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Abstract

Stop codons are frequently selected for beyond their regular termination function for error control. The “ambush hypothesis”

proposes out-of-frame stop codons (OSCs) terminating frameshifted translations are selected for. Although early indirect evidence

was partially supportive, recent evidence suggests OSC frequencies are not exceptional when considering underlying nucleotide

content. However, prior null tests fail to control amino acid/codon usages or possible local mutational biases. We therefore return

to the issue using bacterial genomes, considering several tests defining and testing against a null. We employ simulation

approaches preserving amino acid order but shuffling synonymous codons or preserving codons while shuffling amino acid order.

Additionally, we compare codon usage in amino acid pairs, where one codon can but the next, otherwise identical codon, cannot

encode an OSC. OSC frequencies exceed expectations typically in AT-rich genomes, theþ1 frame and for TGA/TAA but not TAG.

With this complex evidence, simply rejecting or accepting the ambush hypothesis is not warranted. We propose a refined post hoc

model, whereby AT-rich genomes have more accidental frameshifts, handled by RF2–RF3 complexes (associated with TGA/TAA)

and are mostlyþ1 (or�2) slips. Supporting this, excesses positively correlate with in silico predicted frameshift probabilities. Thus,

we propose a more viable framework, whereby genomes broadly adopt one of the two strategies to combat frameshifts:

preventing frameshifting (GC-rich) or permitting frameshifts but minimizing impacts when most are caught early (AT-rich). Our

refined framework holds promise yet some features, such as the bias of out-of-frame sense codons, remain unexplained.

Key words: out-of-frame stop codon, dual coding, sequence evolution, ambush hypothesis, frameshift.

Introduction

DNA sequences have the ability to carry multiple overlapping

layers of noncoding, yet critical “dual-coding” information.

Examples are widespread (Itzkovitz et al. 2010; Lin et al. 2011;

Shabalina et al. 2013; Pancsa and Tompa 2016) often pre-

venting or mitigating the cellular costs of transcriptional or

translational errors (Drummond and Wilke 2009; Warnecke

and Hurst 2011). The highly diverse nature of errors means

signatures of dual-coding error control mechanisms are also

varied. For instance, codon and amino acid usage is biased

toward exon ends as purifying selection acts at synonymous

and nonsynonymous sites of exonic splice enhancers (ESEs;

Parmley et al. 2006,2007; Wu and Hurst 2015) to minimize

mis-splicing rates (Blencowe 2000; Fairbrother et al. 2004;

Wu et al. 2005; Caceres and Hurst 2013). Similarly, codon

usage biases are thought to minimize translational missense

errors (Drummond and Wilke 2008; Zhou et al. 2009;

Serohijos et al. 2012), while synonymous and nonsynony-

mous site evolution in nucleosome linker sequences governs

correct nucleosome positioning (Warnecke et al. 2008).

Furthermore, synonymous codon selection surrounding mi-

cro-RNA (miRNA) binding sites ensures efficient miRNA bind-

ing (Gu et al. 2012).

Alternatively, avoiding particular sequences or motifs may

be of equal importance. Selection acts to prevent mutations

that cause inappropriate binding of RNA-binding proteins’

binding within coding sequences (CDSs; Savisaar and Hurst

2017), to avoid intra-CDS Shine-Dalgarno (SD) motifs (Shine

and Dalgarno 1974) that limit synthesis rates and promote

incorrect folding inducing undesired frameshifting (Betney

et al. 2010; Li et al. 2012; Diwan and Agashe 2016), or to

avoid mononucleotide repeats or sequences prone to
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ribosomal slippage (Ackermann and Chao 2006; Gurvich

et al. 2005; Gu et al. 2010a).

Beyond their principle termination function, stop codons

are repeatedly implicated in error control. In-frame stop

codons located in introns are under selection (He et al.

1993; Jaillon et al. 2008; Farlow et al. 2010; Mekouar et al.

2010) to allow nonsense-mediated decay (NMD) to selectively

degrade incorrectly spliced transcripts. In CDS regions where

NMD is unable to operate, codons in close nucleotide space

proximity to a stop codon are selectively avoided as a robust-

ness to mistranscription errors (Cusack, et al. 2011). Stop

codons found 5’ to recognized translation initiation sites in-

crease protein activity, suggesting unwanted or incorrect

translation initiations prior to the recognized start codon are

terminated. (Seligmann 2007).

Despite selection to mitigate translational errors, the trade-

off between optimal decoding accuracy and translational

speed (Wohlgemuth et al. 2010) permits ribosomal frame-

shifts errors, synthesizing peptides never intended.

Robustness to such errors is thought to drive selection on

transport RNA (tRNA) repertoires in genomes where frame-

shifts may be more costly (Warnecke et al. 2010) and may

direct ribosome evolution (Atkins and Bjork 2009). Further,

the ability to correct frameshift errors is thought to explain

why three stop codons exist (Itzkovitz and Alon 2007). Out-of-

frame stop codons (OSCs) prematurely terminate frame-

shifted translation events, minimizing process and cytotoxic

costs associated with synthesizing an incorrect peptide from

the incorrect reading frame (cellular resources, unproductive

ribosomal demand, and toxic aggregation; Gingold and Pilpel

2011).

Recently, we identified a strong site-specific signature of

selection for one OSC (Abrahams and Hurst 2017), finding a

significant excess of A at CDSs fourth sites in nearly all bac-

terial genomes. Translation initiation on an ATG (and more

generally, NTG) that becomesþ1 out of frame thus encoun-

ters TGA, providing the potential ability for immediate ribo-

some correction. The “ambush hypothesis” (Seligmann and

Pollock 2004), however, proposes that OSCs should be selec-

tively favored throughout the gene body to reduce genome-

wide frameshift costs. Several studies examine usage of

codons that could, but don’t necessarily, constitute an OSC

and claim codon usage biases are consistent with such OSC

selection (Seligmann and Pollock 2004; Singh and Pardasani

2009). However, with few genomes demonstrating biases

(38.00%/6.23% of total genomes, 36.96%/7.07% of bacte-

rial genomes for the two studies respectively), evidence is

underwhelming. Moreover, these codon usage biases might

be explained almost entirely by GC content (Morgens et al.

2013)—GC3 and GC1 content are the strongest determi-

nants of OSC frequency in theþ1 andþ2 frames, respectively

(Wong et al. 2008). Importantly, this method does not exam-

ine actual OSC frequencies. Thus, initial evidence supporting

the ambush hypothesis is weak, speculative, and not robust to

compositional controls to account for the high AT-content of

stop codons.

An alternative approach compares real sequences with a

distribution of null sequences simulating real CDSs, for which

compositional biases can be controlled. Using Markov chain

models, a remarkable 99.1% and 93.3% of prokaryotic

genomes exhibit OSC excesses using second-order and

fifth-order models that control for GC content and dinucleo-

tide or pentanucleotide frequencies (Tse, et al. 2010), al-

though numbers are reduced slightly for Morgens, et al.

(2013) (83% and 85% respectively). Critically, these models

directly interrogate OSC densities, although they do not pre-

serve amino acid or codon usages.

While results from these models are consistent with OSCs

exerting a near-universal selection pressure constraining CDS

evolution, it is important to consider the wider biological con-

text of these excesses. If the ambush hypothesis correctly

predicts selection, prima facie it has been argued that selec-

tion to incorporate OSCs should be stronger in GC-rich

genomes, as codon usage biases restrict chance dicodons

yielding OSCs (note stop codons are AT-rich) (Tse et al.

2010; Morgens et al. 2013). Significant positive correlations

between genome GC content and extent of excess suggests

this is the case (Tse et al. 2010; Morgens et al. 2013). Yet,

these excesses are attributable predominantly to TGA and not

TAA or TAG (Morgens et al. 2013). Furthermore, out-of-

frame sense TGN codons have similar, if not greater, number

of genomes with excess and positive correlations with GC

content (Morgens et al. 2013). These issues raise several po-

tential caveats that may also apply to previous studies. First,

when considered together, any excess may, for reasons un-

known, only reflect TGA excesses, highlighting the need to

consider each stop codon separately. Second, any excesses of

OSCs might be an artifact of selection for codons with similar

nucleotide composition and not selection directly for OSCs

themselves, with OSC frequencies not exceeding expectations

given underlying nucleotide composition.

Thecurrent statusof theambushhypothesis could therefore

be considered as confused and uncertain with contradictory

(i.e., some supportive and some unsupportive) evidence.

Although the Markov models by Tse et al. (2010) and

Morgens et al. (2013) improve on initial methods, are the

results limited by the model design? As reported earlier, it is

essential that GC content is controlled. Equally, as protein cod-

ingsequencesarebeingsimulated, the requirement for specific

amino acids in specific orders might need to be retained. While

the Markov models do provide some compositional bias con-

trol (GC content, higher order biases, e.g., dinucleotide fre-

quencies), the stepwise addition of nucleotides does not

preserve codon or amino acid identities, amino acid sequence

ordering likely essential for protein function, nor small muta-

tional or motif biases. Thus, the flexibility allowed by Markov

models may not appropriately reflect real biological coding

constraints that underpin OSC frequencies.
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In this study, we therefore return to this issue concerning

OSC selection. We first confirm previous results using Markov

models (in part to ascertain whether our data set can mimic

prior results). We then propose and test a series of simulation

models that attempt to control for these compositional biases

to varying degrees. While it is easy to criticize the Markov

models, we acknowledge that our models also do not control

completely for all competing selection pressures and biases.

In addition to the above mentioned problems, there is also

the issue in quantifying deviation from null. We suppose a Z-

score metric (deviation in standard deviation units) enables a

more biologically valuable metric, as this enables us to quantify

and compare excesses between models while accounting for

genome variability. Asþ1 and�2 andþ2 and�1 frameshifts

incurequal costs (except for immediatelyat thestartcodon), for

simulation models we consider onlyþ1 andþ2 frameshifts.

We find a complex pattern of results that provides neither a

clear rejectionnoracceptanceof theambushhypothesis. In this

context, we motivate a post hoc refined version of the hypoth-

esis, which broadly proposes that GC- and AT-rich genomes

handle the problems associated with frameshifts differently,

thatþ1 frameshifts are the dominant form of accidental slip-

page, and that frameshifts are predominantly resolved via a

release factor (RF) 2/RF3 mechanism (which does not apply to

TAG). In silico evidence supports the first tenet of the refined

model, but we highlight several features that still defy clear

explanation.

Materials and Methods

General Methods

All analyses were performed using custom Python 3.6 scripts

with standard NumPy 1.8.0, SciPy 0.13, and Biopython 1.66

(Cock et al. 2009) libraries. Statistical analyses and data

visualizations were performed using R 3.3.3 (R Core Team

2015). Scripts can be found at (https://github.com/la466/oscs).

Genome Downloads and Filtering

Whole-genome sequences for 3,860 bacterial genomes were

downloaded from the European Molecular Biology

Laboratory (EBML) database (http://www.ebi.ac.uk/Tools/

dbfetch/emblfetch?db¼embl, last accessed January 19,

2017). Genomes were filtered to include only one genome

per genus larger than 500,000 base pairs (the remaining

genomes were not considered in the analysis) in order to

minimize any biases attributable to phylogenetic non-

independence, leaving 694 genomes. Of these genomes,

690 use National Centre for Biotechnology Information

(NCBI) translation tables 11 and 4 use NCBI translation table 4.

Coding Sequence Filtering

Each coding sequence was subjected to filtering in order to

ensure the integrity of the sequences analyzed. Sequences

were limited to those that contained a multiple of three

nucleotides, contained only A, C, G, or T nucleotides, con-

tained no in-frame stop codons, and had a correctly defined

stop codon according to the NCBI translation table, TAA,

TAG, or TGA for table 11 genomes or TAA or TAG for table

4 genomes.

General Modeling

All simulations were repeated 200 times for each bacterial

genome. Increasing the number of simulations had minimal

impact on OSC density variance (see supplementary fig. 1,

Supplementary Material online, for an example of the varia-

tion in Escherichia coli OSC densities in the codon shuffle

model). We define codon excesses using the standard Z score

to compare how the real OSC densities differ beyond those

expected by simulation between genomes while accounting

for genome coding properties. P values were calculated by

extrapolating directly from genome Z scores and corrected for

multiple comparisons using the Benjamini-Hochberg False

Discovery Rate (FDR) correction method, with one P value

reported per genome. Where we report N/694 genomes

with significant excesses, these are N different genomes

with both genome Z> 0 and P< 0.05. OSC densities were

calculated per 100 codons.

Markov Models

For each genome, we built Markov models similar to Tse et al.

(2010) and Morgens et al. (2013). For each CDS in the

genome, start and stop codons were discounted. For

second-order models, the first two nucleotides of the remain-

ing sequence and their position in the codon were defined.

The third nucleotide, given the previous two nucleotides and

their codon positions, was then sampled. After each sample,

the two seed nucleotides and codon positions were shifted

one nucleotide and resampled until all nucleotides in all CDSs

had been accounted for. For fifth-order models, samples were

based on the previous five nucleotides. Each real CDS was

simulated using the start codon and two or five seed nucleo-

tides using the transition probabilities previously calculated

until the simulated sequence was of the same length as the

real CDS minus the stop codon, which was then appended.

Codon Shuffle Model

For each CDS within the genome, the start and stop codons

were removed. The codons of the CDS were isolated and

randomly shuffled before being concatenated to form the

simulated sequence.

Synonymous Site Model

For each genome, nucleotide frequencies at synonymous sites

of codons within each coding block were calculated and

normalized within coding blocks. In contrast to the

Refining the Ambush Hypothesis GBE
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synonymous codon model, only synonyms within the same

coding block were allowed to vary, and thus it is only the

synonymous site that this model is questioning (e.g., serine

AGC and AGT and TCA, TCC, TCG, and TCT are considered

separately). Each codon in the real CDS had genome, amino

acid, and coding block specific probabilities during simulation.

For each CDS, each codon was in turn simulated using these

coding probabilities.

Synonymous Codon Model

For each genome, codon frequencies were calculated and

normalized as the probability of encoding an amino acid.

Codons from multiple coding blocks that encode the same

amino acid were considered together. For each CDS, each

codon was in turn simulated using these probabilities. This

test therefore asks whether CDSs using preferentially uses

synonymous codons that generate OSCs.

Comparison between Table 11 and Table 4 Genomes

A local regression model (loess) for the specific codon and

reading frame was fit between GC content and OSC density

per 100 codons that included all table 11 and table 4

genomes in order to account for variation in GC content be-

tween the genomes. Residuals from this model for table 11

and table 4 genomes were then compared using Kruskal–

Wallis tests. To increase the sample size, genomes of 89

additional table 4 genomes discarded during the original phy-

logenetic filter (irrespective of genome size) were considered

for further comparison of OSC densities (see supplementary

table 1, Supplementary Material online, for breakdown).

These genomes were subjected to CDS filtering as before.

We also restricted this table 4 genome data set by ranking

Mycoplasma genomes by Z scores ofþ1 TGA for simulations

using the synonymous site simulation and including only the

nine genomes with highest Z score (matching the number of

Spiroplasma, the next most common genus). Thus, this restric-

tion should include only Mycoplasma genomes with the

weakest negative TGA selection.

Calculating Frameshift Costs and Probabilities

Information regarding tRNA isoacceptor copy number and

diversity was downloaded from the tRNADB-CE (Abe 2011;

last accessed October 30, 2017). Of our 694 genomes, tRNA

copy number and diversity information was available for 281

genomes. As in Warnecke et al. (2010), only genomes in

which each codon could be decoded by the tRNA repertoire

were considered, resulting in a final set of 231 genomes.

The “genomic cost of processing model” (Warnecke et al.

2010, equation 1) was used to calculated the cost of acciden-

tal frameshifting. This model is nested to allow the calculation

of the probability of individual codons frameshifting using

equation 2 (Warnecke et al. 2010). We inherit the assumption

that tRNA copy numbers are reasonable proxies for cellular

tRNA concentrations (Dong et al. 1996; Kanaya et al. 1999;

Cognat et al. 2008). Further, anticodon–codon matching

strategies were derived using the Supplementary Methods

from Warnecke et al. (2010) originally proposed by

Grosjean et al. (2010).

Codon Adaptation Index Calculations

Bacterial codon use is nonrandom. Highly expressed genes

often prefer to use codons that are decoded by the most

abundant tRNA (Rocha 2004). The Codon Adaptation Index

(CAI) (Sharp and Li 1987) quantifies codon bias with high CAI

values correlating with high expression in several organisms

including E coli (dos Reis et al. 2003). CAI is therefore used as

a gene expression proxy.

For each genome, a reference set of 20 genes from rplA/

1—rplF/6, rplI/9—rplU/21 and rpsB/2—rpsU/21 were identi-

fied as highly expressed. The first 30 nucleotides were re-

moved from the CDS (the 5’ CDS is biased to facilitate

ribosome binding), and the first half of the CDS in this highly

expressed set was used to calculate CAI indices using CodonW

v1.4.4 (https://sourceforge.net/projects/codonw/; last accessed

March 22, 2016) with the arguments “-coa_cu -coa_num

100%” to include all sequences in calculating indices. CAI

values for the first half (minus the first 30 nucleotides) of the

remaining CDS in the genome were calculated with the “-

all_indices” argument using the generated fop_file, cai_file,

and cbi_file. OSC densities were subsequently calculated using

the second half of the CDS to prevent resampling of the same

sequence for two measures for which codon usage is being

measured and maximizing the independence of the data.

Results

Markov Models Replicate Prior OSC Excesses

To establish that our set of genomes is comparable with prior

efforts, we first simulated sequences using Markov models in

order to replicate prior results. Results demonstrate similar dis-

tributions of excesses to Morgens et al. (2013) (supplementary

result 1, Supplementary Material online). The conclusions of

priorresultsarerepeatable,notconsistentwithambushhypoth-

esis predictions and that our sample of genomes are able to

mimic prior efforts. Further discrepancies are therefore unlikely

to be owing to the employment of a different set of genomes.

Genomes with Significant OSC Excesses Are
Predominantly AT-Rich in a Model in Which Real Codon
Combinations Are Shuffled

It is potentially important that the amino acid content of the

protein coding sequences is maintained during simulations.

Assuming selection on nonsynonymous sites is stronger than

on synonymous sites (Hurst 2009), the principle determinant

Abrahams and Hurst GBE
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of any codon is likely the amino acid it encodes. However, not

all sense codons can yield an OSC; in order to generate an

OSC, two conducive codons must combine in the correct or-

der. A proportion of OSCs will be incorporated irrespective of

OSC selection, given some chance dicodon pairs always yield

an OSC. For example, any A-starting codon following a me-

thionine codon generates Aþ1 TGA. Can the OSC frequency

be explained by random (no selection for OSCs) dicodon pair-

ings? To test this hypothesis, we randomized codon order

within each CDS to disrupt codon combinations that generate

OSCs. This simulation controls for GC content exactly while

preserving exact amino and codon identities and interactions

between codon second and third sites. Amino acid order is

not constrained.

We find that 124/694 (17.88%) of genomes have a signif-

icant excess of OSCs after randomization (P< 0.05, false dis-

covery rate [FDR] correction), much reduced when compared

with the Markov models both here and in the previous studies

(Tse et al. 2010; Morgens et al. 2013). When each reading

frame is considered independently, 367/694 (52.88%,

P< 0.05, FDR correction) genomes have significant excesses

in theþ1 frame but many fewer, 101/694 (14.55%,

P< 0.05, FDR correction) genomes, have significant excess

in theþ2 frame.

While this evidence is suggestive of OSC selection in theþ1

frame in some genomes, several unexpected features are no-

table. First, correlations between GC content and OSC excesses

are significantly negative (Table 1). As post-frameshift runs are

longer in GC-rich genomes, the opposite correlation might

have been a more obvious prediction (and previously employed

as a prediction by Tse et al. 2010 and Morgens et al. 2013).

Second, we observe many genomes with significant negative

excesses of OSCs (fig. 1), suggesting selection for OSCs is not

ubiquitous and often avoided. Furthermore, positive excesses

are predominantly limited to theþ1 reading frame (fig. 1).

Whether this reflects a possible preponderance and susceptibil-

ity toþ1 frameshift events is unknown.

Excesses of OSCs are also not uniformly distributed be-

tween the three stop codons. Only TGA has excesses in

over 50% of genomes for any reading frame. This is also

perhaps unexpected as TGA is thought to be the weakest

of the stop codons (Povolotskaya et al. 2012; Korkmaz

Table 1

The Number of Genomes with Significant Out-of-Frame Excesses in Alternative Reading Frames When Coding Sequences Have Been Simulated by Shuffling

the Codons within the Coding Sequence. Spearman’s rank correlations between genome GC content and OSC excess, defined by the standard Z score, are

also shown.

Codon Reading Frame # With Excess % With Excess q P

All stops Both 124 17.88 �0.178 2.328 � 10�6

All stops þ1 367 52.88 �0.295 2.664 � 10�15

All stops þ2 101 14.55 �0.144 1.489 � 10�4

TAA Both 98 14.12 �0.427 <2.2 � 10�16

TAC Both 168 24.21 �0.113 0.003

TAG Both 118 17.00 �0.352 <2.2 � 10�16

TAT Both 186 26.80 �0.343 <2.2 � 10�16

TGA Both 353 50.86 �0.091 0.017

TGC Both 599 86.31 0.498 <2.2 � 10�16

TGG Both 281 40.49 �0.431 <2.2 � 10�16

TGT Both 165 23.78 �0.308 1.436 � 10�16

TAA þ1 296 42.65 �0.417 <2.2 � 10�16

TAC þ1 361 52.02 0.572 <2.2 � 10�16

TAG þ1 190 27.38 �0.385 <2.2 � 10�16

TAT þ1 391 56.34 0.408 <2.2 � 10�16

TGA þ1 370 53.31 0.036 0.348

TGC þ1 575 82.85 0.465 <2.2 � 10�16

TGG þ1 256 36.89 �0.406 <2.2 � 10�16

TGT þ1 52 7.49 �0.063 0.099

TAA þ2 80 11.53 �0.231 8.587 � 10�10

TAC þ2 148 21.33 �0.404 <2.2 � 10�16

TAG þ2 44 6.34 �0.178 2.336 � 10�6

TAT þ2 176 25.36 �0.471 <2.2 � 10�16

TGA þ2 344 49.57 �0.169 7.508 � 10�6

TGC þ2 531 76.51 0.233 5.600 � 10�10

TGG þ2 299 43.08 �0.206 4.950 � 10�8

TGT þ2 362 52.16 �0.352 <2.2 � 10�16
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et al. 2014; Wei et al. 2016). TAA and TAG are often pre-

ferred and TGA avoided in highly expressed genes (Wei et al.

2016) while replacing TGA abolishes termination readthrough

(Meng et al. 1995), implicating TGA as the least efficient ter-

minator. A TGA preference was also observed by Morgens

et al. (2013).

FIG. 1.—Correlations between GC content and out-of-frame stop codon excess (Z>0), when all stop codons are considered together, are significantly

negative in each reading frame for coding sequences simulated by random codon shuffling within the CDS. Violin plots emphasize that excesses are biased

toward AT-rich genomes.
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Deleted Text: whilst 


Genomes with significant excesses tend to be AT-rich, al-

though significant TGA excesses do extend to some extremely

GC-rich genomes, particularly in theþ1 frame (fig. 2,

Supplementary fig. 2, Supplementary Material online).

Intriguingly, excesses of TAA and TAG are more highly re-

stricted to AT-rich genomes, despite the identical GC content

of TAG and TGA.

The observations of an excess of OSCs in some

genomes in itself need not be evidence for selection for

OSCs. Under the ambush hypothesis, we might also ex-

pect stronger selection for OSCs when compared with

sense codons of similar nucleotide composition

(Morgens et al. 2013). However, both TAC and TAT

have a greater number of genomes with excesses when

compared with TAA or TAG in both reading frames and

excesses have significant positive correlations with GC

content (Table 1). Excesses ofþ1 TGC have the strongest

correlation and occur in the greatest percentage of

genomes when compared with other TGN codons. By

contrast, the number of genomes with excesses is greater

for TGA than for either TGG or TGT in theþ1 frame al-

though only TGG in theþ2 frame. Thus, as suggested by

Morgens et al. (2013), OSC excesses may simply reflect

complex compositional requirements resulting in an over-

representation of out-of-frame TAN or TGN codons as

opposed to selection for OSCs themselves.

OSC Excesses Are Also Seen in a Null Model Where
Synonymous Sites Are Randomized

The above mentioned model provided some evidence for an

excess of OSCs, especially in AT-rich genomes, although this

evidence is by no means unambiguous. There are, however,

limitations with the form of the null model used above.

Disruptive changes to amino acid sequences would funda-

mentally alter protein function and not be permitted during

sequence evolution. Such disruption would also break up

larger motifs. Similar to the Markov models, this model can-

not account for site-specific amino acid selection. Indeed,

changes to sensitive amino acids can induce conformational

changes in protein structure, altering protein stability or

robustness to mutational errors (Yutani et al. 1977,

Hormoz 2013) and are therefore essential to protein function.

Moreover, amino acids that may carry site-specific functional

information, for example, the second amino acid that is under

FIG. 2.—Correlations between GC content and genome excess of out-of-frame stop codons (Z>0) are significantly negative (P<0.01, Spearman’s rank

correlation) for all stop codons, in both reading frames, except forþ1 TGA (P¼0.348) for the codon shuffle model. Excesses of TAA and TAG are heavily

biased toward AT-rich genomes.
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strong selection to promote methionine cleavage (Liao et al.

2004; Frottin et al. 2006; Ouidir, et al. 2015), are not retained.

A possibly more realistic scenario might be strong selection

for synonymous mutations that generate OSCs. To consider

this,wesimulatedsynonymousnucleotide frequencies inaccor-

dancewithgenomecodonusage frequenciespreservingamino

acid identities, amino acid order, and net genome codon

usage frequencies. For these simulations, we permitted synon-

ymous codon changes from strictly within the same codon

block, i.e., codons fromthe2-foldand4-foldblocksof the three

6-folddegenerateaminoacidswerenot interchanged.Asimilar

but less stringent codon simulation model where this codon

block restriction is relaxed (i.e., allowing the interchange of all

members within 6-fold degenerate blocks) yields similar results

(supplementary result 2, Supplementary Material online).

With higher level constraints controlled, if OSCs en-

force a strong enough selection pressure, we expect a

bias toward nucleotides generating OSCs if the following

codon permits. For example, if the amino acid sequence

dictates isoleucine-glutamic acid, we expect a bias toward

ATA isoleucine codons to encode aþ1 TAG. OSCs arising

from 1-fold degenerates are not considered as synony-

mous site selection has no effect.

Perhaps significantly, much like the previous model, the

number of genomes with significant excesses is low and

predominantly in theþ1 frame (272/694, 39.19%,

P< 0.05, FDR correction) (table 2). The lack of excesses

in theþ2 frame is particularly surprising for this model,

given T is strictly required at the synonymous site for

OSCs. When all OSCs are considered together, excesses

in each reading frame are significantly negatively corre-

lated with GC content (table 2) and heavily biased toward

AT-rich genomes (fig. 3).

This lack of significant excess extends to the individual

OSCs. When both frames are considered together, TGA

again demonstrates the greatest deviations from null

sequences (288/694, 41.50%, P< 0.05, FDR

correction). Excesses of TAA are lower (118/694,

17.00%, P < 0.05, FDR correction) and TAG lower still

(101/694, 14.55%, P< 0.05, FDR correction). All OSC

excesses are limited predominantly to AT-rich genomes

(supplementary fig. 3, Supplementary Material online).

Table 2

The Number of Genomes with Significant Out-of-Frame Excesses for Different Codons When Coding Sequences Have Been Simulated by Randomizing

Synonymous Sites within Coding Blocks. Spearman’s rank correlations between genome GC content and OSC excess, defined by the standard Z score, are

also shown

Codon Reading Frame # With Excess % With Excess q P

All stops Both 87 12.54 �0.444 <2.2 � 10�16

All stops þ1 272 39.19 �0.443 <2.2 � 10�16

All stops þ2 103 14.84 �0.260 4.046 � 10�12

TAA Both 118 17.00 �0.508 <2.2 � 10�16

TAC Both 145 20.89 �0.067 0.077

TAG Both 101 14.55 �0.282 4.371 � 10�14

TAT Both 194 27.95 �0.382 <2.2 � 10�16

TGA Both 288 41.50 �0.326 < 2.2 � 10�16

TGC Both 636 91.64 0.589 <2.2 � 10�16

TGG Both 265 38.18 �0.404 <2.2 � 10�16

TGT Both 252 36.31 �0.403 <2.2 � 10�16

TAA þ1 298 42.94 �0.444 <2.2 � 10�16

TAC þ1 330 47.55 0.595 <2.2 � 10�16

TAG þ1 155 22.33 �0.334 <2.2 � 10�16

TAT þ1 439 63.26 0.403 <2.2 � 10�16

TGA þ1 256 36.89 �0.135 3.729 � 10�4

TGC þ1 599 86.31 0.625 <2.2 � 10�16

TGG þ1 271 39.05 �0.365 <2.2 � 10�16

TGT þ1 98 14.12 �0.218 7.287 � 10�9

TAA þ2 93 13.40 �0.321 <2.2 � 10�16

TAC þ2 146 21.04 �0.389 <2.2 � 10�16

TAG þ2 42 6.05 �0.140 2.270 � 10�4

TAT þ2 185 26.66 �0.500 <2.2 � 10�16

TGA þ2 365 52.59 �0.261 3.777 � 10�12

TGC þ2 557 80.26 0.178 2.523 � 10�6

TGG þ2 271 39.05 �0.214 1.386 � 10�8

TGT þ2 384 55.33 �0.409 <2.2 � 10�16
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Again, excesses appear more acute in theþ1 frame. Unlike

the previous model,þ1 TAA is now the stop with the greatest

number of genomes with excesses (298/694, 42.94%,

P< 0.05, FDR correction) and greater thanþ1 TGA (256/

694, 36.88%, P< 0.05, FDR correction). Theseþ1 TAA

excesses are highly restricted to the AT-rich genome and

FIG. 3.—Correlations between GC content and out-of-frame stop codon excess (Z>0), when all stop codons are considered together, are significantly

negative (P<0.01, Spearman’s rank correlation) in each alternative reading frame for coding sequences where synonymous sites are randomized. Violin

plots again emphasize a bias towards significant excesses in the AT-rich genomes.
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more generally have a significant negative correlation with

GC content (q¼�0.444, P< 2.2� 10�16, Spearman’s rank

correlation) (fig. 4, supplementary fig. 3, Supplementary

Material online). In contrast, the number of genomes with

significant excesses ofþ1 TAG (155/694, 22.33%, P< 0.05,

FDR correction),þ2 TAA (93/694, 13.40%, P< 0.05, FDR cor-

rection), andþ2 TAG (42/694, 6.05%, P< 0.05, FDR correc-

tion) are remarkably low. Thus, þ1 seems to be the dominant

signal, and signals for the most part are not associated with

TAG.

It is again unclear whether the excesses reflect stop

codon functionality. When compared with off-frame

sense codons, both TAA and TAG have fewer genomes

with significant excesses than either TAC or TAT.

Excesses of TGC (þ1: 599/694, 86.31%;þ2: 557/694,

80.26%, P< 0.05, FDR correction) are the greatest of

any TGN codon in either reading frame. Excesses ofþ1

TGG (271/694, 39.04%, P< 0.05, FDR correction)

andþ2 TGT (384/694, 55.33%, P< 0.05, FDR correc-

tion) are also greater than TGA in the respective

frames.

þ1 TAA Demonstrates Evidence of OSC Selection at
Synonymous Sites for Amino Acid Repeats Whose Codons
Present the Opportunity to Encode an OSC

Results of the above simulation, which is arguably the most

realistic determination of the null model, are suggestive but

come with caveats, given the excess of OSCs. However, this

null model also has limitations. First, we have to make pre-

sumptions about the realism of synonymous site selection. For

example, if there are subtle location-specific codon usage

biases or context-dependent mutational biases, these are

likely to overcome any selection for OSCs. The model does

not respect differential codon usage biases throughout the

CDS nor motif or domain-specific codon usage biases, for

example, the bias toward A to disrupt messenger RNA

(mRNA) stability at 5’ ends (Gu et al. 2010 b; Kudla

et al. 2009; Bentele et al. 2013). Furthermore, in assuming

each synonymous site is under selection for OSCs, this

model assumes selection pressures are of equal strength

at all synonymous sites, which is unlikely to be the case.

Given the these issues, we propose a further test that

might better control for amino acid order, codon usage

FIG. 4.—Correlations between GC content and genome excess of out-of-frame stop codons (Z>0) are significantly negative (P<0.01, Spearman’s rank

correlation) for all stop codons in both alternative reading frames for the synonymous site randomisation model. Excesses of TAA and TAG are heavily biased

toward AT-rich genomes, with few genomes exhibiting excesses in theþ2 frame.
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biases, and highly regionalized effects, but one that has a

more limited sample size. We can ask whether the synony-

mous codons used in localized sequence contexts encode

OSCs when given the opportunity. We isolated any repeat

of two isoleucine (codons ATA, ATC, ATT) or valine (codon

GTA, GTC, GTG, GTT) amino acids, followed by amino acids

whose codon starts with either C or T. In this way, we isolate

sequences inwhich thefirst codonalwayshas theopportunity

to yield an OSC, followed by a second codon, encoding an

identical amino acid that strictly cannot. Any regionalized

biases are thus minimized while ensuring the amino acid re-

quirement and hence direction of codon usage bias remains

identical. IfOSC selectionconstrains codonchoice,wepredict

a stronger bias toward A-ending synonyms for the first codon

of the repeat than the second. For example, A use in the se-

quence 5’-ATH jATH jYNN-3’ should be greater at site3 than

6 to encodeþ1 TAA. ATG has no synonyms, and there-

foreþ1 TGA cannot be examined. We perform paired tests

between usage within each genome to control for intrage-

nome localized mutationalbiasesbut also tonegateeffects of

intergenome compositional biases. We cannot control the

mutational bias (or motif selection) owing to interactions

between sites 3 and 4 and sites 6 and 7, but otherwise all

other context features are preserved.

Again, the signals are ambiguous. We find no signifi-

cant difference between the use of A at sites 3 and 6

forþ1 TAA encoding sequences (P¼ 0.215, paired

Wilcoxon signed rank test). If synonymous sites are being

selected for to preserve OSCs, we expect site 3 to be more

resistant to mutational pressures than site 6. Thus, as GC3

content increases, we expect relatively little change in A3

but a reduction in A6 giving a positive correlation be-

tween A3: A6 and GC content. This is not the case—

correlations are significantly negative for possibleþ1

TAA encoding sequences (q¼�0.097, P¼ 0.012,

Spearman’s rank correlation) (fig. 5).

This negative correlation might imply that the uncontrolled

mutation bias difference (A3: A4 versus A6: A7, difference) is

not to be overlooked. However, for this test, GC3 content is

not consistent and allows comparisons between ATA and

ATC. When GC3 content is controlled by only considering

codons using A/T at their synonymous site, A3 use is signifi-

cantly greater than A6 use (P< 2.2� 10�16, paired Wilcoxon

rank-sum test, mean proportion of sequences with A: site

FIG. 5.—Log ratios between the A use at synonymous sites of amino acids whose codons when repeated can generate an OSC. Correlations are

significantly negative in each case (P<0.05, Spearman’s rank correlations), suggesting A use at the third site decreases compared with the sixth, as GC

mutational biases make encoding OSCs more difficult. When codons are restricted to only A/T ending synonyms,þ1 TAA demonstrates a significant positive

correlation with GC content (q¼0.160, P¼4.827�10�5, Spearman’s rank correlation).

Refining the Ambush Hypothesis GBE

Genome Biol. Evol. 10(4):1153–1173 doi:10.1093/gbe/evy075 Advance Access publication April 2, 2018 1163

Deleted Text: regionalised
Deleted Text: localised
Deleted Text: ,
Deleted Text: regionalised
Deleted Text: minimised
Deleted Text: whilst 
Deleted Text: ,
Deleted Text: s
Deleted Text: -
Deleted Text: localised
Deleted Text: ,
Deleted Text: -
Deleted Text:  - 
Deleted Text: (&rho;&thinsp;&equals;&thinsp;-
Deleted Text: <italic>Figure</italic> 


3¼ 0.278; site 6¼ 0.208). Individually, 475/694 (68.44%)

genomes have greater A3 use. Furthermore, the correlation

between GC3 and A3/A6 correlations is now significantly pos-

itive (q¼ 0.160, P¼ 4.827� 10�5, Spearman’s rank correla-

tion). Thus, synonymous codon usage is consistent withþ1

TAA selection after GC control.

We apply the same test to valine repeats that have the

potential to encodeþ1 TAG. Unlikeþ1 TAA-encoding

sequences, we find A3 use significantly reduced when all va-

line codons are considered (P< 2.2� 10�16, paired Wilcoxon

signed rank test, mean proportion of sequences with A: site

3¼ 0.137; site 6¼ 0.156) and when only GTA and GTT are

considered (P¼ 6.129� 10�5, paired Wilcoxon signed rank

test, mean proportion of sequences with A: site 3¼ 0.313;

site 6¼ 0.329). Correlations are significantly negative be-

tween GC3 content and A3: A6 usage in both cases (All

codons: q¼�0.585, P< 2.2� 10�16, Spearman’s rank cor-

relation; GTA/GTT: q¼�0.143, P¼ 1.77� 10�4, Spearman’s

rank correlation).

Thus, it appears synonymous codon usage is consistent

with OSC selection in the specific case ofþ1 TAA, although

motif effects and subtle mutational biases are hard to elimi-

nate as explanations. Employing similar tests for T use for

allþ2 OSC encoding sequences provides no evidence consis-

tent with OSC selection, nor does a general hypothesis that

considers all stop codons and frames together (supplementary

result 3, Supplementary Material online).

þ1 TGA Densities Are Significantly Reduced in Genomes
Where TGA Does Not Function as a Stop Codon, However
Bothþ1 TAA andþ1 TAG Densities Are Also Reduced

Although our models present excesses of OSCs in some

instances, can we attribute them to stop codon function?

The excess of off-frame sense codons suggests that simply

looking for an excess of OSCs may be naive. An alternative

approach is to consider the subset of prokaryotes

(Entomoplasmatales and Mycoplasmatales) in which TGA is

recoded to tryptophan, eliminating stop functionality (Bove

1993). If excesses are due to termination functionality, any

off-frame TGA selection should be weaker in these genomes.

Further, if terminating frameshift events is of such cellular

importance, this recoding should result in compensatory

increases of TAA and TAG due to the impaired termination

ability. We refer to recoded genomes as “table 4” genomes

and those using the standard genetic code as “table 11”

genomes using National Centre for Biotechnology

Information (NCBI) naming convention. Indeed, there would

appear to be weakerþ1 TGA selection (supplementary fig. 4,

Supplementary Material online) with most table 4 genomes

demonstrating negative excesses in our simulations. It is, how-

ever, important to compare actual OSC frequencies between

genomes using alternative translation tables. Any differences

attributable to GC mutational biases (i.e., AT-rich table 4

genomes are likely to have increased OSC densities by chance)

are minimized by performing loess regressions and comparing

residuals between the two genetic codes.

The OSC densities of stop codons combined are signifi-

cantly reduced for table 4 genomes whenþ1 andþ2 frames

are considered together (P¼ 5.572� 10�4, Kruskal–Wallis

rank sum test of residuals; table 4 mean residual

(MR)¼�5.487, table 11 MR¼ 0.046). Results are similar

when reading frames are considered separately (þ1:

P¼ 5.624� 10�4, Kruskal-Wallis rank sum test of residuals,

table 4 MR¼�2.617, table 11 MR¼ 0.029;þ2:

P¼ 8.406� 10�4, Kruskal–Wallis rank sum test of residuals,

table 4 MR¼�2.870, table 11 MR¼ 0.017). This is not en-

tirely unexpected—even if TAA and TAG are somewhat in-

creased there may not be full compensation for the loss of

TGA.

Are these reduced OSC densities attributable to loss of

TGA stop functionality? Contrary to expectation, off-frame

TGA densities are significantly increased in theþ2 frame

(P¼ 0.002, Kruskal–Wallis rank sum test of residuals; table

4 MR¼ 1.113, table 11 MR¼�0.011) supporting the

excesses in simulation models (supplementary fig. 4,

Supplementary Material online). Despite reduced mean

residuals,þ1 TGA densities are not significantly reduced

(P¼ 0.125, Kruskal–Wallis rank sum test of residuals; table

4 MR¼�0.233, table 11 MR¼�0.001). However, given

negative excesses from simulation models (supplementary

fig. 4, Supplementary Material online) and these reduced

residuals, the lack of table 4 genomes may be limiting. To

provide a richer data set, we therefore incorporated all table

4 genomes from our initial data set prior to phylogenetic fil-

tering, increasing the table 4 sample to 93 genomes. We ac-

cept that this introduces a degree of nonindependence and

bias by including many Mycoplasmas (see supplementary ta-

ble 1, Supplementary Material online, for breakdown of

genomes).

With this increased data set, combined OSC densities in

table 4 genomes remain significantly reduced whenþ1

andþ2 frames are considered together (P< 2.2� 10�16,

Kruskal–Wallis rank sum test of residuals; table 4

MR¼�2.509, table 11 MR¼ 0.363), in theþ1 frame

(P< 2.2� 10�16, Kruskal–Wallis rank sum test of residuals,

table 4 MR¼�1.171, table 11 MR¼ 0.176) and theþ2

frame (P< 2.2� 10�16, Kruskal–Wallis rank sum test of resid-

uals, table 4 MR¼�1.337, table 11 MR¼ 0.187) (fig. 6).

Specifically, althoughþ2 TGA use remains significantly in-

creased (P¼ 1.57� 10�9, Kruskal–Wallis rank sum test of

residuals; table 4 MR¼ 0.328, table 11 MR¼�0.055),þ1

TGA densities are significantly reduced (P¼ 2.091� 10�7,

Kruskal–Wallis rank sum test of residuals; table 4

MR¼�0.174, table 11 MR¼ 0.023). Thus, consistent with

previous results, any selection for OSCs is likely to be operat-

ing predominantly in theþ1 frame andþ1 TGA use appears

to be reduced in table 4 genomes.
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Without considering the context of this reduced excess, it is

difficult to determine whether this is related to lost termina-

tion function. Are TAA and TAG densities increased to com-

pensate? Results indicate this is not the case. Bothþ1 TAA

(P¼ 3.107� 10�6, Kruskal–Wallis rank sum test of residuals;

table 4 MR¼�0.149, table 11 MR¼ 0.028) andþ1 TAG

(P¼ 4.355� 10�8, Kruskal-Wallis rank sum test of residuals;

table 4 MR¼�0.284, table 11 MR¼ 0.048) densities are

FIG. 6.—OSC densities are reduced in table 4 genomes when compared with table 11 genomes in each alternative reading frame. Violin plots of the

loess regression residuals highlight the reduced residuals for OSC densities in table 4 genomes.
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significantly reduced in table 4 genomes (fig. 7). When

restricting table 4 genomes to include only 9 Mycoplasma

genomes (matching the total for the next most common ge-

nus Spiroplasma to reduced bias, see Methods) in which se-

lection against TGA should be weakest, we obtain similar

results (supplementary table 2, Supplementary Material

online).

Given densities of other OSCs are not increased, we ask

whether off-frame TAN and TGN densities are more generally

reduced. Bothþ1 TAC (P¼ 1.14� 10�12, Kruskal-Wallis rank

sum test of residuals; table 4 MR¼�0.170, table 11

MR¼ 0.020) andþ1 TAT (P¼ 1.582� 10�13, Kruskal–

Wallis rank sum test of residuals; table 4 MR¼�0.277, table

11 MR¼ 0.038) densities are also significantly reduced in ta-

ble 4 genomes. Results are similar using the restricted

Mycoplasma data set (supplementary table 2,

Supplementary Material online). Thus, reduced TAA and

TAG densities may not be termination-function related but

rather a consequence of weakened selection for alternative

constraints that affects all off-frame TAN codons.

Alternatively, table 4 genomes may not exploit OSCs as a

frameshift termination mechanism to the same degree, given

termination capacity is reduced. These reduced densities dis-

miss the notion of increased compensatory selection.

For TGN codons, while there is no significant difference

betweenþ1 TGC densities (P¼ 0.101, Kruskal–Wallis rank

sum test of residuals) orþ1 TGT densities (P¼ 0.290,

Kruskal–Wallis rank sum test of residuals),þ1 TGG densities

are significantly reduced (P¼ 0.003, Kruskal–Wallis rank sum

test of residuals; table 4 MR¼�0.137, table 11 MR¼ 0.015).

Forþ1 TGC andþTGT, results using the restricted

Mycoplasma data set are similar (supplementary table 2,

Supplementary Material online) althoughþ1 TGG densities

are not significantly different (P¼ 0.257, Kruskal-Wallis rank

sum test of residuals). Unlike TAN codons, it would be difficult

to conclude that reduced TGA densities are attributable to

reduced TGN densities but rather toward possible reduced

TGR densities or reduced exploitation of OSCs in general.

Differences betweenþ1 TGG results when only

Mycoplasma genomes with reduced negative TGA selection

are included and when all are included could suggest that

asþ1 TGG densities are increasingly affected by the selection

againstþ1 TGA (for codons encodingþ1 TGA, G is the nu-

cleotide most likely under selection, which also exists at the

second position of þ1 TGG). Ifþ1 TGA has been selected

against for sufficiently long, it is possible thatþ1 TGA andþ1

TGG reach an equilibrium, whereby densities of both are re-

duced despite only TGA function being lost.

A Refined Version of the Ambush Hypothesis

One might reasonably suggest that the above evidence only

adds to the uncertainty of data related to the ambush hypoth-

esis and highlights the sensitivity of the tests to small

assumptions about how to test against a null. What is clear

is that the ambush hypothesis cannot unambiguously explain

OSC usage in all bacterial genomes. However, the data are

such that we also cannot easily dismiss the hypothesis that no

genome selects for OSCs. Importantly, there is a considerable

overlap in the number of genomes with significantþ1

excesses for both the codon shuffle model and synonymous

site randomization model (þ1 TAA: 90.60%,þ1 TAG:

76.84%,þ1: TGA: 67.84%, percentages of genomes in the

model with most excesses that also have significant excesses

in the model with fewer excesses), suggesting the signals we

observe for both models are genuine. Prima facie these results

appear to contradict the ambush hypothesis, as frameshift

tracts should on average be shorter in AT-rich genomes

(Warnecke et al. 2010; fig. 2). Thus, if there were to be a

refined version of the hypothesis, it would need to explain

why AT-rich genomes appear to be more associated with an

excess. There is a possible (post hoc) refined version of the

hypothesis that we suggest is worth considering and that

makes some testable predictions.

AT-Rich Genomes Have Higher Frameshift Rates,
Consistent with the Refined Model

We (and others) (Tse et al. 2010 and Morgens et al. 2013)

have assumed that the ambush hypothesis predicts greater

excess from null in GC-rich genomes, as post-frameshift tract

lengths in these genomes will be longer. However, this is only

half of the equation. The other critical component is the rate

at which frameshifts occur. If the rate of frameshifting is

higher in AT-rich genomes, selection for OSCs could be

higher, refining our model to predict absolutely higher rates,

per base pair, in AT-rich genomes. We can test whether AT-

rich genomes have higher rates of frameshifting in silico.

Previous evidence suggests that the composition of the

tRNA repertoire is important in determining translational accu-

racy (Baranov et al. 2004; Shah and Gilchrist 2010; Warnecke,

et al. 2010), with frameshift-susceptible codons decoded by

rarer tRNAs (Curran and Yarus 1989; Sipley and Goldman

1993; Lain�e, et al. 2008) and potentially struggling to meet

stringent proofreading demands (Ieong et al. 2016).

Enriching the tRNA repertoire correlates with reduced

frameshift susceptibility (Warnecke et al. 2010). The sus-

ceptibility and cost of frameshifting, associated with tRNA

abundance and diversity, may therefore be important in

determining OSC frequency. The “process cost of acciden-

tal frameshift” model (Warnecke et al. 2010) incorporates

tRNA information to calculate the susceptibility and cost of

frameshifting.

We find the distribution of correlations between median

CDS frameshift cost and OSC density approximately even

around 0 (supplementary fig. 5A, Supplementary Material

online). However, genomes where these correlations are pos-

itive are typically AT-rich (q¼�0.353, P< 1.618� 10�8,
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Spearman’s rank correlation). Thus, despite the on average

reduced pre- and post-frameshift tract lengths (Warnecke

et al. 2010; fig. 2), frameshifting cost appears to correlate

with OSC density.

Are these increased OSC densities compensating for in-

creased costs due to an increased propensity to frameshift?

This appears to be the case, as AT-rich genomes seem more

susceptible to frameshifting (q¼�0.660, P< 2.2� 10�16,

FIG. 7.—OSC densities for table 4 genomes are reduced for each of the stop codons in theþ1 frame. Violin plots of the loess regression residuals

confirm the reduced densities of each OSC.
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Spearman’s rank correlation) (fig. 8A). Deviations from null (Z

scores) are positively correlated with the susceptibility to fra-

meshifting (codon shuffle: estimate: 0.150, P< 2.2� 10�16;

synonymous site simulation: estimate: 0.176,

P< 2.2� 10�16, Spearman’s partial correlations) (fig. 8B)

and not a result of GC-content biases that may increase

both frameshift susceptibility and OSC excess. This suggests

that our explanation for the connection between AT-richness

and OSC excess as a signal of selection in the refined model

may have some virtue. In short, in genomes where frameshift-

ing rates are high, tract lengths are typically short and OSCs in

excess. Where tract lengths are long, an alternative general

strategy to reduce frameshifting rates is the better strategy.

We note that a significant problem faced with this type of

analysis is that we must make generalizations in order to

compare between genomes. For instance, Warnecke et al.

(2010) outline that codon–anticodon interactions are invari-

ably generalizations, as tRNA decoding capacity cannot be

predicted from sequence information alone. Furthermore,

the effects of modifications to anticodon residues and

tRNAs on decoding capacity (Cochella and Green 2005;

Daviter, et al. 2006; Grosjean, et al. 2010) are likely to be

genome specific. Thus, although results establish a relation-

ship between signatures of OSC selection and frameshift

probability, more in-depth conclusions regarding the extent

to which OSCs are under selection should be considered in

the knowledge of these limitations.

A Refined Model Still Leaves Observations Unexplained

Given the above result, we suggest that the refined model

may have some validity. However, although it is to a large

degree a post hoc model, it fails to explain everything. Two

results post the most obvious problems. First, why do we see

so many biases of sense codons with similar nucleotide com-

position out of frame? Second, why is there a dearth of all off-

frame stop codons in the table 4 genomes that do not employ

TGA?

Regarding the second of these, had we observed an excess

ofþ1 TAA but not TAG, this would have been consistent with

the refined model, but we do not. However, the refined

model makes no pretense to suppose all genomes cope

with frameshifts by use of OSCs. By virtue of using a different

code, table 4 genomes can be automatically considered to be

somewhat exceptional. Indeed, selection pressures experi-

enced by these organisms associated with their particular eco-

logical niches (Bove 1993) may also be unusual. Another

possibility is the weakened purifying selection attributable to

smaller effective populations (Ne) of table 4 genomes.

However, if a universal GC to AT mutation bias exists (Lind

and Andersson 2008; Hershberg and Petrov 2010), GC con-

tent should act as a reasonable proxy for low Ne (many AT-rich

bacterial genomes likely have low Ne). Thus, although reduced

Ne may contribute, it is unlikely to explain the overall trends

we observe.

Interestingly, we notice both TGA and TGG have similar

numbers of genomes with off-frame excesses in our simula-

tion models. Coupled with the results of table 4 genomes, this

suggests excesses of TGA may not be related to termination

function. In the refined model, increased densities ofþ2 TGA

in the table 4 genomes support this notion, suggesting that

some excesses are not associated with stop functionality but

either reflect chance or missing layers of complexity not

accounted for in our simulations. There may, for example,

be constraints on protein-level motifs, or at the DNA or

RNA level, coupled to localized selection for optimal codon

usage that distorts out-of-frame usage as an incidental side

FIG. 8.—(a) The median probability of frameshifting decreases with

increasing GC3 content. (b) Genomes with excesses of OSCs for the syn-

onymous site model tend to have higherþ1 frameshift probabilities, sug-

gesting the frequency of OSCs and susceptibility of frameshifting are

linked.
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consequence. For this reason, we remain skeptical that the

ambush hypothesis, even in its refined form, commands any

strong support at present. This being said, the fact some sense

codons are enriched out of frame does not itself demonstrate

that stop codon enrichment out of frame is not owing to stop

functionality, but rather there might be an alternative un-

known explanation. Thus, while both of these unexplained

features are not obviously consistent with the refined model,

neither are they lethal to it.

Discussion

The notion that OSC selection should constrain sequence evo-

lution to compensate for frameshift errors is logical. More

recently, Morgens et al. (2013) demonstrated the initial result

on which the ambush hypothesis was founded (Seligmann

and Pollock 2004) is not robust to compositional control.

Furthermore, this initial evidence only weakens after multiple

correction testing (supplementary result 4, Supplementary

Material online). However, an alternative approach using sim-

ulated sequences from Markov models identifies many

genomes with an excess of OSCs (Tse et al. 2010; Morgens

et al. 2013). An underlying issue with these models is their

inability to strictly maintain amino acid frequencies, amino

acid order, and codon usage frequencies. Under real evolu-

tionary constraints, such flexibility is unlikely to be permitted

and not realistic. Thus, the motivation of this paper was to

establish the extent, if any, to which OSCs drive sequence

evolution in a more realistic simulation framework and

when microscale position effects are controlled.

We proposed and tested a series of simulation approaches,

none of which control for all possible biases, but with each

reaching similar conclusions (see supplementary table 2,

Supplementary Material online, for summaries), the numbers

of genomes with significant excesses are modest, often under

50%; genomes with an excess of OSCs tend to be AT-rich;

and not all stop codons nor reading frames are equally af-

fected. A post hoc model makes sense of these observations,

but the predictions of this model regarding different handling

of TGA and TAA compared with TAG and the preponderance

ofþ1 frameshifts remain to be tested.

An important consequence of the refined model is that

naively assuming GC-rich genomes bear greater frameshift

costs does not account for more complex frameshift dynam-

ics. Citing a positive correlation between GC content and any

excess of OSCs as evidence consistent with OSC selection as in

previous studies (Tse et al. 2010; Morgens et al. 2013), even if

further analyses are not consistent with selection, is likely to

be too simplistic. To more comprehensively quantify the cost

of both frameshift errors and errors in general, it is important

to consider complex relationships between error frequency

and the selective constraints imposed to mitigate any costs.

The structure of the refined model more broadly considers

frameshift control in a framework, whereby two distinct

strategies have evolved and have different usage in different

genomes. In one case, frameshifts are, on average, very dam-

aging due to long frameshift tract lengths (GC-rich genomes).

In this instance, a general reduced frameshifting rate is selec-

tively advantageous which in turn reduces the selective pres-

sure to incorporate any given OSC (although downstream of

particularly frameshift-prone sites might be an exception). At

the limit, if the frameshift rate could be reduced to zero, there

would be no requirement for or selection for OSCs.

Conversely, in other genomes (AT-rich), the average frame-

shift has little cost as tract lengths are naturally short. Here,

selection cannot act to generally reduce frameshift rates, as

there is likely be little return on investment of such a reduction

for a given cost. However, even in these genomes, there will

remain sites where by chance, tract lengths are long. In these

sites, there could then be selection—given the high frame-

shifting rates—for OSCs. Thus, in this two-mode framework,

we might expect more OSC excesses in AT-rich genomes and

not as usually asserted in GC-rich genomes, although strate-

gies are likely to be highly genome specific (as evidenced by

negative excesses in many genomes).

One interesting notion arising from this framework is the

coevolution of frameshift rates and OSCs. Whether proposed

frameshift rate increases are due to weakened purifying se-

lection in genomes with reduced Ne (assuming GC-rich

genomes have larger effective population sizes), or whether

the nucleotide content of AT-rich genomes naturally encoding

greater numbers of OSCs means frameshifts are less costly,

the ability to prevent frameshifting itself appears to be relaxed

in AT-rich genomes. Parenthetically, error frequency may be

the principal determinant of the strength of selection for

OSCs in these genomes with this framework providing an-

other possible example, whereby selection may be stronger in

response to increased error rates when populations are small

(Wu and Hurst 2015). In genomes where this frameshift error

rate is reduced, or alternative pressures exert stronger selec-

tion on the CDS, the ability to maintain OSCs within CDSs

may be significantly reduced and not a viable frameshift con-

trol strategy leading to significant depletions of OSCs. Indeed,

other selective pressures, such as those imposed by environ-

mental constraints (the ability to incorporate new DNA via off-

frame recombination in metabolically versatile bacteria, or

prevent recombination in more stable symbionts may be im-

perative to genetic adaptation; Wong et al. 2008), may also

be important in determining the degree of OSC selection.

We also question why genomes tend to use TGA and TAA

as OSCs. While TGA is the weakest of the stops (and prone to

read-through) (Meng et al. 1995; Wei et al. 2016), TGA and

TAA are unique in the specificity of release factors (RFs)

decoding the stop codons: RF2 decodes both TAA and TGA

(Kisselev 2002). RF2 in combination with RF3 is implicated in

post peptidyl transfer quality control, ensuring more efficient

termination at tRNA/mRNA mismatch complexes and pro-

posed to participate in ribosome rescue (Zaher and Green
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2009; Vivanco-Dom�ınguez et al. 2012; Petropoulos et al.

2014). Specific capabilities of RF2 may therefore make TAA

and TGA more suitable to frameshift termination, rather than

the efficiency of termination of the stop codons themselves

and predicts that captured frameshifts are more likely proc-

essed by the RF2/RF3 complex. In addition, minimal TAG

excesses may possibly reflect avoidance of complementary

GATC DNA motifs found frequently in nonrandom clusters

on the bacterial chromosome (Touzain, et al. 2011).

One consistency is the bias toward excesses seen forþ1

but not for theþ2 frame. Here we can only conjecture that

frameshifting, by accident, occurs predominantly in theþ1

slippage mode. We can speculate that as translation occurs

in the 5’ to 3’ direction, the molecular mechanics required to

halt and reverse the direction of translation to the first nucle-

otide of a�1 frameshift, already held in the P-site, are likely to

be more complex and require greater energy than for a ribo-

some to skip to theþ1 frame in the same direction. Thus,

accidentalþ1 frameshifts may be more frequent and require

greater OSC control, although this is only speculation without

comprehensive frameshift rate data and would no doubt ben-

efit from molecular frameshift data. This should be experi-

mentally testable. Our refined model is therefore one in

which the genomes, stop codons, and reading frames are

important factors in OSC selection.

Problems Defining the Null

One of the lessons of the analysis presented here is that the

meaning of a deviation from null is hard to interpret, not least

because the results are dependent upon the definition of the

null. Aside from the issue of which model is the most appro-

priate, we have looked for deviations at the genome level and

not at the gene level. As OSC selection is likely to be sequence

and context specific, it is also worth considering whether in-

vestigating OSC selection at the genome level is the most

appropriate. For instance, Bertrand et al. (2015) have demon-

strated no evidence consistent with OSC selection in the poly-

ketide synthase (PKS) gene in fungi. Furthermore, sequences

with differing levels of frameshifting are commonplace in cod-

ing regions of E. coli (Gurvich et al. 2003). As the information-

carrying capacity of CDSs is limited, competing selection pres-

sures providing more beneficial and selectable fitness advan-

tages will be favored. Any selection for OSCs is likely to be one

of several competing pressures, with OSC selection therefore

potentially undetectable at whole genome scales.

Equally, a more appropriate approach may be to consider

the single gene level, as selection may be stronger and more

detectable in subsets of genes and avoided in others. For ex-

ample, one might, at first sight, expect stronger selection in

highly expressed genes. This hypothesis, however, has the

caveat that highly expressed genes are likely to be composed

of codons less susceptible to frameshifting (i.e., matching

common tRNAs) and therefore not require OSC selection.

The latter case, at least forþ1 frameshifts for which this

framework is most applicable, seems appropriate (supple-

mentary fig. 6, Supplementary Material online).

Alternatively, for genes overly susceptible to frameshifting,

such as those incorporating mononucleotide repeats

(Coenye and Vandamme 2005), OSCs provide an attractive

strategy which tRNA selection is unable to regulate. Extending

research to determine whether OSCs have important evolu-

tionary implications at a single gene scale would help to in-

form us whether OSCs have useful applications in, for

example, transgene design.

We also highlight two further limitations of our approach.

First, an assumption of our models is that OSCs are indeed

selected for. However, it is also known that organisms in all

kingdoms utilize frameshifting to increase coding capacity to

translate multiple proteins from the same CDS, for example

the gag-pol protein (Jacks et al. 1988; Dulude et al. 2002) or

in autoregulatory feedback systems (Baranov et al. 2002;

Betney et al. 2010) via programmed frameshifting

(Farabaugh 1996; Dinman 2012; Ketteler 2012). In such

instances, the null expectation should not be selection for

OSCs but rather strong avoidance selection. Even with the

knowledge of well-annotated programmed frameshifts, it

would be difficult to define how a null sequence with no

selection should be composed. Our analyses cannot account

for such programmed frameshifting without first removing

CDSs where these frameshifts occur. The highly site-, con-

text-, and CDS-specific nature of programmed frameshifts

are, however, unlikely to greatly influence our conclusions.

Second, we assume that regardless of sequence context an

OSC can function as a stop codon. Put differently, our null

deviations are defined with respect to OSC number rather

than OSC efficiency. There are, however, likely to be many

alternative factors influencing the efficiency of terminations

both for regular stop codons and for OSCs. For example, we

assume that upon entering the ribosome A-site, an OSC func-

tions as regular stop codon and has the same ability to recruit

release factors. The nucleotide context surrounding stop

codons, particularly the nucleotide following the stop codon,

is also an important determinant of termination efficiency and

read through (Poole et al. 1995; Tate et al. 1996; Mottagui-

Tabar and Isaksson 1997; Namy et al. 2001; Cridge et al.

2006; Wei and Xia 2017). An initial analysis of the nucleotide

3’ of OSCs indicates no such bias (supplementary fig. 7,

Supplementary Material online). In E. coli, the cooperation

of chemical properties to the penultimate two amino acids

in the nascent peptide to form secondary structures can also

determine termination efficiencies (Mottagui-Tabar et al.

1994; Björnsson et al. 1996). Any analyses that can further

establish the extent to which the sequence context surround-

ing stop codons has on termination efficiency and the impli-

cations for OSCs may provide useful.

In summary, we propose that for the ambush hypothesis to

be considered as having any validity, care is required in
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defining null expectations and that a more appropriate frame-

work is one that considers not all genomes, not all stops, and

not all alternative frames as equally relevant. Our modified

framework holds promise, given its ability to predict higher

frameshifting rates in genomes with high OSC excess but

comes with unexplained features and caveats.
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Supplementary data are available at Genome Biology and

Evolution online.
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