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Although epilepsy is one of the most common neurologic disorders, there is still a
lack of effective therapeutic drugs for it. Recently, we synthesized a novel hydrogen
sulfide (H2S) donor, which is found to reduce seizures in animal models effectively. But
it remains to be determined for its mechanism. In the present study, we found that the
novel H2S donor could reduce pilocarpine-induced seizures in mice. It alleviated the
epileptic behavior, the hippocampal electroencephalography (EEG) activity of seizures,
and the damage of hippocampal neurons in status epilepticus mice. In addition, the
novel H2S donor could reduce microglial inflammatory response. It not only reduced
the upregulation of pro-inflammatory markers [inducible nitric oxide synthase (iNOS)
and cyclooxygenase 2 (COX2)] in status epilepticus mice, but also increased the
levels of microglial anti-inflammatory marker arginase-1 (Arg-1). In lipopolysaccharide-
treated microglia BV2 cells, administration of the H2S donor also significantly reduced
the lipopolysaccharide-induced upregulation of the expression of the pro-inflammatory
markers and increased the expression of the anti-inflammatory markers. Thus, the
novel H2S donor regulates microglial inflammatory profile in status epilepticus mice and
in vitro. These results suggested that the novel H2S donor can reduce seizures and
regulate microglial inflammatory profile, which may be a novel mechanism and potential
therapeutic strategy of the H2S donor anti-seizures.

Keywords: hydrogen sulfide donor, status epilepticus (SE), inflammatory profile, neuroinflammation, pilocarpine

INTRODUCTION

Epilepsy, a nervous system disorder characterized by sudden abnormal hypersynchrony of neurons,
affects 70 million people in the world. Despite there are various antiepileptic drugs available,
approximately 30–40% of patients are refractory to these treatments (Kwan et al., 2010; Thijs
et al., 2019). Therefore, it is urgent to explore the pathogenesis of epilepsy and find alternative
treatment strategies.

Microglia are brain resident immune cells and are emerging as central players in regulating
pathways of central nervous system (Aloisi, 1999). Microglia are phenotypic plastics and can be
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activated by variety of stimuli to express various inflammatory
profile (Hu et al., 2015; Orihuela et al., 2016). In some
specific disease states, microglia express more inducible nitric
oxide synthase (iNOS) and release more pro-inflammatory
cytokine including interleukin (IL)-1β and tumor necrosis factor-
α (TNF-α). While under the stimulation of specific drugs
or cytokines (such as resveratrol or IL-4), the expression of
several proteins including arginase-1 (Arg1) and the production
of anti-inflammatory cytokines such as IL-10, IL-4, and IL-
13 increased in microglia (Gordon, 2003; Benson et al., 2015;
Yang et al., 2017; Therajaran et al., 2020; Zhang et al.,
2021). A number of studies have reported that microglial
activation was observed in patients and animal models of
various types of epilepsy (Vezzani, 2004; Vezzani et al., 2015,
2019). Microglial activation has been recognized as a major
contributor to inflammation of the epileptic brain (Vezzani et al.,
2015). The “activated” microglia have exhibited heterogeneity
in their phenotypes, which makes it difficult to determine
whether these microglia are proepileptic or antiepileptic (Hiragi
et al., 2018). Both microglial pro-inflammatory cytokines (IL-
1β and TNF-α) and anti-inflammatory cytokines (IL-4 and
IL-10) showed increased expression after pilocarpine-induced
status epilepticus, indicating a complex role of microglia
in the epileptic brain (Hu et al., 2015). Microglial pro-
inflammatory cytokines have been implicated in epileptogenesis.
In contrast, microglial anti-inflammatory cytokines participate in
the resolution of the inflammatory processes, thereby potentially
limiting epileptogenesis (Gordon, 2003; Therajaran et al., 2020).
Therefore, modulation of microglial inflammatory profile will
become a potential therapeutic strategy for epilepsy.

Hydrogen sulfide (H2S), a traditional toxic gas in the
atmosphere, is synthesized endogenously in mammals and
recognized as a gaseous signaling molecule that may act
as a neurotransmitter in brain (Vandiver and Snyder, 2012;
Wang, 2012; Kolluru et al., 2013; Nagpure and Bian, 2015).
Concentrations of H2S in the brain changes in a variety of
neurological diseases including seizures (Han et al., 2005; Bae
et al., 2013; Giuliani et al., 2013; Luo et al., 2014; Paul and Snyder,
2014). High concentration of H2S has toxic effects, whereas low
concentration of H2S has neuroprotective effects (Tan et al.,
2010; Hu et al., 2011). The downregulation of H2S levels results
in hippocampal hyperactivity in febrile seizure rats, whereas
neural excitability is reduced by administration of NaHS (Han
et al., 2005). H2S can also prevent damage in the hippocampus
caused by recurrent episodes of febrile seizures (Chen et al.,
2015). Unfortunately, traditional H2S donors including NaHS
and other sulfates are easily oxidized to form sulfane sulfursor
and cause adverse effects due to quick release (Yang et al.,
2020). Recently, we synthesized a novel carbazole-based H2S
donor, which is safer and has more effective pharmacological
administration to release H2S (Li et al., 2008; Li Y. F. et al.,
2009; Yang et al., 2020; Zhu et al., 2020). We found that
the novel H2S donor has the effects of neuroprotection and
reduction of epileptic seizures (Zhu et al., 2020, 2021; Liu
et al., 2021). However, the underlying mechanisms of the H2S
donor against seizures are poorly understood. In this study,
we investigated the potential role of the novel H2S donor in

regulating microglial inflammatory profile and found that it can
decrease microglial pro-inflammatory profile and simultaneously
increase the microglial anti-inflammatory profile in pilocarpine-
induced status epilepticus mice.

MATERIALS AND METHODS

Animals
Adult male C57BL/6 mice (25 ± 2g, 8–12 weeks old)
were purchased from GemPharmatech conditions (ambient
temperature: 20 ± 2◦C; humidity: 60 ± 5%) with 12 h light/dark
cycle, and provided ad libitum access to food and water. All mice
were randomly divided into four groups: Control group (Ctrl), SE
group, H2S donor intervention group (SE+H2S), and H2S donor
control group (H2S).

Initially, the mice were pretreated with H2S donor or
dimethyl sulfoxide (DMSO) 2 h before pilocarpine-induced
status epilepticus (SE). Then, the behavioral changes and
electroencephalography (EEG) of mice were recorded during SE.
The mice were sacrificed at various time points (1d, 7d, 14d, 28d)
after the SE induction, and the brain was removed and stored at
−80◦C for corresponding experiments. All the experiments were
approved by the Institutional Animal Care and Use Committee
of Guangzhou Medical University.

Pilocarpine-Induced Status Epilepticus
Model
After pretreatment with H2S donor (500 µM, 5 µl, i.c.v.) or
DMSO (5 µl, i.c.v., sigma, United States) for 2 h, animals
from both groups (SE and SE+H2S) were injected with
pilocarpine to induce SE. Specifically, atropine (1 mg/kg, i.p.,
sigma, United States) was given 30 min prior to pilocarpine
hydrochloride (300 mg/kg, i.p. of meilinbio, China) to reduce
the peripheral effects. Seizure scores were assessed according
to the protocol of a previous study (Mello and Covolan,
1996). Briefly, some mice presented a generalized convulsive
(stage 4 or 5) seizure that turned into continuous seizures
in the form of limbic motor seizures with intense salivation,
rearing, upper extremity clonus, and falling, lasting up to 90–
150 min, which characterized SE. Diazepam (10 mg/kg, i.p.,
King York, China) was injected 90 min after SE onset to
inhibit or alleviate SE. The mice that progressed to at least
Stage 4 were killed for immunohistochemistry or western blot at
various time points.

H2S Donor Pretreatment by Lateral
Ventricle Injection
The mice were anesthetized by intraperitoneal injection of
2% sodium pentobarbital, and then fixed on the stereotactic
apparatus. The H2S donor was delivered at 500 µM in 5 µl
of DMSO in mice by i.c.v. injection. The coordinates were as
follows: 0.2 mm posterior to bregma, 0.9 mm lateral to the sagittal
suture, and 2.0 mm below the subdural surface (Feng et al., 2019;
Mo et al., 2019). The needle was remained in place for 10 min and
then withdrawn slowly.
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Electroencephalography
Hippocampus EEG was recorded as previously described (Zhu
et al., 2021). First, the mice were anesthetized by intraperitoneal
injection of 2% sodium pentobarbital (30 mg/kg) and fixed in the
stereotactic apparatus. The hippocampus was located as follows:
2.3 mm posterior to bregma, 1.8 mm lateral, 2.0 mm ventral
to the duramater. The skull was drilled, and a stainless steel
bipolar copper core electrode was inserted into the subdural
3.0 mm. After implantation, all electrostatic electrodes were
fixed on the skull with jewel screws and dental acrylic acid.
EEGs of mice were recorded by a BL-420E Biological Function
Experimental System (Techman, Chengdu, China) for 1 h. Then,
the wave amplitudes were measured in microvolts (µV) via
TM_WAVE version 2.1 (Techman, Chengdu, China) and data
were analyzed and counted.

Western Blotting
The hippocampal tissue or BV2 cells were lysed with radio
immunoprecipitation assay (RIPA) lysate (Beyotime, China).
The protein concentration was measured by bicinchoninic acid
(BCA) Protein Assay Kit (Beyotime, China). Due to the difference
in the expression of target proteins (such as IL-10 and Arg-1),
the loading mass of total protein was increased up to 80 µg per
lane in order to obtain clearer band signals. The total loading
volume is controlled within 10 µl per lane to avoid sample
overflow. Samples were subjected to 10–12% sodium dodecyl
sulfate-polyacrylamide (SDS-PAGE) gel electrophoresis and
transferred onto polyvinylidene-difluoride (PVDF, Millipore,
United States) membranes. Then, the membranes were
blocked with bovine serum albumin (BSA), and incubated
with rabbit anti-COX2 (1:500, #12375-1-AP, Proteintech
Group, United States), rabbit anti-Arg-1 (1:4,000, #16001-1-AP,
Proteintech Group, United States), rabbit anti-TNF-α (1:1,000,
#bs-0078R, BIOSS, China), rabbit anti-IL-10 (1:1,000, #bs-
20373R, BIOSS, China), mouse anti-glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) (1:8,000, #60004-1-Ig, Proteintech
Group, United States), and rabbit anti-Tubulin (1:1,000, #11224-
1-AP, Proteintech Group, United States) at 4◦C overnight.
After that, the protein strips were incubated with horseradish
peroxidase (HRP)-conjugated secondary antibodies at room
temperature for 1h, and analyzed with the Bio-Rad ChemiDoc
Imaging System. Bands densities were digitally quantified by
Image J software.

Nissl Staining
The hippocampal tissue sections were mounted and were
dehydrated in ascending series of ethanol. Then, the slices were
stained with Nissl Staining Solution (Beyotime, China). Finally,
the slices were observed under a microscope. At least three
sections were taken from each brain. And, all assessments of
histological sections were performed blindly.

Immunohistochemistry and
Immunofluorecent
After blocking with QuickBlock Blocking Buffer for Immunol
Staining (Beyotime, China), the slices of cells or tissue
were incubated with the corresponding primary antibody for

goat anti-Iba1 (1:200, #ab5076, Abcam, United Kingdom),
mouse anti-iNOS (1:200, # sc-7271, Santa Cruz Biotechnology,
United States), or rabbit anti-Arg-1 (1:100, #16001-1-AP,
Proteintech Group, United States) overnight at 4◦C, and then
were incubated with the second antibody (1:500, AlexaFluor-594
and/or 1:500, AlexaFluor-488, Multisciences, China) at 37◦C for
1 h. After three washes with phosphate-buffered saline (PBS)
for 5 min each, 2-(4-Amidinophenyl)-6-indolecarbamidine
dihydrochloride (DAPI) was added to stain nuclei for 5 min. And
images were scanned under a confocal laser-scanning microscope
(SP8; Leica). Cell numbers were calculated by counting per
random microscopic field via a blind method. The data are
expressed as the number of Iba1+ cells per field or the percentage
of iNOS+ or Arg-1+ cells in Iba1+ cells. Cell fluorescent signal
intensity was quantified using Image J.

Cell Culture and Model of Inflammation
in vitro
BV2 cells were purchased from American Type Culture
Collection (Manassas, VA, ATCC) and were cultured in
Dulbecco’s modified eagle’s medium (DMEM) containing 10%
fetal bovine serum (FBS) at 37◦C in a humidified incubator with
5% CO2. The cells were treated with H2S donor (100 µM) for
12 h before being treated with 100 ng/ml lipopolysaccharide
(LPS, Escherichia coli serotype 055:B5, sigma, United States) for
another 12 h (Yang et al., 2017).

Statistical Analysis
These results were obtained through more than three
independent repeated experiments. Data were analyzed using
statistical product and service solutions (SPSS) 25.0 software
(SPSS Inc., Chicago, IL, United States) and one-way or two-way
ANOVAs, followed by Bonferroni’s post hoc test. All data were
expressed as the mean ± SEM, and the statistical significance
level was set at p < 0.05.

RESULTS

The H2S Donor Reduced Seizures in
Pilocarpine-Induced Status Epilepticus
Mice
To investigate the effect of the novel H2S donor on seizures, we
performed i.c.v injection of the H2S donor (500 µM, 5 µl) in
pilocarpine-induced SE mice. First, the severity of seizures was
observed by testing Racine scale. As shown in Figures 1A,B,
the control group mice did not appear epileptic seizure. The
SE mice treated with the H2S donor displayed a longer latency
of seizure onset (ANOVA, p = 0.001) and a shorter seizure
duration (ANOVA, p < 0.001) than pilocarpine-induced SE mice.
Meanwhile, EEG was applied to record the brain waves of the
hippocampus of mice. As shown in Figure 1C, no abnormal
discharge was observed in mice of the control group. EEG traces
in SE mice showed epileptic brain waves characterized by sharp,
spiking, or spiking/slow waves. Consistent with the behavioral
observation, administration of the H2S donor significantly
reduced the epileptic waves (Figure 1C). EEG amplitude analysis
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FIGURE 1 | The hydrogen sulfide (H2S) donor reduced seizure in a pilocarpine-induced mice model. (A) Status epilepticus (SE) mice treated with the H2S donor
displayed a longer seizure latency. n = 9, 9, 8, and 9 for control, SE, SE+H2S, and H2S groups respectively. (B) The H2S donor shortened the duration of seizures in
SE mice. n = 9, 9, 10, and 9 for control, SE, SE+H2S, and H2S groups respectively. (C) Representative EEG waves in mice of each group. (D) Statistics data of
wave amplitude of electroencephalography (EEG) in different groups. SE mice showed increased wave amplitude of EEG, which was significantly reduced by the
H2S donor administration. n = 5 per group. The results are expressed as the mean ± SEM. ***p < 0.001 vs Control, ##p < 0.01, ###p < 0.001 vs SE. One-way
ANOVA with Bonferroni post hoc tests.

in Figure 1D showed that wave amplitudes in SE mice were
significantly higher than (ANOVA, p < 0.001) that in control
mice. And the H2S donor decreased the amplitudes of epileptic
wave in SE mice (ANOVA, p < 0.001) (Figure 1D).These results
suggested that the H2S donor reduced seizures in pilocarpine-
induced mice model.

The H2S Donor Reduced Neuronal
Damage in the Hippocampus of Status
Epilepticus Mice
Next, we investigated the effect of the novel H2S donor on the
neuronal damage in different periods after status epilepticus by

Nissl staining. At the early stage (1d) after status epilepticus,
both CA3 and CA1 areas of the hippocampus showed pyramidal
cells arranged densely in line. The Nissl bodies were stained
bluish violet and evenly distributed in the cytoplasm, suggesting
no obvious morphological damage occurred in the early stage
(Figures 2A,B). However, the visible decrease of Nissl bodies
occurred at 7d after status epilepticus, reached a peak at 14d, and
repaired at 28d. In SE mice, disorder of neuronal arrangement
and central chromatolysis were observed in both CA3 and CA1
regions of the hippocampus in progressive stage (7d and 14d). In
the convalescent/chronic stage (28d), Nissl body in the cytoplasm
partly recovered, and necrosis of neurons were replaced by
vacuoles like structures in the tissues (Figures 2A,B). However,
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FIGURE 2 | The H2S donor reduced neuronal damage in the hippocampus of SE mice. (A,B) Nissl staining of hippocampus at different time points (1d, 7d, 14d,
28d) after status epilepticus in SE group and SE+H2S group. Scale bars, 25 µm in CA3 and 200 µm in hippocampus. n = 5 per group.

SE mice treated with the novel H2S donor displayed a better
morphology of neurons and more Nissl bodies in cytoplasm in
the hippocampus, compared with SE mice. Even on the 14th
day of the most severe seizures injury, the complete cell contour
was preserved in the H2S donor-treated SE mice, but not in
SE mice. In convalescent/chronic stage after status epilepticus,
there are more dense Nissl bodies and fewer vacuolar structures
in the cytoplasm in the hippocampus of the H2S donor-treated
SE mice. These results suggested that the H2S donor decreased
the damage of hippocampal neurons in progressive stage of
status epilepticus and promoted the repair of neuronal injury
in chronic stage.

The H2S Donor Downregulated the
Levels of Microglial Pro-inflammatory
Profile in vivo
Microglial activation has been recognized as a major contributor
to inflammation of the epileptic brain (Vezzani et al., 2015).
We explored the role of the novel H2S donor on the
inflammatory profile regulation of microglia. A few Iba1+cells
stained with green were observed in the hippocampus of the
control and the H2S donor-treated group. These Iba1+cells have
small cell bodies with a few bifurcations. And there was no
significant difference between the two groups in appearance
(data not shown). As shown in Figures 3A–D, a number of
Iba1+cells with different morphologies were observed in the

hippocampus of each group. These Iba1+cells in SE groups
more likely had an enlarged and flat shape cell body with
amoeboid appearance. However, in the H2S donor-treated SE
groups, Iba1+cells did not show the inflammatory activation
state and showed multi-bifurcated appearance. We quantified
the number of Iba1+ cells in each group and found that
there were more Iba1+cells in SE groups [two way-ANOVA,
CA1: F(1, 36) = 17.37, p < 0.001; CA3: F(1, 36) = 44.79,
p < 0.001] (Figure 3E). The number of Iba1+cells in both
the CA1 and CA3 areas of the hippocampus increased to
a peak at 14 d after status epilepticus [two way-ANOVA,
CA1: F(2, 36) = 13.72, p < 0.001; CA3: F(2, 36) = 25.30,
p < 0.001] and declined by 28 d [two way-ANOVA, CA1: F(2,
36) = 13.72, p < 0.001; CA3: F(2, 36) = 25.30, p < 0.001]
after pilocarpine. We also observed iNOS, a pro-inflammatory
marker, co-localized with Iba1. The number of iNOS/Iba1
double-labeled cells was significantly more in SE mice than
that in the H2S donor-treated SE mice [two way-ANOVA,
CA1: F(1, 36) = 91.38, p < 0.001; CA3: F(1, 36) = 64.56,
p < 0.001] (Figure 3F). In contrast, the co-localized cells
of the anti-inflammatory marker Arg1/Iba1 were fewer in
SE mice than that in the H2S donor-treated SE mice [two
way-ANOVA, CA1: F(1, 36) = 184.28, p < 0.001; CA3: F(1,
36) = 153.95, p < 0.001) (Figure 3G). The Western blot
assay showed that the H2S donor treatment alone did not
increase the expression of inflammatory profile (such as TNF-
α, COX2, IL-10, and Arg1) (Figures 3H–K). However, the
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FIGURE 3 | The H2S donor downregulated the levels of microglial pro-inflammatory profile in vivo. (A,B) Representative images of iNOS (red) with Iba1 (green)
immunostaining or (C,D) Arg1 (red) with Iba1 (green) immunostaining in the CA1 and CA3 regions of the hippocampus in control and the H2S donor-treated SE
mice. Scale bar 25 µm in the merged panel and 5 µm in the magnified panel. Magnified images are expansions of boxed areas in corresponding panels in the left of
each magnified image. (E) Quantitative analysis of Iba1+cells in CA1 and CA3 regions of the hippocampus. (F) Quantitative data are shown the ratio of iNOS+:
Iba1+to total Iba1+cells. n = 6 per group. ***p < 0.001 vs SE. Two-way ANOVA with Bonferroni post hoc tests. (G) Quantitative data are shown as the ratio of
Arg1+: Iba1+to total Iba1+cells. n = 6 per group. ***p < 0.001 vs SE. Student’s t test. (H–K) Western blot assay shows that expression levels of microglial
pro-inflammatory markers (COX2 and TNF-α) are increased in the hippocampus of SE mice. However, the H2S donor decreased COX2 and TNF-α expression and
increased Arg-1and IL-10 expression in SE mice. The results are expressed as the mean±SEM. n = 3 per group.*p < 0.05, **p < 0.01 vs Control,#p < 0.05,
##p < 0.01 vs SE. One-way ANOVA with Bonferroni post hoc tests.

H2S donor treatment in SE mice not only decreased the
expression of microglial pro-inflammatory markers (COX2
and TNF-α) in the hippocampus (ANOVA, COX2: p = 0.03;
TNF-α: p = 0.01) (Figures 3H,J), but also increased the levels
of microglial anti-inflammatory markers (Arg1 and IL-10)

(ANOVA, Arg1: p = 0.002; IL-10: p = 0.009) (Figures 3I,K).
Taken together, our results indicate that the novel H2S donor
reduced microglial pro-inflammatory profiles and promoted
the anti-inflammatory profiles in the pilocarpine-induced
SE mice.
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The H2S Donor Downregulated the
Levels of Microglial Pro-inflammatory
Profile in vitro
To further clarify the effect of the H2S donor on the inflammatory
profile of microglia, we established an inflammation model of
microglia induced by LPS in BV2 cells. LPS can result in microglia
activation and increase pro-inflammatory cytokines, which is
thus known as a representative microglial activation inducer
(Yang et al., 2017). As shown in Figures 4A–C,E, LPS significantly
increased the pro-inflammatory marker iNOS expression in BV2
cells with no change in the anti-inflammatory marker Arg1
expression. The increased iNOS expression was significantly
reduced by administration of the H2S donor in LPS-treated BV2
cells (ANOVA, p < 0.001). In contrast, the H2S donor had an
upregulating effect on Arg1 expression (ANOVA, p = 0.04). The
Western blot assay shows that LPS caused an increase in the
expression of the pro-inflammatory markers (COX2 and TNF-
α) in BV2 cells (ANOVA, COX2: p = 0.001; TNF-α: p = 0.008),
but not in that of the anti-inflammatory markers (Arg1 and IL10)
(Figures 4D,F). Administration of the H2S donor significantly
reduced the LPS-induced upregulation of the expression of the
pro-inflammatory markers (ANOVA, COX2: p = 0.004; TNF-
α: p = 0.02) (Figure 4D), and increased the expression of the
anti-inflammatory markers in LPS-treated BV2 cells (ANOVA,
Arg1: p = 0.03; IL10: p = 0.04) (Figure 4F). These results
suggested that the H2S donor had also regulating effect on
inflammatory profile in LPS-induced inflammation model of
microglia in BV2 cells.

DISCUSSION

Hydrogen sulfide has been identified as an important endogenous
gasotransmitter regulating various physiological and pathological
processes. Recently, we synthesized a novel more stable H2S
donor, and found it has inhibitory effects on epileptic seizures
in a pentetrazol (PTZ)-induced rat model (Zhu et al., 2020,
2021). The present study indicated that the novel H2S donor
also reduced seizures in pilocarpine-induced mice model. The
novel H2S donor could prolong the latency to seizure onset, and
shorten the duration of seizures. In addition, the H2S donor could
downregulate the levels of microglial pro-inflammatory profile
and increase the levels of microglial anti-inflammatory profile
in vivo and in vitro.

Inflammatory cytokines play an important role in epileptic
seizure (Webster et al., 2017; Wang and Chen, 2018). The
levels of several pro-inflammatory cytokines such as IL-1β, IL-
6, and TNF-α are often elevated in cerebrospinal fluid and
serum of patients or rats with epilepsy (Uludag et al., 2013;
Webster et al., 2017). These cytokines can increase the excitability
of neurons and damage neurons, and are thus thought to
be involved in epileptogenesis (Vezzani et al., 2011, 2013).
Therefore, anti-inflammatory therapy can effectively reduce the
occurrence of epilepsy and chronic seizures. Anti-inflammatory
cytokines such as IL-10 may potentially limit epileptogenesis.
Both in vitro and in vivo studies show that H2S has regulating

effects on various inflammatory factors (Li L. et al., 2009;
Huang et al., 2016; Castelblanco et al., 2018). For example,
the H2S donor (NaHS) administration reduced the expression
of microglial pro-inflammatory markers (IL-1β and TNF-α)
and concomitantly increased the expression of microglial anti-
inflammatory profile (IL-4 and TGF-β) in the brain regions
of LPS-treated animals (Kumar et al., 2021). However, the
H2S administration alone had no effect on basal inflammatory
markers (such as COX2, TNF-α, IL-10, and IL-4) (Du et al., 2014;
Kumar et al., 2021). Consistent with the present results, the H2S
donor by itself does not decrease the basal level of TNF-α or IL-
10. Thus, the H2S only has effects on the changes of inflammatory
factors in the disease states, and does not change their basic levels.
Besides, the present study also showed that the novel H2S donor
pretreatment can not only decrease the levels of TNF-α, but also
markedly increase the levels of IL-10 in the hippocampus of SE
mice. Consistently, morphological observation showed that the
H2S donor decreased the damage of hippocampal neurons in
progressive stage of status epilepticus and promoted the repair
of neuronal injury in chronic stage. EEG recordings showed that
the H2S donor reduced the hippocampal epileptic waves and EEG
amplitude. Obviously, the present results of the three effects of the
H2S donor on the hippocampus are consistent in SE mice.

The microglia are privileged with phenotypic plasticity and
can be stimulated by different stimuli to regulate physiological
responses and behavioral results in disease (Santos et al., 2016).
It is widely accepted that microglial activation occurs following
seizures (Eyo et al., 2017; Feng et al., 2019). The activated
microglia play a primary role in the production of cytokines.
The expression levels of microglial pro-inflammatory cytokines
(TNF-α and IL-1β) and anti-pro-inflammator cytokines (IL-10
and IL-4) increase in brain after status epilepticus (Benson et al.,
2015). It is reported that abnormally activated microglia, such
as stimulated by LPS or kainic acid (KA), aggravate nervous
system injury by secreting a variety of pro-inflammatory factors,
including IL-1β, IL-12, and TNF-α (Orihuela et al., 2016;
Tang and Le, 2016). However, stimulated by specific drugs
or cytokines induce microglia to secrete anti-inflammatory
factors or express specific genes, such as IL-10, Arg1, which
are involved in promoting nerve repair and neurogenesis
(Yang et al., 2017; Zhang et al., 2021). This regulation of
microglia has been observed in several brain diseases such
as Alzheimer’s Disease (Varnum and Ikezu, 2012; Tang and
Le, 2016), ischemia (Frieler et al., 2011; Hu et al., 2012),
and sclerosis (Henkel et al., 2009; Mikita et al., 2011; Liao
et al., 2012; Vogel et al., 2013; Peferoen et al., 2015). It has
been shown that pilocarpine-induced status epilepticus was
associated with mixed expression of inflammatory profiles
(Benson et al., 2015). The present observation also showed
this microglial inflammatory regulation during seizures.
The pro-inflammatory markers (iNOS and COX2) were
upregulated in pilocarpine-induced SE mice. We found that
treatment with the novel H2S donor in SE mice decreased
the expression of microglial pro-inflammatory markers in the
hippocampus. Further, the H2S donor increased the levels of
microglial anti-inflammatory marker Arg1. In LPS-treated
microglia BV2 cells, the expression of pro-inflammatory
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FIGURE 4 | The H2S donor downregulated the levels of microglial pro-inflammatory profile in vitro. (A–C,E) Immunofluorescent staining and quantification of iNOS
and Arg1 in lipopolysaccharide (LPS)-treated BV2 cells. Scale bars, 50 µm for the original images and 10 µm for the magnified images. n = 6 per group. ***p < 0.001
vs Control, #p < 0.05, ###p<0.001 vs LPS. Statistical significance was determined by two-way ANOVA with Bonferroni post hoc tests. (D,F) Expression levels of
microglial pro-inflammatory markers (COX2, TNF-α) and microglial anti-inflammatory markers (Arg1, IL-10) in BV2 cells were determined by Western blotting. The
H2S donor decreased the expression of pro-inflammatory markers and upregulated the expression of anti-inflammatory markers in LPS-induced inflammation model
of microglia. n = 3 per group. *p < 0.05, **p < 0.01 vs Control, #p < 0.05, ##p < 0.01 vs LPS. One-way ANOVA with Bonferroni post hoc tests.

markers (iNOS and COX2) was significantly increased. The
novel H2S donor reduced the LPS-induced pro-inflammatory
marker expression, while it also promoted the release of

anti-inflammatory cytokines, as indicated by the increased
expression of anti-inflammatory markers (Arg1 and IL-10).
Since epilepsy is an inflammation-related disease, our results
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in vitro supported the conclusion of in vivo studies that the
novel H2S donor might regulate the inflammatory of microglia.
In a word, the present results indicated that the novel H2S
donor not only reduced microglial pro-inflammatory profiles,
but also simultaneously increased microglial anti-inflammatory
profiles. Nowadays, exogenous H2S donors, in a variety of
experimental systems, were found to induce the activation of
signal transduction effects (such as p38, Akt, Erk, JNK, and
Stat3), which in turn, produce different functional responses to
the expression of various microglia surface antigens and secreted
cytokines and exert anti-inflammatory effects (Lee et al., 2010,
2016; Sulen et al., 2016; Zhang et al., 2017; Cao et al., 2018;
Li et al., 2020).

In conclusion, our study demonstrated that the novel
H2S donor can reduce seizures and regulate microglial
inflammatory profile. The novel H2S donor decreased the
release of several pro-inflammatory cytokines (such as TNF-
α), which may result in reduced neuronal damage. On the
other hand, the H2S donor simultaneously increased the
release of anti-inflammatory cytokines (such as IL-10), which
may result in neuronal recovery. Collectively, our findings
identify the H2S donor as a potentially approach for seizure
neuroprotection.
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