and polymers have
enabled the ILDs to maintain low dielectric constants, high breakdown voltages, good
thermal stabilities, and better hydrophobicity to meet the critical requirements of plasma-
involved integration.

As discussed in the previous section, plasma-induced damage (PID) presents every-
where in the dual damascene process. The harsh conditions of plasma would cause a
depletion of carbon atoms on ILD’s contacting layer with conductive materials. The PID
layer is a hydrophilic low-carbon-containing SiO2-like dense layer. As the transistor size
shrinks, the PID layer occupies a larger portion within pULK ILD, which brings down
the performance of the chips. To fabricate a functional pULK ILD at 32 nm technology
node or smaller, the PID layer must be kept at a very small portion of the ILD layer. This
means sacrificial carbon content must increase within precursors while maintaining a
relatively high silicon ratio. To meet this standard, Si–C–Si structured precursors, such
as [trimethylsilylmethyl]dimethoxymethylsilane (TDMMS), are mixed with conventional
SiOCH precursors to produce pULK ILDs. Figure 10 shows a general schematic structure
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of Si–C–Si precursors and the chemical structure of TDMMS. Compared to carbon-rich
precursors with a single silicon atom per molecule, the Si–C–Si structured precursors have
two silicon atoms per molecule, which can produce ILDs with higher SiOx crosslinking
density while maintaining a relatively high carbon content [27]. In Table 5, the PID ratios
for V2 and V4, within the similar dielectric constant range, are significantly lower than
those of V1 and V3, suggesting that the increase of Si–C bond densities can provide better
plasma-resistance for dielectric interlayers.

Figure 10. Schematic structure of a Si–C–Si precursor (left) and TDMMS (right) as a typical example.

Though a highly porous structure could be obtained after PECVD, too many pores can
also be problematic. First, the copper substrate, unlike the older generation Al substrates,
tends to diffuse inside the pores, causing the ILDs’ dielectric constant to rise. Furthermore,
as pore size gets larger, the film tends to trap moisture inside pores leading to higher
conductivity. Furthermore, during the ECP of Cu, atoms will also inevitably diffuse inside
pores on the ILDs’ surface and compromise their dielectric properties. The copper barrier
layer and etching stop layer from previous sections are the two types of dense protection
layers for stopping atom-diffusion. The atomic layer deposition (ALD) of tantalum or
titanium-based materials, such as Ta and TaN or TiN, was considered as one of the most
promising ways to stop metallic diffusion [8]. Yet, the gaseous TaN during ALD deposition
of such materials can penetrate into the pores on the dielectric surface as well, which
compromises the conductivity of the previously fabricated ILDs. One promising way to
stop such undesirable penetration is sealing pores from the surface region to create a dense
“skin layer”. According to Puyrenier et al., the composition of such a layer can be varied
by different plasma treatments: He, NH3/N2, etch + ash, or NH3 plasma treatment [9].
Specifically, NH3 plasma treatment induces a thin top layer with the lowest permeability
coefficient; thus, this plasma is the most efficient for surface pore sealing (Table 8). In 2007,
Peng and coworkers successfully applied NH3 plasma treatment on MSQ porous ILD to
create a very thin SiCN layer (~10 nm) with little damage to the ~300 nm thick pULK film.
They achieved the best results in terms of mechanical strength and anti-diffusion properties
at 300 ◦C for 10 s. The depth/thickness of the sealed layer is dependent on the temperature
and duration of the plasma treatment [10]. Besides NH3 plasma treatment, post porosity
plasma protection (P4) or pore stuffing has also gained a lot of attention during recent years.
The filling materials are proprietary methacrylate-based copolymers such as poly(methyl
methacrylate) (PMMA) [66]. The schematic description of the P4 process is shown in
Figure 11a. A layer of pULK film is initially deposited on a substrate with the PECVD
method. After fabrication, a CO2 plasma treatment is used to activate the low-k surface and
avoid polymer de-wetting. The PMMA polymer would be spin-coated on the top surface of
the dielectric layer. By thermal annealing well above the glass transition temperature of the
polymer, the solvent would further evaporate, and polymers would also simultaneously
penetrate into the pULK film. By optimizing thermo-induced pore stuffing and propylene
glycol monomethyl ether acetate (PGMEA) rinse processes, uniformly stuffed low-k film
was obtained. After the photoresist patterning process and deposition of the metal barrier
layer and Cu conductors, the PMMA polymer is burned out by thermal annealing at 450 ◦C
in N2 [67]. As shown in Figure 11b, the calculated damage depth suggests that PID for ILD
without P4 treatment is significantly higher than that of P4 treated ILD. This effect is even
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more prominent as the exposure time of Ar/CF4 etching gets longer. Based on the atomic
force microscopy (AFM) characterizations shown in Figure 11c, the surface roughness for a
stuffed sample is ten times smaller than that of non-protected samples. This enables better
continuity with a very thin barrier layer, and hence, less metal diffusion [67].

Table 8. Thickness and permeability coefficients of the modified top layer.

Samples Surface Layer Thickness Measured by Ellipsometry
(nm)

Surface Layer Permeability Coefficient
(mol m−1 s−1 Pa−1)

Low-k N/A N/A
Low-k + He 9 ± 1 5 × 10−17

Low-k + NH3/N2 6 ± 1 9 × 10−17

Low-k + etch + ash 9 ± 1 7 × 10−20

Low-k + NH3 8 ± 1 8 × 10−21

Figure 11. (a) Schematic description of the dual damascene process via P4 approach; (b) Penetration of Ar/CF4 plasma-
induced damage for both stuffed and non-stuffed p-OSG; (c) Surface roughness by AFM for stuffed and non-stuffed
samples after Ar/CF4 plasma etch. Note that stuffed sample received additional thermal un-stuffing process before
AFM characterization.
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5. Conclusions

To improve the performance of ICs, the dielectric materials constantly evolved to
achieve a lower dielectric constant. This review covers the evolution of organosilicon ILDs
through three aspects, classification of different types of organosilicon dielectric materials
and their precursors, ILD fabrication techniques, and integration challenges and possible
solutions during the fabrication process. At first, the shrinkage of the microprocessors’ size
in electronic devices puts a high demand on reducing the dielectric constant of interlayer
dielectric materials. The reduction of the dielectric constant of SiO2 allowed the invention
of newer dielectric materials such as SSQ, FSG, and SiCOH. Within the SSQ materials
category, MSQ outperforms other similar SSQ materials due to its high thermostability,
good metal adhesion, relatively high hydrophobicity, and low dielectric constant (2.7–2.9).
However, the hardness of such a material is far less than that of SiO2, which makes it a less
desirable candidate for ILD applications. FSG materials, despite having good dielectric
property (3.2–4.0) and hydrophobicity, cannot tolerate high temperatures due to thermally
unstable Si–F bonds. Carbon doped silica or SiCOH materials have a low dielectric constant
(2.7–3.3) and better hardness over other materials, especially the SiCOH ILDs made with a
DEMS precursor, which appeared to have unexpectedly good mechanical and dielectric
properties. Nevertheless, these dense materials’ dielectric constant bottlenecks at 2.6. As
the IC size kept shrinking, ILD materials with even lower dielectric constant were de-
manded. pULk materials were discovered to overcome this bottleneck. Meanwhile, the
low mechanical and thermal stability of pULk materials brings many new challenges for
the dual-damascene integration process; therefore, lots of re-engineering for the integration
process has advanced during the past few decades to maximally preserve pULK films’
dielectric properties. The adhesion is improved by applying oxygen plasma at the ini-
tial deposition phase to create an initial oxidized state, which generates better stickiness.
Methods such as increasing carbon content, surface NH3 plasma treatment, and P4 treat-
ment were invented to minimize the integration-related plasma-induced damage. In the
near future, the dimensions of porous ILDs will keep shrinking down to few nanometers,
and the electrical, mechanical and thermal stability requirements will keep getting higher.
Novel organic-inorganic nanocomposites and 3D porous materials, as well as engineering
improvements, are urgently needed to pave the road for the next generation of IC packing.
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