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Abstract: We previously showed that potential prenatal exposure to agricultural pesticides was
associated with adverse neurodevelopmental outcomes in children, yet the effects of joint exposure
to multiple pesticides is poorly understood. In this paper, we investigate associations between the
joint distribution of agricultural use patterns of multiple pesticides (denoted as “pesticide profiles”)
applied near maternal residences during pregnancy and Full-Scale Intelligence Quotient (FSIQ) at
7 years of age. Among a cohort of children residing in California’s Salinas Valley, we used Pesticide
Use Report (PUR) data to characterize potential exposure from use within 1 km of maternal residences
during pregnancy for 15 potentially neurotoxic pesticides from five different chemical classes. We
used Bayesian profile regression (BPR) to examine associations between clustered pesticide profiles
and deficits in childhood FSIQ. BPR identified eight distinct clusters of prenatal pesticide profiles.
Two of the pesticide profile clusters exhibited some of the highest cumulative pesticide use levels
and were associated with deficits in adjusted FSIQ of −6.9 (95% credible interval: −11.3, −2.2) and
−6.4 (95% credible interval: −13.1, 0.49), respectively, when compared with the pesticide profile
cluster that showed the lowest level of pesticides use. Although maternal residence during pregnancy
near high agricultural use of multiple neurotoxic pesticides was associated with FSIQ deficit, the
magnitude of the associations showed potential for sub-additive effects. Epidemiologic analysis of
pesticides and their potential health effects can benefit from a multi-pollutant approach to analysis.
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1. Introduction

Several epidemiologic studies have shown associations between biomarkers of prenatal exposure
to pesticides and poorer childhood neurodevelopment [1–10]. We have also shown in the Center for
the Health Assessment of Mothers and Children of Salinas (CHAMACOS) birth cohort study that
the average of two measurements of organophosphate pesticides (OPs) dialkyl phosphate (DAPs)
metabolites in maternal urine collected during pregnancy was associated with decrements in cognitive
development of 7-year-old children living in an agricultural community [11]. However, although
this biomarker potentially represents exposure to a multitude of OPs, it does not represent all OPs
used and it does not indicate exposure to specific pesticides. To address this limitation, we previously
investigated prenatal residential proximity to agricultural pesticide-use using California’s unique
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database of Pesticide Use Data (PUR), which provides the poundage (kg), date, and location (to
one-square-mile sections) of specific pesticides (active ingredient) applied; we found significant
adverse associations between cognitive development in children at 7 years of age and specific
agricultural pesticides or grouped pesticide classes, namely oxydemeton-methyl, acephate, pyrethroids,
neonicotinoids, and Mn-fungicides [12]. However, due to the inherent limitations with conventional
multiple regression techniques—such as limited capacity to handle large numbers of highly correlated
exposures—our previous analyses and others’ [1,9,13] have relied on multiple tests of association with
neurodevelopment for individual pesticides or pesticide groups, and we therefore have yet to evaluate
the potential neurodevelopmental effects of joint exposure to several different individual pesticides
with different mechanisms of toxicity.

Since agricultural populations are potentially exposed through a variety of routes to a combination
of pesticides that exhibit varying toxicities and modes of action [14], a modeling approach is needed
which limits multiple tests of association (that enhance type 1 error rate) while also handling
multicollinearity. Since many pesticides are neurotoxic, albeit of varying potency (even within chemical
pesticide classes) [15], and some have similar mechanisms of action [15–18], there is also a potential for
either additive or non-additive effects given different combinations of pesticide exposures. Statistical
approaches have recently emerged to facilitate analysis of the combined health effects of joint exposure
to multiple environmental chemical exposures [19–27].

Agricultural communities present an opportunity to investigate the potential health effects of
exposure to multiple pesticides. California presents a strong case study, due both to its relatively
high volume of pesticide use—approximately 85 million kg in 2014 [28]—and the fact that 100%
of all agricultural pesticide use is reported to the state’s Department of Pesticide Regulation [29].
Past environmental and biomonitoring studies that have utilized PUR data have shown positive
correlations between nearby reported agricultural pesticide use and pesticide concentrations measured
in outdoor air and house dust [30–33]. We have also found that the CHAMACOS mothers—during
pregnancy—had higher OP urinary metabolites levels compared to the general U.S. population [34]
and that living near agricultural fields is related to higher levels of urinary OP metabolites at younger
ages in the children [35]. To date, however, little is known about the spatial patterning of joint use near
residents in agricultural communities and whether different joint use patterns may be more strongly
associated with health outcomes.

In this study, we investigated the joint distribution of potentially neurotoxic pesticide-use profiles
during pregnancy with measures of childhood cognition. We included in this analysis pesticides not
previously considered because they do not devolve to DAPs and/or have no known biomarker. We also
explored whether there was a distinct spatial patterning of some of the combinations of pesticide-use
that showed stronger associations with child cognition. To accomplish this, we employed a novel
statistical method known as Bayesian profile regression (BPR) [23] to analyze pesticide use profiles
that are estimated from prenatal residential proximity to reported agricultural pesticide use. The BPR
approach is based on well-established Bayesian Dirichlet process mixture modeling techniques [36–39]
and is capable of: (1) accounting for the collinearity of the exposure data inherent with agricultural
pesticide use; (2) appropriately handling model uncertainty in cluster assignment and number of
clusters used; and (3) drawing inference on health associations by linking profiles of exposure with
a health outcome of interest. In this way, we employ a joint exposures approach to identify and
characterize the important clusters of prenatal pesticide profiles that are asociated with deficits in
childhood cognition. We also aimed to identify individual pesticides that are most strongly associated
with childhood cognition when considering joint exposure by applying Bayesian Kernel Machine
Regression (BKMR), a data-adaptive method that allows for fitting multiple correlated exposures jointly
into the same model, and evaluating each parameter’s relative importance across the model space.
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2. Materials and Methods

2.1. Study Population: CHAMACOS Cohort

The CHAMACOS study is a longitudinal birth cohort study examining pesticide and other
environmental exposures in the agricultural Salinas Valley, California. Detailed information about
the study is presented in Eskenazi et al. [40]. Participant mothers were recruited and enrolled from
October 1999 to October 2000 from clinics serving the low-income residents. Women were eligible
if they were ≥18 years of age, ≤20 weeks of gestation, were eligible for MediCal, spoke English or
Spanish, and were expecting to deliver at the county hospital. Of 601 mothers enrolled, 537 were
followed to delivery. Twins (n = 10) and children with medical conditions that could affect their
neurodevelopment assessment (n = 4) were excluded from the analysis (one child each with Down
syndrome, autism, deafness, and hydrocephalus). Up to as many 330 children were followed through
the 7-year of age for neurodevelopmental assessment. Children were included in our analysis only if
we knew their maternal residence during pregnancy for a minimum of 75 days for each of two or more
trimesters (n = 283), if they completed each component of the neurodevelopmental assessment at age
7 years (n = 257), and if they had prenatal measurements of DAPs (n = 255 with DAPs), since DAPs
were an important covariate in our statistical analysis [12]. This resulted in a final study population of
255 (see Supplementary Materials, Table S1 for the study population characteristics). Written informed
consent was obtained from all women and verbal assent from all children at age 7 years; all research
was approved by the University of California, Berkeley, Committee for the Protection of Human
Subjects prior to commencement of the study (Ethical Approval Code: 2010-03-949).

2.2. Characterization of Prenatal Pesticide Use near Maternal Residences

We characterized potential exposure based on prenatal residential proximity (≤1 km radius)
to agricultural pesticide applications. Pesticide use information was obtained from the state PUR
database (described above). These methods have been previously described [12,41]. Briefly, three
measurements using a global positioning system at the maternal residence were collected to determine
latitude and longitude [32]. We created a 1-km buffer radius around the location of each maternal
residence and weighted the amount of pesticide active ingredient applied within each 2.59 square-km
(or one square-mile) section by the proportion of land area within the 1-km buffer. We selected a 1-km
buffer around residences because our previous work has shown this distance to better explain the
variation in observed house dust concentrations for most of the agricultural pesticides sampled in
homes (compared to smaller distance-based buffers) [30]. To calculate pesticide use over an entire
pregnancy, we first determined reported pesticide use during each trimester period based on at least
75 days of known residential location for each trimester as the criterion for calculating an entire
pregnancy average. For mothers with at least two trimesters that met this criteria, we summed
and then averaged across the entire pregnancy by dividing by the number of trimesters included.
We selected 30 neurotoxic insecticides and two manganese (Mn)-based fungicides a priori-based on
evidence from human or animal studies [42–46] that had agricultural use during our study period,
including fifteen OPs, six carbamates, eight pyrethroids, and one neonicotinoid. Of these pesticides,
up to 15 pesticides from five different chemical classes, including seven OPs (oxydemeton-methyl,
acephate, malathion, diazinon, dimethoate, chlorpyrifos, and naled), two carbamates (methomyl
and thiodicarb), four pyrethroids (permethrin, cyhalomethrin, cypermethrin, and esfenvalerate), one
Mn-based fungicide (maneb), and one neonicotinoid (imidacloprid) met our criteria for sufficient use
within 1 km of prenatal residences to be included in the final analysis. We set our criteria of sufficient
use for each pesticide if the median estimate across our study population was above zero and where
there was at least a two-fold difference between the lower 25th percentile and 75th percentile of the
distribution for a pesticide-use estimate (to ensure there is sufficient contrast in exposure).
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2.3. Assessment of Cognitive Development

Our study outcome was cognitive ability of the 7-year-old children determined by Full Scale
Intelligence Quotient (FSIQ) assessed using the Wechsler Intelligence Scale for Children, 4th edition
(WISC-IV) [47]. We selected FSIQ as our outcome since our previous studies show consistent
associations between FSIQ and prenatal urinary DAPs [11] and prenatal residential proximity
to reported agricultural pesticide use [12,41]. A single bilingual psychometrician conducted all
assessments. These were administered in the dominant language of the child as determined by
an oral vocabulary subtest [48], with 67% completing the WISC-IV testing in Spanish and 33% in
English. The WISC-IV comprises four separate domains, including verbal comprehension, perceptual
reasoning, working memory, and processing speed, which were combined to derive a FSIQ score [47].
WISC-IV scores were then standardized against U.S. population-based norms for English- and
Spanish-speaking children.

2.4. Covariates

We selected household-level and individual-level covariates a priori that have been controlled for
in our previous publications that examined pesticides and IQ at age 7 years [11,12]. Household-level
covariates included the Home Observation for Measurement of the Environment—short form
(HOME) score (continuous) [49] and household poverty level (dichotomous < poverty level vs.
≥ poverty level) assessed at the child’s seven-year visit. Child covariates included age at assessment
(continuous), language of assessment, and sex. Maternal covariates included educational attainment
level (≤6th grade vs. >6th grade), maternal intellectual abilities based on Peabody Picture Vocabulary
Test completed at 6 months postpartum (continuous) [50], country of origin (Mexico vs. other), at risk
for depression at the child’s seven-year visit (≥16 on CES-D), and average prenatal urinary total DAPs
concentrations (log 10 scale). Prenatal DAPs were measured in urine samples collected at two time
points during pregnancy (median = week 13 at first time point and median = week 26 for second time
point) [11]. We control for prenatal DAPs because we observed an association with seven-year IQ in a
previous analysis [11] and because DAPs remained significantly associated with IQ even when nearby
OP pesticide use based on PUR data was included in the model [12]. In addition, controlling for total
DAPs was considered important because we wanted to control for other potential sources (i.e., diet and
take-home from resident farmworkers) of prenatal OP pesticide exposures that cannot be ascertained
from PUR data, and was justified because DAPs were not correlated with PUR exposure estimates.

2.5. Statistical Analysis

2.5.1. Bayesian Profile Regression

We utilized Bayesian profile regression (BPR) because applications of different pesticides are
highly correlated, and BPR is useful for analyzing such data structures in relation to an outcome.
Compared to many other clustering or dimension reduction procedures (i.e., k-means or principle
component analysis), BPR offers important advantages. First, BPR addresses uncertainty in cluster
assignment by means of Bayesian modeling in conjunction with Markov chain Monte Carlo (MCMC)
estimation [51]. Second, BPR, is based on well-established Dirichlet Process based clustering
methods [36,52] and assumes an infinite number of possible clusters, so the analyst need not specify
beforehand the number of clusters to be used, whereas other clustering procedures (e.g., k-means)
typically assume a fixed number of clusters and that individual observations may be in only a single
cluster as the algorithm proceeds. Third, BPR flexibly links the exposure profile clusters with a health
outcome via a disease sub-model that partially supervises the clustering assignment in a unified
manner. Fourth, while BPR accounts for uncertainty in clustering, it also employs a dissimilarity
matrix to derive an interpretable “best” clustering related to the joint distribution of exposures. The
full BPR procedure addresses uncertainty related to this “best” partition by model averaging through
all partitions (clusterings) produced by the stochastic estimation process. Large, stable clusters will
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generally be associated with consistent and overall high cluster assignment probabilities and associated
with narrower posterior credible intervals related to cluster parameters, while smaller, less stable
clusters will generally be associated with wider interval estimates.

Briefly, for each individual, i, we define a pesticide use profile as, xi = (xi1, xi2, . . . , xiP), which
includes the entire suite of prenatal pesticide use estimates, with pesticide covariates denoted as xp,
p = 1, . . . , P for individual i, with P = 15 indicating the total number of potential exposures. Each
exposure was categorized into discrete categorical “exposure” covariates, where covariate xip has Kp

number of categories. Here, K = 4 for each pesticide covariate, since we used discrete pesticide-use
quartiles for each pesticide included in BPR. These pesticide-use estimates were categorized due to the
high skewness in their distributions for each pesticide analyzed.

In the full BPR analysis, the categorical covariate mixture model is fit in a unified manner with a
response vector, Yi, such that the contribution of the covariate data to a response variable depends on
the cluster assignment. Thus, the relationship between joint pesticide exposure and FSIQ is cluster
dependent. We modeled the response, FSIQ, as a continuous variable with normally distributed errors.
Additionally, a set of global fixed effect confounders, Wi, were fit as control variables on the response.
Continuous confounders were centered on their means to better facilitate MCMC convergence and to
enable us to appropriately interpret cluster effect estimate posterior distributions provided in the full
BPR model output. All BPR analyses were implemented in R (R Core Team, Vienna, Austria) using the
PReMiuM package with default priors, and MCMC output was checked for convergence using trace
plots of betas for the fixed effects (Wi) [53]. For more details on BPR, see [23,53–55].

For each cluster of pesticide-use patterns, henceforth denoted as “pesticide profiles”, we derive
the posterior distributions from the MCMC iterations of the fully adjusted expected FSIQ score (for
baseline values of discrete and centered continuous confounders). We focus our Bayesian inference on
the difference in adjusted FSIQ score for each cth cluster compared with the adjusted FSIQ scores for
the cluster that showed the lowest pesticide-use (defined as the pesticide profile cluster group that
resulted in posterior distributions with the highest proportion of observations in the lowest quartile of
exposure across all of the pesticides). Comparison with a low exposure ‘baseline’ group is a common
method of risk characterization in environmental epidemiology studies where no participants in the
cohort study are ‘unexposed’ [56].We report on the posterior mean and quantile FSIQ of each cluster
and the posterior probabilities for a deficit in FSIQ compared to the low exposure cluster.

BPR was also rerun by excluding the FSIQ outcome, as we have done in our previous work
published using BPR [21], as a sensitivity analysis to assess whether the exposure profile clustering
patterns is different compared with including the FSIQ outcome in the model. We applied the same
exact model parameters between runs (20,000 burn in and 200,000 MCMC sweeps).

To better understand the role of particular pesticides driving the clustering, we used the variable
selection option in the PReMiuM package. The variable selection options, which are comprised of
either a binary [37] or continuous [57] selection weighting methods, allows the model to exclude an
exposure from influencing the clustering procedure if an exposure exhibits a very low probability
of being involved in the clustering patterns, further emphasizing a data-driven (non-parametric)
approach to clustering. Specifically, we implemented variable selection with the “Continuous” option
which utilizes a latent variable taking on values in (0,1) which informs the contribution of the variable
in question in supporting a mixture distribution [53,57]. Using a Bayesian framework for variable
selection has been shown to be particularly helpful within the context of a large number of correlated
covariates because it appropriately handles model uncertainty [58,59]. Here we evaluate the posterior
inclusion probabilities for each pesticide to derive their cluster support.

2.5.2. Characterizing Pesticide-Use Profile Clusters

To help characterize the pesticide use profile clusters, we used the output from the full BPR
analysis of the “best” clustering assignments to assume a type of “hard” cluster assignment for each
study participant (thus ignoring uncertainty in cluster assignment). We evaluated the joint distributions
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of empirical values for pesticide-use estimates and further summarized the predominant pesticides
within each cluster for these “best” clusters. Next, we summarized the empirical distributions of
child FSIQ scores corresponding to these “hard” clusters that were derived from BPR. Finally, using
the PReMiuM package, we fit a multivariate linear regression model to evaluate the fully adjusted
association between pesticide profile clusters and FSIQ compared to the lowest pesticide profile
cluster as a “baseline exposure” reference group, properly accounting for cluster uncertainty in both
assignment and number of clusters. The pesticide profile clusters that were derived from the sensitivity
analysis, which excluded the outcome in the BPR analysis, were also fit using multivariate linear
regression as a second stage to the analysis so that inference may be compared between the fully
Bayesian risk characterization when the outcome is included in the BPR analysis.

2.5.3. Pesticide Importance by Bayesian Kernel Machine Regression

We then applied a novel statistical modeling and estimation method called Bayesian Kernel
Machine Regression (BKMR) [19] to distinguish the relative importance of single pesticides across
all possible models when fitting the study pesticides jointly. The primary benefits of BKMR when
fitting a joint exposure model comes from its uniform analysis of an exposure-response surface
by way of exposure profiles, as well as the adaptive data-driven nature of the kernel estimation
procedure that allows for model non-additivity and exposure-response non-linearity, along with
variable selection to help identify key components of a mixture potentially responsible for the
outcome. In our implementation, we chose the hierarchical variable selection because several of
our exposure measures are highly correlated. In an effort to deal with collinearity, the hierarchical
variable selection option does not allow exposures that are grouped together to enter into the same
model [19]. BKMR variable selection is akin to Bayesian variable selection and thus computes posterior
inclusion probabilities (PIPs) to compare the relative ranking of each variable being selected into the
model. For BKMR with hierarchical variable selection, we specified the groups based on the chemical
classes, and alternatively based on the correlation structure of the exposure variables in a sensitivity
analysis. We also used the same fixed effects as in profile regression [19]. While the output from BKMR
is rich with information for inference, we focus our presentation of the results from BKMR on PIPs to
illustrate the relative ranking of variable importance for each pesticide class as well as each pesticide
within a particular class of pesticides. This analysis thus acts as a supplement to profile regression to
help illustrate the variables that may be most important with respect to FSIQ.

2.6. Mapping Pesticide Use Profiles

We mapped the point locations (ArcGIS version 10.2, ESRI, Redlands, CA, USA) of participant
maternal residences to evaluate the spatial patterning of the assigned clusters [21] as well as the
cumulative pesticide use patterns. Specifically, a kernel density plot was applied to the spatial data of
the pesticide profiles with stronger associations with FSIQ deficits in order to represent the residential
point locations for a particular profile as a smoothed surface to characterize areas where point locations
are either more or less concentrated. Finally, we applied both global and local Moran’s I tests to
determine whether cumulative pesticide-use patterns or child FSIQ values were spatially clustered.

3. Results

3.1. Pesticide Use Summaries

The median of the cumulative (summed) estimates for the targeted neurotoxic pesticides within
1 km of maternal residence was 164 kg (interquartile range (IQR) = 68, 356) (Table 1). Several of the
pesticide-use proximity estimates showed high to very high between-pesticide Spearman’s correlations
(Figure 1). The OPs showed particularly high Spearman’s correlation with each other (ρ range: 0.71,
0.90), except for malathion and naled, which showed only moderate correlations with the other
OPs (ρ < 0.56). Several of the OPs were also moderately to highly correlated with other potentially
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neurotoxic pesticides from other chemical classes, including maneb, methomyl, imidacloprid, and
permethrin (see Figure 1).

Table 1. Summary statistics for estimates of agricultural pesticide use (kg) within one kilometer of
maternal residence during pregnancy, Center for the Health Assessment of Mothers and Children of
Salinas (CHAMACOS), 1999–2000 (n = 255).

Pesticide (Type) Median (IQR) Mean (SD)

Oxydemeton-methyl (OP) 10.59 (1.95, 24.18) 20.50 (34.89)
Acephate (OP) 9.16 (2.54, 28.90) 23.59 (41.99)

Chlorpyrifos (OP) 9.83 (1.23, 29.89) 24.10 (41.16)
Diazinon (OP) 22.22 (11.86, 50.59) 46.02 (70.47)
Malathion (OP) 1.57 (0, 12.71) 20.41 (49.58)

Dimethoate (OP) 3.47 (0.84, 16.12) 11.67 (17.04)
Naled (OP) 0.07 (0, 6.24) 6.24 (14.62)
Maneb (Mn) 55.20 (24.77, 123.60) 108.90 (149.56)

Methomyl (Carb) 10.00 (2.50, 28.07) 25.09 (40.13)
Thiodicarb (Carb) 0.45 (0, 1.67) 1.67 (3.14)
Permethrin (PR) 2.64 (1.03, 9.73) 7.34 (10.47)

Cypermethrin (PR) 0.007 (0, 0.47) 0.48 (1.05)
Cyhalothrin (PR) 0.13 (0.05, 0.42) 0.40 (0.80)

Esfenvalerate (PR) 0.15 (0.0003, 1.44) 1.43 (5.17)
Imidacloprid (N) 2.53 (1.37, 3.06) 5.14 (6.29)

Cumulative (Summed) 164.20 (67.53, 356.20) 303.00 (395.75)

OP = Organophosphate, Mn = Manganese-based fungicides, Carb = Carbamates, PR = Pyrethroid,
N = Neonicotinoid, IQR = Interquartile Range, SD = Standard Deviation.
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3.2. Pesticide Use Profile Clusters

Each pesticide in the profile regression resulted in high clustering inclusion probabilities (range:
0.987, 0.998). Profile regression partitioned the joint distribution of individual pesticide estimates into
eight pesticide profile clusters. Of these eight pesticide profile clusters, cluster profile 1 (CP1) resulted
in the largest median cumulative pesticide-use (mediancluster1 = 671 kg; IQR = 472, 1030), followed by
cluster profiles CP2 > CP7 > CP4 > CP5 > CP8 > CP3 > CP6.

Since each “best” pesticide profile cluster consists of joint distributions for all pesticides studied,
we used a heuristic approach to characterize predominant pesticides within each pesticide profile
cluster (see Figure 2 in a manner similar to Liverani et al. [60]). This heuristic was based on calculating
the median for observations within a cluster that fall into a particular quartile. For each pesticide
profile cluster, we characterized a specific pesticide as either (1) “very high” potential exposure if
the within cluster pesticide-use median of observations is in the fourth quartile (darkest red tiles in
Figure 2); (2) “moderately high” if the within cluster pesticide-use median of observations is in the
third quartile for a given pesticide (lighter red tiles in Figure 2); (3) “moderately low” if the within
cluster median of observations is in the second quartile (lightest red tiles in Figure 2); and (4) “very
low” if the within cluster pesticide-use median of observations are in the first quartile (white tiles in
Figure 2). For example, the highest cumulative pesticide profile (CP1) was characterized as very high
(red tiles in Figure 2) for 13 of 15 pesticides studied, including oxydemeton-methyl, acephate, diazinon,
dimethoate, naled, maneb, methomyl, permethrin, cypermethrin, imidacloprid, chlorpyrifos, and
cyhalothrin, and esfenvalerate (dark red boxplots in Figure 2), while CP1 pesticide-use was moderately
high for thiodicarb and malathion only (light red tiles in Figure 2). CP3 showed the highest frequency
for pesticide-use estimates in the lowest quartile (white tiles, 13 of 15 pesticides). As shown in Figure 2,
the BPR partitioned the joint pesticide distributions effectively because each of the clusters resulted in
joint pesticide levels across the 15 pesticides that are clearly quite distinct from one another. The fully
Bayesian posteriors of the joint distributions for pesticide-use profiles, which still retain the cluster
uncertainty propagated by the MCMC algorithm, can be viewed in the Supplementary Materials
(Figure S1) which similarly suggest effective partitioning. The posterior distributions from the MCMC
iterations indicate that CP1 is elevated for all pesticides while CP3 is low for all pesticides, which is
largely in line with the clustering summary presented in Figure 2.
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while each row represents a cluster profile (CP1 through CP8). The cumulative column refers to the
summation of all pesticides estimates for each observation and therefore represents the cumulative
pesticide level for each cluster.
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3.3. FSIQ Results

Table 2 shows the empirical FSIQ summary statistics overall and stratified by the eight “best”
pesticide profile clusters (CP1–CP8) derived from the full BPR. The overall mean FSIQ was 103.8 (95%
confidence interval (CI): 102.1, 105.6). CP1 (mean = 98.6, 95% CI: 95.1, 102.2) and CP7 (mean = 101.4,
95% CI: 94.4, 108.4) had the lowest unadjusted mean FSIQs, while all other clusters had unadjusted
FSIQ scores that were either similar to or higher than the overall mean FSIQ (Table 2). CP3 resulted
in posterior distributions with the highest proportion of observations in the lowest quartile of
pesticide-use estimates across all of the pesticides and was therefore selected as the reference group to
help facilitate risk characterization of these pesticide profile clusters.

Table 2. Summary of empirical FSIQ scores (unadjusted) at age 7-year overall and by exposure profile
clusters (n = 255).

Overall
n Mean (95% CI) a

255 103.8 (102.1, 105.6)

Cluster

CP1 59 98.6 (95.1, 102.2)
CP2 52 105.0 (101.2, 108.9)
CP3 50 106.7 (102.2, 111.1)
CP4 17 104.4 (97.0, 111.8)
CP5 43 104.8 (101.0, 108.7)
CP6 3 108.3 (84.7, 131.9)
CP7 18 101.4 (94.4, 108.4)
CP8 13 110.0 (102.6, 117.4)

CI = Confidence Interval. a Unadjusted means and confidence intervals for the entire study population and for each
“hard” cluster derived from BPR.

The posterior distributions of the adjusted expected FSIQ estimates from profile regression, when
holding confounders at baseline (zero), are shown in the form of cumulative probability density
plots in Figure 3 and are further summarized in Table 3. Pesticide profile clusters CP1 and CP7 are
characterized by adjusted FSIQ posterior distributions mostly below the unweighted overall average
expected FSIQ (shifted to the left), while all other clusters are characterized by adjusted FSIQ posterior
distributions that are either centered around the average or above the average FSIQ (Figure 3). For CP1
and CP7, the joint posterior probabilities for a FSIQ deficit compared with the lowest pesticide profile’s
(CP3) FSIQ was 99% and 97%, respectively (Table 3). The overall difference in adjusted FSIQ for CP1
and CP7 compared with CP3’s adjusted FSIQ were −6.9 (95% credible interval: −11.7, −2.1) and −6.4
(95% credible interval: −13.1, 0.5), respectively. Other clusters that showed high posterior probabilities
for adjusted FSIQ below that of CP3 included CP2 (83%), CP5 (77%), and CP4 (76%), while all other
pesticide profiles resulted in posterior probabilities <50%.

3.4. Comparison of BPR Clustering When Excluding the Outcome

As a sensitivity analysis, we also ran the BPR procedure to assess potential differences in “hard”
clustering patterns when the outcome is excluded from the model (hence no outcome feedback) versus
the analysis presented in Table 3 above, where the outcome was included in the full BPR. While there
is extensive overlap in study participants between the clustering when comparing BPR with and
without the outcome, it is clear from Table 4 that clustering patterns differed when the outcome was
excluded. For example, CP1 for both runs remained the highest pesticide profile cluster, however, four
of the participants in CP1 from the analysis that included the outcome were partitioned into a different
cluster from the analysis that did not include the outcome. A similar pattern was seen for CP7 from
the analysis that included the outcome, with four participants being partitioned into a different cluster
from CP7 for the analysis that did not include the outcome (although CP7 was still a relatively high
pesticide profile cluster in both analyses). Meanwhile, the lowest exposure pesticide profile cluster
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from both analyses included the same participants. Table S2 in the Supplementary Materials shows
regression coefficients that are similar to the results that included the outcome in the fully Bayesian
analysis. Specifically, CP1 and CP7, which are mostly comprised of the same study participants (with
the exception of the difference already noted), resulted in similar deficits of FSIQ relative to the lowest
pesticide profile cluster. However, associations were not as strong as compared with the outcomes in
the fully Bayesian output (likely due to larger sample size in these fully Bayesian clusters). As noted
by the authors of the PReMiuM package, the MCMC algorithm generally has an easier time splitting
rather than merging clusters. Our results suggest that including the outcome may have played an
additional role in the MCMC algorithm to help merge observations into a cluster that would have
otherwise been split into different clusters. In addition, the unified fully BPR analysis that included the
outcome did not require a second step to the regression analysis and also avoided some of the issues
related to multiple tests of association that the second-stage linear regression analysis does require
when the outcome is excluded from BPR.

3.5. Spatial Patterns of Risk and Potential Exposure

A kernel density plot shown in Figure 4 indicates that maternal residential locations for CP1, the
highest risk pesticide profile, are concentrated in the southern areas of the Salinas Valley and along the
outskirts of the City of Salinas. The geostatistical pattern for CP7 could not be fully evaluated due to
the relatively small number of participants in this cluster (n = 18), but a majority of CP7 participants
resided within a single neighborhood in the City of Salinas. A global Moran’s I test statistic for spatial
autocorrelation of high cumulative pesticide-use near maternal residences resulted in a p-value < 0.001,
suggesting that high amounts of cumulative pesticide-use was spatially clustered. Conversely, we did
not observe spatial autocorrelation (clustering) for FSIQ scores for the children in our study, indicating
that it is only the potential exposure levels in our study that exhibited statistically significant spatial
clustering and not our outcome.
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Table 3. Summary of posterior distribution of FSIQ for each exposure profile cluster and the estimated
difference in FSIQ compared to lowest exposure profile cluster at age 7-year resulting from the BPR
(n = 255).

Clusters
Adjusted Posterior Mean
FSIQ a,b (95% Credible

Intervals)

Mean FSIQ_c from
FSIQ_CP3 a,c (95% Credible

Intervals)

Probability FSIQ_c <
FSIQ_CP3 d

CP1 95.5 (88.6, 102.0) −6.9 (−11.7, −2.1) 0.998
CP2 100.1 (93.4, 106.3) −2.4 (−7.2, 2.5) 0.83
CP3 102.5 (95.8, 108.7) Ref Ref
CP4 100.1 (91.8, 107.9) −2.4 (−9.0, 4.3) 0.76
CP5 100.6 (93.1, 107.6) −1.9 (−7.1, 3.3) 0.77
CP6 101.3 (93.2, 108.4) −1.1 (−7.9, 3.4) 0.47
CP7 96.1 (87.7, 104.2) −6.4 (−13.1, 0.5) 0.97
CP8 102.8 (94.1, 111.3) 0.3 (−7.0, 7.8) 0.47

a Adjusted for child’s age at WISC assessment (mean centered), sex, language of assessment, maternal education,
maternal intelligence (mean centered), maternal country of birth, maternal depression at 7-year visit, HOME score
at 7-year visit (mean centered), household poverty level at 7-year visit, and prenatal urinary dialkyl phosphate
(DAPs) metabolites (log10, mean centered); b The posterior distribution of the expected FSIQ scores for the cth

cluster when holding fixed effect control variables at zero; c Difference between posterior distribution of expected
FSIQ for the cth cluster compared to posterior distribution of expected FSIQ for cluster 3 (reference group) when
holding control variables at zero; d Probability that the posterior distribution of expected FSIQ for the cth cluster is
below the expected FSIQ for cluster 3 when holding control variables at zero.

Table 4. Comparison of best cluster assignment patterns when including (outcome feedback) or
excluding (no outcome feedback) the outcome from the BPR analysis.

Clusters Excluding FSIQ Outcome in BPR

Clusters Including
FSIQ Outcome in BPR CP1 CP2 CP3 CP4 CP5 CP6 CP7 CP8 CP9 Row

Total

CP1 55 0 4 0 0 0 0 0 0 59
CP2 0 8 22 0 0 0 4 0 18 52
CP3 0 0 0 50 0 0 0 0 0 50
CP4 0 1 0 0 15 0 0 1 0 17
CP5 0 2 0 0 0 40 0 1 0 43
CP6 0 0 0 0 3 0 0 0 0 3
CP7 0 0 0 0 0 0 16 2 0 18
CP8 0 0 3 0 0 0 0 10 0 13

Column Total 55 11 29 50 18 40 20 14 18 255
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3.6. Variable Selection from BKMR

A full summary of the PIPs from the BKMR hierarchical variable selection are presented in the
Supplementary Materials (Table S3). According to group PIP values, which represent the posterior
probability of a pesticide class being included in the models, the OPs ranked highest, followed by
pyrethroids > manganese-based fungicide > neonicotinoid > carbamates. The ranking of conditional
PIPs within the OPs, which represents the probability of an individual pesticide being included into
the models conditional on the OP group being selected, resulted in oxydemeton-methyl with the
highest rank, followed by acephate > chlorpyrifos > dimethoate > naled > malathion > diazinon. For
the pyrethroids conditional PIPs, permethrin ranked highest followed by cypermethrin > esfenvalerate
> cyhalomethrin. Methomyl ranked higher compared to thiodicarb in terms of conditional PIPs for
the carbamates, although carbamates overall had the lowest group PIP ranking (meaning carbamates
were rarely selected into the model). Conditional PIPs for Mn-based fungicides and neonicotinoid
pesticides are not presented since these classes included only a single pesticide each. A sensitivity
analysis with BKMR hierarchical variable selection was performed, which heuristically varied the
grouping of pesticides based on either the between-pesticide correlation structure or alternatively
grouped by using a hierarchical clustering of variables method that systematically groups pesticides
by their between-pesticide correlation structure, which resulted in a similar relative pesticide ranking
of conditional PIPs as seen with the pesticide class-based grouping (Table S2).

4. Discussion

Our primary aim was to use Bayesian profile regression (BPR) to characterize joint distributional
patterns of correlated agricultural pesticide usage near pregnant women’s homes among a cohort
residing in the Salinas Valley, CA and evaluate clustered pesticide profiles in relation to full scale IQ
(FSIQ) in their children at seven years of age. The BPR partitioned the joint pesticide distributions
effectively given that the analysis resulted in distinct pesticide profiles whether or not the outcome
was included in the analysis. Including the outcome in the analysis, however, enabled us to
characterize the association of different clusters of pesticide profiles with FSIQ while also accounting
for model uncertainty in the Bayesian framework. We found that pesticide profiles with elevated joint
distributions of multiple pesticides showed the strongest associations with deficits in childhood FSIQ
(e.g., >1/2 SD from baseline group); conversely, pesticide profiles with joint pesticide-use distributions
that were substantially lower (CP3 and CP6) were characterized by FSIQs that were above the study
population’s overall mean FSIQ. Importantly, mapping of the pesticide use profiles suggested a distinct
spatial dependency for the most hazardous pesticide profiles, along with evidence of positive spatial
autocorrelation (clustering) in higher pesticide levels near maternal residences.

While previous studies suggest that prenatal proximity to agricultural pesticide use for individual
pesticides is associated with neurodevelopmental outcomes [12,13,41,61–63], ours is the first to
explicitly show that it may be the combined exposure to multiple different pesticides and pesticide
classes near maternal residences that may be of importance rather than nearby use of a single pesticide
or single class of pesticides. Our findings also imply that studies investigating the neurodevelopmental
effects of current-use agricultural pesticide exposures should analyze the pesticide mixtures as a whole,
rather than using the more conventional single pollutant models typically applied [12,13,41,62,63], as
such methods are unable to control for the influence of other covarying pesticides.

Conventional multivariate regression struggles to reliably estimate combined effects for a large
number of exposures within the context of highly correlated exposures. This observation is particularly
true when the number of parameters are large and the number of observations are small, as is common
in most cohort studies. For instance, in previous work by our group on this same cohort and using this
same PUR data set using separate pesticide-specific regression models, we found adverse associations
between single pesticides and FSIQ [12]. With conventional regression, we were previously unable to
analyze multiple pesticide exposures jointly and thus unable to evaluate the potential for combined
effects. In addition, while several pesticides in our previous work showed linear exposure-response
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relationships with FSIQ, the highly correlated nature of the pesticides meant that we could not
disentangle the true magnitude of associations for each pesticide, which likely over-attributed the
effect of a single pesticide. These challenges strongly support the need for a more advanced and
diverse set of statistical approaches to investigate health effects from multiple pesticide exposures [20].
Implementing Bayesian clustering as a framework of analysis allowed us to evaluate potential joint
patterns of multiple pesticide exposures, the spatial patterning of potential joint exposures, as well as
adverse childhood cognitive associations with joint exposure to multiple correlated pesticides.

Our findings lend support to the idea that exposure to mixtures of pesticides may have
unanticipated effects on neurodevelopment in children. Given the results from our previous study
mentioned above [12], and working under the assumption of additive effects of pesticides on FSIQ,
we would expect to see substantially larger deficits in FSIQ between pesticide profiles with large
differences in cumulative exposure levels, but this was not evidenced in our analysis. Pesticide
profile cluster 1 (CP1) resulted in a cumulative pesticide-use profile that was more than two and
half times higher than CP7 (670 kg vs. 235 kg), yet relative to the pesticide profile with the lowest
cumulative pesticide-use (CP3) both CP1 and CP7 exhibited differences in ∆FSIQ (∆FSIQCP1 = −6.9 vs.
∆FSIQCP7 = −6.4, Table 3) that did not correspond to the magnitude of the difference in cumulative
pesticide use levels. Additionally, after weighting the two clusters by their respective OP toxicity
based on relative potency factor, as done in our previous study [12], we observe that CP1 is nearly
two and half times higher (data not shown) in its estimated toxicity weighted use, yet this difference
in apparent toxicity was also not reflected in our results. In addition, CP2 resulted in a cumulative
(summed) pesticide use estimate that was slightly higher than that of CP7, yet the difference in FSIQ
from the lowest pesticide profile cluster for CP2 was substantially different compared to that of CP7.
A potentially important difference between these two clusters (CP7 and CP2) was that acephate and
thiodicarb were classified as “very high” in CP7, whereas these two pesticides were only “moderately
high” in CP2. This finding reveals the possibility that combined exposures to multiple pesticides may
not result in assumed additive effects for each compound in a mixture [20], as has been seen in some
toxicity studies [64,65]. This finding, however, should be taken with caution, since our study lacked
a direct measure of prenatal exposure to pesticides. Also, unlike conventional regression models,
profile regression is limited by the fact that it does not assume additivity of effects from multiple
exposures because it partitions continuous joint exposure distribution into discrete clusters, which
essentially represent latent categorical variables. This points towards an important limitation in using
clustering-based methods, whereby some clusters may result in joint exposure distributions too wide
to elucidate the effect of an individual chemical within a cluster on the outcome, especially where the
signal is not particularly strong [22].

Given some of the limitations with profile regression already discussed, supplementary to profile
regression, we also implemented Bayesian kernel machine regression (BKMR). Even though BKMR
has its own set of limitations, the results indicate that oxydemeton-methyl, acephate, and maneb were
particularly important pesticides in the observed exposure profile associations with FSIQ, and these
same pesticides were elevated in the pesticide profile clusters that exhibited the largest deficits in FSIQ.
While there is no clear guidance with BKMR in how to group exposures with respect to hierarchical
variable selection, our sensitivity analysis of exposure groupings showed consistency in terms of the
importance of these three pesticides with respect to showing the strongest associations with FSIQ.

Despite the numerous potentially neurotoxic pesticides evaluated in the present study, our
analysis revealed only eight distinct pesticide-use pesticide profiles when including the outcome and
nine pesticide profiles when excluding the outcome in the BPR analysis. This suggests that pesticide
exposures in agricultural communities may occur in a relatively small number of discrete patterns of
exposure, which could reflect the small number of different types of crops near maternal residences
that have only a certain combination of pesticides applied. This finding, however, is consistent with
a recent French study, wherein a set of pesticide mixtures that the French population is potentially
exposed to was similarly identified using a Dirichlet process mixture model [66]. Using a combination
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of dietary and pesticide residue information on 79 different pesticides, researchers observed that just 25
pesticides contributed to the clustering, with a total of only seven exposure profiles observed from their
analysis [66]. In a follow-up study, Crépet et al. [65] evaluated the toxicological effects of these seven
different pesticide mixtures in vitro and found certain exposure mixtures effects went either beyond or
below predicted additivity effects and that toxic effects were not readily predicted based on exposure
to each individual compound within a pesticide profile. Our finding and those of Crépet et al. [65]
highlight the potential value in examining joint pesticide exposure patterns to help prioritize specific
“real-world” exposure-response combinations that can be tested in toxicological studies [65,67]. BPR
could also be extended to take “real world” scenarios of exposures profiles to multiple pesticides to
predict potentially adverse neurological effects [60].

A promising aspect of our analytic approach that is worthy of further exploration is determining
the particular biologic drivers in the clustering of the pesticide profiles. Even though the correlation
structure of pesticide use patterns clearly played an important role in how these profiles clustered
together, it is less clear the degree to which the disease sub-model in BPR determined the clustering or
whether biologic factors related to neurotoxicity may be important as well. Our sensitivity analysis
suggested an important role for the outcome in partially determining the clustering patterns observed
in our data (Table 4). Considering that the clustering of pesticide profiles was sensitive to the outcome
and that pesticide-specific neurotoxic effects are inherently dependent on biologic pathways, the
clustering observed in our study may be driven by similar or dissimilar mechanisms of toxicity,
metabolism, or distribution for certain combinations of pesticides. For instance, the ordering of
OP and carbamate anti-acetylcholinesterase activity, or possibly some other biologically plausible
pathway, may counteract the cognitive effects of multiple neurotoxic pesticides to explain the potential
for sub-additive effects [68]. Unfortunately, these questions of biologic drivers cannot be readily
elucidated in our study data because we lacked the appropriate biomarkers of exposure. This area
represents an important avenue for future research.

An important implication of our study points toward the value in examining spatial patterns of
exposure profiles related to agricultural applications. Our mapping of pesticide profiles demonstrated
that the profiles associated with the largest deficits in childhood FSIQ exhibited a distinct spatial
pattern suggestive of spatial clustering in the southern Salinas Valley and along the outer border of
the City of Salinas. Importantly, a test for spatial autocorrelation using Moran’s I test failed to reveal
evidence within our study population of spatial clustering for lower FSIQ scores, signifying that spatial
residual confounding in our outcome due to unmeasured sub-population characteristics is unlikely
to explain the spatial patterns observed for the highest risk clusters. We further observed that the
highest risk pesticide profiles tended to be on the outskirts of the towns closer to agricultural fields,
especially for the City of Salinas. Hence, cluster analysis of pesticide-use patterns combined with
spatial information on participants’ residences can be leveraged to map communities that are most
likely to be disproportionately impacted by hazardous environmental chemical mixtures [21]. Such
spatial information is potentially useful for stakeholders, including public policy makers, growers who
apply pesticides, and members of the public potentially impacted by application of multiple pesticides
to agricultural fields. This approach can also be extended for other purposes such as in evaluating the
spatial patterns of hazardous air pollution mixtures [21].

We did not evaluate potentially neurotoxic agricultural herbicides or fumigants in our analysis
of pesticide mixtures, which is an important limitation. Future studies, with larger sample sizes, are
thus needed to evaluate a broader class of neurotoxic pesticides and other potentially neurotoxic
chemicals. Another important limitation is a lack of validation of our pesticide exposure measure (i.e.,
PUR data) either with biomarkers or environmental measures for all of the pesticides considered. The
application of pesticides near maternal residences during pregnancy does not necessarily mean the
women were exposed to these pesticides during their pregnancy, or that the relative proportion of
exposure is represented by the relative use of the active ingredients. In addition, the potential exposure
to the pesticides considered in our study vary by application method and their physicochemical
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properties including volatility, degradation rates, deposition rates, and other characteristics that will
ultimately determine their spatiotemporal fate and transport in the environment; yet these factors were
not considered in our exposure assessment [69,70]. Thus, relying solely on residential proximity to
reported pesticide applications can lead to exposure misclassification and potentially bias our findings
towards the null. Several studies (including in the CHAMACOS cohort) demonstrate some positive
correlations between nearby reported agricultural pesticide use based on PUR data and environmental
contamination (i.e., house dust and outdoor air) or proximity to agricultural fields and pesticide
metabolite levels in biological samples [30–33,35,71,72]. We were unable to fully account for other
potential sources of pesticide exposure such as residential use of pesticides and ingestion of pesticide
residues from fruits and vegetables. Although we controlled for total prenatal DAP concentrations,
which is a strength of our study since it likely represents other sources (i.e., diet and take-home from
resident farmworkers) of prenatal OP pesticide exposures that cannot be ascertained solely from PUR
data, these exposure biomarkers have their own limitations. DAPs are non-specific to a particular OP,
they do not include exposure to certain OPs such as acephate [73], they do not represent exposure to
other non-OP pesticides, they do not represent long-term exposures [74], and they may reflect exposure
to preformed metabolites and not simply their parent compounds [75]. Measured total prenatal DAPs
were not correlated with any of the PUR pesticide use estimates, thus reinforcing the concept that
total DAPs are likely to be representative of other OP pesticide exposure sources and that DAPs do
not sufficiently represent long-term exposure levels. That being said, we removed DAPs from the
model as a sensitivity analysis and did not see any substantive difference in our modelling results
(data not shown). Furthermore, use of PUR data as a proxy of exposure allows us to evaluate health
associations for pesticides that currently do not have a reliable biomarker of exposure. PUR data also
allows us to evaluate which pesticides are driving the clustering and observed associations with health,
as opposed to the non-specificity of DAPs, which obscures the variation in toxicity between OPs. There
is a clear need to develop improved biomarkers with better specificity and sensitivity for a wider array
of pesticides that represent long-term exposures.

Future work should attempt to overcome the limitations noted above, for instance, by improving
characterization of pesticide exposure by developing predictive models based on measured pesticide
concentrations in house dust, outdoor air, and personal samplers. Future work should also estimate
proximity to neurotoxic pesticide use during the postnatal period using residential history information
in addition to location of daycare facilities and schools that children attended. Furthermore, other
chemical mixtures analytic frameworks may be applied to this or similar data sets to better characterize
the possible contribution of individual pesticides to adverse neurologic effects while considering all
exposures jointly [19,20]. Finally, we encourage other researchers to attempt to replicate our findings
in other studies, especially in studies containing larger sample sizes.

5. Conclusions

We observed that pesticide-use profiles of neurotoxic pesticides used near the homes of pregnant
women living in agricultural communities were associated with FSIQ deficits in their children. While
this study lends supportive evidence to previous findings by our group and others, namely that
proximity to agricultural applications of pesticides are associated with poorer neurodevelopmental
outcomes in young children, the present study goes a step further by considering joint nearby pesticide
use in relation to FSIQ to show potential sub-additive associations and demonstrates the spatial
patterning of joint pesticide profiles of potential exposures. Epidemiologic analysis of pesticides and
their potential health effects can benefit by taking a joint exposures approach to analysis and also by
incorporating spatial patterning of joint distributions of potential exposures.

Supplementary Materials: The following are available online at www.mdpi.com/1660-4601/14/5/506/s1,
Table S1: CHAMACOS study cohort characteristics (n = 255). WISC-IV, Wechsler Intelligence Scale for Children,
4th edition; HOME, Home Observation for Measurement of the Environment, Table S2: Summary of empirical
FSIQ scores (unadjusted) at age 7-year overall and by exposure profile clusters (n = 255) after excluding the
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outcome from the profile regression, Table S3: Group and conditional posterior inclusion probabilities (PIP)s from
BKMR using different pesticide groupings for hierarchical variable selection, Figure S1: Full posterior distributions
of expected FSIQ and pesticide use estimates for each cluster. Expected FSIQ represents the estimated FSIQ when
fixing control variables at zero across each sweep of the Markov chain Monte Carlo (MCMC) iterations. Boxplots
for pesticides represent the distribution of quartile assignment probabilities across each sweep of the MCMC
iterations. Red boxplots indicate that the distribution of probabilities is higher than the expected value (p = 0.25)
for each quartile, green boxplots indicate that the distribution of probabilities is as would be expected (p = 0.25),
and blue boxplots indicate that the distribution of probabilities is below what would be expected (p = 0.25).
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