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Abstract

Purpose

Although dose prediction for intensity modulated radiation therapy (IMRT) has been accom-

plished by a deep learning approach, delineation of some structures is needed for the pre-

diction. We sought to develop a fully automated dose-generation framework for IMRT of

prostate cancer by entering the patient CT datasets without the contour information into a

generative adversarial network (GAN) and to compare its prediction performance to a con-

ventional prediction model trained from patient contours.

Methods

We propose a synthetic approach to translate patient CT datasets into a dose distribution

for IMRT. The framework requires only paired-images, i.e., patient CT images and corre-

sponding RT-doses. The model was trained from 81 IMRT plans of prostate cancer patients,

and then produced the dose distribution for 9 test cases. To compare its prediction perfor-

mance to that of another trained model, we created a model trained from structure images.

Dosimetric parameters for the planning target volume (PTV) and organs at risk (OARs)

were calculated from the generated and original dose distributions, and mean differences of

dosimetric parameters were compared between the CT-based model and the structure-

based model.

Results

The mean differences of all dosimetric parameters except for D98% and D95% for PTV were

within approximately 2% and 3% of the prescription dose for OARs in the CT-based model,

while the differences in the structure-based model were within approximately 1% for PTV

and approximately 2% for OARs, with a mean prediction time of 5 seconds per patient.
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Conclusions

Accurate and rapid dose prediction was achieved by the learning of patient CT datasets by a

GAN-based framework. The CT-based dose prediction could reduce the time required for

both the iterative optimization process and the structure contouring, allowing physicians and

dosimetrists to focus their expertise on more challenging cases.

Introduction

Over the last few decades, it has become possible to adapt intensity modulated radiation ther-

apy (IMRT) and volumetric modulated radiation therapy (VMAT) for almost all treatment

sites. Owing to the complex dose distributions in IMRT and VMAT, radiation doses to normal

tissues such as organs at risk (OARs) can often be significantly decreased even when the OARs

are adjacent to the target, which reduces the risk of adverse events after radiotherapy [1]. How-

ever, these unique dose distributions have led to increasingly complex treatment planning pro-

cedures for IMRT and VMAT. It is very time consuming to delineate numerous structures,

including the optimization-specific regions of interest, for the optimization of IMRT, and to

repeat the optimization processes, including the tuning of dose constraint parameters, in order

to achieve the desired dose distribution [2]. These arduous tasks force the dosimetrist and phy-

sician to devote a great deal of attention to the treatment planning. In addition, the large

amount of time required for the treatment plan can lead to delays in the start of treatment.

Such treatment postponement can influence tumor growth [3], and can lead to the misregis-

tration of tumor localization and difficulties in immobilization methods, such as those using a

vacuum pillow or thermoplastic shell, in daily treatments.

In the fairly recent past, researchers have begun to use of deep neural networks (DNN) to

predict the dose distribution, engendering a new field of research [4–12]. Such dose prediction

is useful for confirming the achievable dose distribution before or during the creation of treat-

ment planning, and could reduce the iterative optimization process for IMRT, because the

treatment planner can know which areas should receive increased or reduced doses based on

the results of the prediction. Nguyen et al. reported that U-net-based architecture enabled pre-

diction of the dose distribution in prostate cancer patients, and the average value of the abso-

lute differences between the original and predicted dose was found to be less than 5% of the

prescription dose [4]. Mahmood et al. predicted the dose distribution of simultaneous-inte-

grated boost (SIB) for oropharyngeal cancer patients using a generative adversarial networks

(GAN) framework, and compared the prediction performance of their GAN-based approach

to several state-of-the-art techniques. They found that the GAN outperformed the U-net-

based prediction model in terms of satisfying the clinical criteria, and the GAN also had the

best overall performance among the methods examined [5].

Although the DNN-based prediction models achieve good agreement between the pre-

dicted and original dose distributions, patient contours are necessary for the prediction in all

the frameworks [4–12]. Structure contouring can be highly time-consuming: for example, an

average time of approximately 4 hours is needed to contour for prostate treatment planning

with Eclipse (Varian Medical Systems, Palo Alto, CA), and contouring for patients with head

and neck cancer can take much longer [2]. A significant portion of the time required for the

total treatment planning is due to unavailability of the target volumes from physicians, and the

average amount of time spent by physicians is about 8, 7, and 18 hours for prostate, lung, and

head and neck IMRT, respectively [2]. Therefore, the dose prediction with patient contours
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does not reduce the time of total treatment planning for IMRT as substantially as might be

hoped. If the dose distribution could be predicted without the patient contours, it would save

much time for treatment planning, allowing physicians and dosimetrists to focus their exper-

tise on more challenging cases or demanding tasks.

The goals of the present study were to develop a fully automated dose generation frame-

work for IMRT of prostate cancer by directing a GAN to learn the patient CT datasets without

the contour information, and to compare its prediction performance to a conventional predic-

tion model trained from patient contours. To our knowledge, this is the first report to predict

the dose distribution for IMRT using only CT images.

Materials and methods

The overall framework of our approach is shown in Fig 1. We used a novel framework to pre-

dict the dose distribution of IMRT for prostate cancer based on the GAN. This framework did

not require the use of contour information or the selection of a range of input CT images;

instead, a whole CT dataset was used for the prediction. To evaluate the accuracy of the CT-

based prediction, a conventional structure-based prediction model was created, and various

dosimetric parameters were compared between the CT-based model and structure-based

model.

Patients

Ninety prostate cancer patients were used for training and testing. All patients had primary

prostate cancer and underwent 5-field IMRT between May 2007 and November 2013 at our

institution. All patients were prescribed 78 Gy/39 fractions to a planning target volume (PTV)

that could be covered with 95% of the prescribed dose (D95% to 78 Gy). The PTV was created

by adding a margin of 5 mm in all directions to the clinical target volume (CTV). The CTV

was delineated to include the prostate with a margin of 5 mm excluding the rectum, while con-

taining the base of the seminal vesicles. If parts of the rectum and bowel were present in the

PTV, a modified PTV excluding these tissues was generated, and 95% of the modified PTV

received the prescribed dose. The beam arrangements of 5-field IMRT were the same (255,

315, 45, 105, 180) across all patients, and the median PTV volume was 113.8 cm3 (range: 79.3

−292.1 cm3). The details of the indications for IMRT at our institution have been described

previously [13]. The study was approved by the ethics committee of the cancer institute hospi-

tal of Japanese foundation for cancer research (2019–1053).

Pre-processing

To create the pairs of precisely aligned source and target images, the matrix size of RT-dose

images was converted to 512 × 512 pixels with 16 bits to match the size of the CT images,

because the matrix size of the RT-dose was different in each patient due to the variation in

body size. The resolution of RT-doses was set to 1 × 1 mm from 2.5 × 2.5 mm with bilinear

interpolation in order to confirm the capability of image-to-image translation using GAN in

radiotherapy. The resolution of CT and structure images was also set to 1 × 1 mm and the slice

thickness was 2 or 3 mm in all patients. All dose images were saved in units of cGy. The PTV,

bladder, rectum, bone and body were used for the input structure images.

The frameworks for generative adversarial networks

The pix2pix, is one of the supervised learning techniques adopted in GANs, was applied for

translating CT or structure images into the dose distribution of IMRT. GANs are widely used
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for image-to-image translation of medical images such as the tasks for super resolution [14],

noise reduction [15], and cross-modality synthesis [16–18]. The idea of pix2pix was proposed

by Isola et al. [19] based on a conditional GAN that could synthesize images from pairs of pre-

cisely aligned image datasets consisting of source and target images—e.g., the CT and structure

images fall into the category of source images, while the corresponding RT-dose images are

considered target images in the present study. The GAN is constructed from the generator and

discriminator parts. The U-net-based architecture is used for the generator, while a convolu-

tional PatchGAN classifier is used for the discriminator [19]. The generator is trained to pro-

duce a simulated dose distribution that cannot be distinguished from the "real" dose

distribution images, while the discriminator is trained to detect the generator’s “fakes” as well

as possible (Fig 1). The objective of pix2pix LGANðG;DÞ can be expressed with the generator G

Fig 1. Overall framework of our proposed methods. Two prediction models of dose distribution for IMRT were created using the GAN: a CT-based dose prediction

model and a structure-based dose prediction model. Various dosimetric parameters were calculated from the dose-volume-histograms (DVHs) of the generated dose

distribution in each model, and the dosimetric parameters in each model were compared to those in the original plans.

https://doi.org/10.1371/journal.pone.0232697.g001
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and the discriminator D:

LGANðG;DÞ ¼ Ex;y½logDðx; yÞ� þ Ex½logð1 � Dðx;GðxÞÞ�; ð1Þ

where x is the source image (i.e., the CT or structure image), y is the target image (i.e., the cor-

responding RT-dose image), G(x) is the dose image produced by the generator, D(x,y) is the

probability that the real pair (x,y) was correctly discriminated as real by the discriminator and

D(x,G(x)) is the probability that the fake pair (x,G(x)) was correctly discriminated as fake by

the discriminator. The probability is represented as a binary problem, i.e., D(x,y) or D(x,G(x))
! [1, 0], where 1 suggests that the discriminator predicts the input-paired images as real and 0

suggests that the discriminator predicts the input-paired images as fake. If the discriminator

could completely identify the input images as real or fake, the objective would be increased. In

contrast, the generator tries to minimize this objective (i.e., to produce an image that fools the

discriminator: D(x,G(x))! 1). The relationships can be expressed by min
G

max
D

LGANðG;DÞ,

as in a minimax game. In order to attain the fast convergence and stable training for the net-

work, the generator measures how close the images of the real dose distribution y are to the

images of the generated dose distribution G(x) by using the L1-distance LL1ðGÞ:

LL1ðGÞ ¼ Ex;y½ky � GðxÞk1
�: ð2Þ

The final objectives of the pix2pix Ĝ can be expressed by combining Eqs (1) and (2):

Ĝ ¼ arg min
G

max
D

LGANðG;DÞ þ lL1ðGÞ; ð3Þ

where λ is the weight on the L1 term for the generator. The details of the architecture are pro-

vided in Isola et al. [19].

Training and testing

The total 90 patients were divided into groups of 81 patients (90%) for training and 9 patients

(10%) for testing. The details of patient characteristics assigned to training or testing were

shown in S1 Table. The number of images in each CT, structure and RT-dose was 7467 for the

training and 876 for the testing, respectively. We did not select the range of input CT images

because the generalizability of the generated dose distribution around the target should be con-

firmed. In addition, the range of input structure images was not selected for the structure-

based model. The prediction models were trained with a GPU (NVIDIA GeForce GTX 1080

Ti). The Adam solver was applied to optimization, with a learning rate of 0.0002, and momen-

tum parameters for the Adam were β1 = 0.5 and β2 = 0.999, respectively. The batch size was set

to 4. The patch size of 70 × 70 was used for the discriminator receptive fields. The weight on

L1 term λ was set to 100. The number of trained parameters was 57,190,084 in both prediction

models. The training iterations in the CT-based prediction model and the structure-based pre-

diction model were selected as 400k (215 epochs), and 300k (160 epochs), respectively. These

were empirically determined based on the preliminary experiments. Finally, the dose distribu-

tions of the 9 test cases were predicted by using the corresponding trained model with CT or

structures.

Evaluation

Evaluated dosimetric parameters of PTV and OARs are shown in Table 1. To compare the pre-

diction performance between the CT-based model and the structure-based model, the dose

differences of the dosimetric parameter between the original plan (ground truth) and the
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prediction were calculated as

Dose difference ¼
Dprediction � Dgrond truth

Dprescription
� 100; ð4Þ

where Dprediction means any objective dosimetric parameter calculated from the predicted dose

distribution, Dground truth represents the corresponding dosimetric parameters calculated from

the original dose distribution, and Dprescription is the prescribed dose to PTV. We used the

index of Nguyen et al. [4] with slight changes; for our present purposes, the dose difference

was calculated by subtracting the planned dose from the predicted dose to confirm whether

the generated dose distribution is an overdose or underdose. The dose differences were calcu-

lated using only dose-specific parameters such as Dx% and Dmean, while the absolute volume

difference calculated by subtracting the ground truth from the prediction was used for evaluat-

ing the volume-specific parameters such as VxGy. The mean dose differences in all test cases

were compared between the CT-based model and the structure-based model. The conforma-

tion number (CN) [20] was defined as

CN ¼
Vt2

100

ðVtvol � V100Þ
; ð5Þ

where Vt100 is the target volume receiving at least the prescribed dose, Vtvol is the target vol-

ume, and V100 is the total volume receiving at least the prescribed dose. A value close to unity

means identical target coverage. The homogeneity index (HI) [21] was defined as

HI ¼
D5% � D95%

Dmean
; ð6Þ

where Dx% is the dose received by� x% of the PTV volume and Dmean denotes the mean dose

to the PTV volume. A value close to zero means identical target homogeneity. The subtracted

dose distribution between the ground truth and the prediction was created, and compared

between the CT-based model and the structure-based model. The dose profile at the iso-center

plane was also compared among the three approaches (ground truth vs. CT-based model vs.

structure-based model). Finally, the mean prediction time in all the test cases was calculated

for the evaluation.

Table 1. Evaluated dosimetric parameters.

Objects Criteria Objects Criteria

PTV D98% [cGy] Bladder, Rectum Dmax [cGy]

D95% [cGy] D2% [cGy]

D50% [cGy] Dmean [cGy]

D2% [cGy] V50 [%]

Dmean [cGy] V60 [%]

CN V70 [%]

HI Body Dmax [cGy]

Dmean [cGy]

Femoral head_L, R Dmax [cGy]

Dmean [cGy]

Dx%: dose received by� x% of the objective structure; Vx: the volume receiving x Gy.

CN: conformation number. HI: homogeneity index.

https://doi.org/10.1371/journal.pone.0232697.t001
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Results

Prediction model

The training time was 131,286 seconds for the CT-based prediction model and 99,065 seconds

for the structure-based prediction model. The prediction time per patient (mean ± SD) was

4.93 ± 0.27 seconds. The generator loss, the discriminator loss and the loss for the L1-distance

in each prediction model are shown in the Supplemental materials (S1 and S2 Figs).

Dose distribution

The results of the dose-distribution comparison in one test case are summarized in Fig 2, and

the dose distribution derived by subtracting the ground truth from the prediction is shown in

Fig 3. The small area irradiated by a low-dose was observed on the slice 4 cm distant from the

iso-center in both prediction models, while there were no doses in the area of the −4 cm slice

(Fig 2). Notable dose differences were observed along the beam path in both prediction models

(Fig 3). Results of the comparison of dose-volume-histograms (DVHs) and dose profiles in the

iso-center plane are shown in Fig 4. The dose profiles in both prediction models were in good

agreement with those in the ground truth. In particular, the dose profiles of the rectum side in

the cross-plane well reflected the DVH curves of the rectum, and dose reduction was found in

the structure-based prediction model compared with the ground truth.

Dosimetric parameters

Table 2 summarizes the average dose differences and absolute volume differences in all test

cases for PTV and OARs. The dose differences in the CT-based prediction model were within

approximately 2% for PTV except for the parameters D98% and D95% and within approximately

Fig 2. Comparison of dose distribution in the ground truth and both prediction models. The highlighted dose distribution ranges from 1000 cGy to 8500 cGy.

https://doi.org/10.1371/journal.pone.0232697.g002
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3% for OARs, while the dose differences in the structure-based prediction model were within

approximately 1% for PTV and approximately 2% for OARs. The absolute volume differences

in the CT-based prediction model and the structure-based prediction model were within

approximately 3% and 1% on average, respectively. Table 3 shows the comparison of dose dis-

tributions by the CN and the HI. Although the CN and HI in the CT-based prediction model

were inferior to those of the ground truth, the CN and HI in the structure-based prediction

model were comparable to those of the ground truth. Statistical results of the evaluated dosi-

metric parameters in PTV and OARs were shown in S2 Table. Box plots showing the absolute

differences of dosimetric parameters in all test cases are shown in Figs 5 and 6. Although

worse target coverage such as for the parameter D98% was observed in the CT-based prediction

model, small dose deviations were seen in the PTV and the OARs through all the test cases in

the structure-based prediction model.

Discussion

The present study developed the fully automated dose generation framework for IMRT of

prostate cancer by allowing a GAN to learn the features of CT images and compared its predic-

tion performance to the conventional prediction framework trained from the contour infor-

mation. Although the prediction performance of the structure-based model was superior to

that of the CT-based prediction model, we demonstrated that the dose differences of all dosi-

metric parameters except for D98% and D95% for PTV were within approximately 2% and

approximately 3% for OARs in the CT-based dose prediction model, with a mean prediction

time of approximately 5 seconds per patient. Table 4 compares the prediction performance

with the average absolute dose differences evaluated by Nguyen et al. [4]. The average absolute

dose differences of most evaluation metrics in the structure-based model were smaller than

those of Nguyen et al., and the prediction performance was comparable to the previous results

even when the CT images were used for the training. These results suggested that the iterative

Fig 3. Dose distribution at iso-center, calculated by subtracting the dose distribution in the ground truth from the generated dose distribution in the same

patient as shown in Fig 2. The highlighted dose differences range from −1300 cGy to 1000 cGy.

https://doi.org/10.1371/journal.pone.0232697.g003
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Fig 4. First row: Comparison of DVHs with solid lines (ground truth) and dotted lines (prediction). Second row: Comparison of dose profiles in the iso-center

plane among the three approaches. The case shown is the same as that depicted in Figs 2 and 3. The direction to the horizontal line on the center of the axial dose

distribution was named the in-plane direction and the direction to the vertical line was named the cross-plane direction.

https://doi.org/10.1371/journal.pone.0232697.g004

Table 2. Summary of dose differences and absolute volume differences in PTV and OARs.

Objects Criteria CT-based Structure-based Objects Criteria CT-based Structure-based

PTV D98% −19.05 ± 0.18 −0.96 ± 0.01 Rectum Dmax 1.91 ± 0.01 1.14 ± 0.01

D95% −8.67 ± 0.08 −0.40 ± 0.01 D2% 1.26 ± 0.01 0.17 ± 0.01

D50% −0.08 ± 0.02 0.38 ± 0.01 Dmean 0.66 ± 0.06 −0.02 ± 0.03

D2% −0.01 ± 0.01 0.21 ± 0.01 V50 3.08 ± 8.54 0.18 ± 3.44

Dmean −1.67 ± 0.03 0.20 ± 0.01 V60 3.15 ± 6.82 0.60 ± 2.92

Bladder Dmax 0.69 ± 0.02 0.56 ± 0.01 V70 2.48 ± 4.59 0.39 ± 2.13

D2% −0.02 ± 0.03 0.87 ± 0.01 Body Dmax 1.22 ± 0.02 0.76 ± 0.02

Dmean 2.39 ± 0.11 2.03 ± 0.03 Dmean 0.05 ± 0.01 −0.18 ± 0.01

V50 3.19 ± 2.45 1.15 ± 2.45 Femoral head_L Dmax 0.29 ± 0.06 −0.78 ± 0.02

V60 2.42 ± 8.08 0.43 ± 1.62 Dmean 1.35 ± 0.02 0.28 ± 0.01

V70 1.25 ± 6.23 0.39 ± 0.96 Femoral head_R Dmax 1.89 ± 0.03 −0.33 ± 0.02

Dmean 1.68 ± 0.02 0.01 ± 0.01

Value = mean ± SD, Dose differences [%] = [(Dprediction−Dground truth)/Dprescription]�100, Absolute volume differences [%] = Vprediction−Vground truth

https://doi.org/10.1371/journal.pone.0232697.t002
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optimization process for the IMRT planning could be reduced by using the CT-based predic-

tion model, because the treatment planner can know which areas should receive increased

doses or which areas should receive decreased doses based on the results of the prediction.

Since the CT-based model does not require contour information for the prediction, the time

required for the patient contours could be reduced. Moreover, the rapid dose prediction based

on the CT images would help to avoid the treatment delay due to the manpower constraints.

This study is the first attempt to predict the dose distribution for IMRT using only CT

images. As a preliminary study, we focused our initial study on prostate cancer patients for

confirming the generalizability of the predicted dose distribution by using a GAN framework

because the variations of the targets in the prostate cancer patients are relatively small. As a

result, this study demonstrated that the dose differences of almost all dosimetric parameters

for PTV were within approximately 2% of the prescription dose and approximately 3% for

OARs in the CT-based dose prediction model. Therefore, we consider that the CT-based dose

prediction could not only help beginners of the IMRT treatment planning for prostate cancer

patients to learn which areas should receive increased or decreased doses, but also help some

experts to find optimal ways for better treatment planning within a short time in other clinical

sites.

Table 3. Comparison of dose distribution by CN and HI.

Criteria Ground Truth CT-based Structure-based

CN 0.84 ± 0.02 0.67 ± 0.14 0.83 ± 0.04

HI 0.08 ± 0.02 0.17 ± 0.09 0.09 ± 0.01

CN: conformation number; HI: homogeneity index.

https://doi.org/10.1371/journal.pone.0232697.t003

Fig 5. Box plots of the CT-based prediction model showing the absolute differences of dosimetric parameters between the ground truth and the prediction in all

test cases. The difference was calculated by subtracting the ground truth from the prediction. The first axis shows the absolute dose differences for dose-specific

parameters such as Dx%, and the second axis shows the absolute volume differences for volume-specific parameters such as VxGy.

https://doi.org/10.1371/journal.pone.0232697.g005
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Automated treatment planning solutions are widely used for reducing inter-planner vari-

ability, reducing the planning time allocated for the optimization process and improving plan

quality [22–26]. The important difference between the automated-planning solutions and our

proposed method is whether there is an optimization process in treatment planning or not.

Since CT-based prediction model is not necessary for the optimization process, physicians or

dosimetrists can get achievable dose distribution immediately after CT simulation. The rapid

dose prediction based on the CT images might be useful for optimizing a treatment strategy

before treatment when radiation therapy can be difficult due to complicated organs placement

and re-irradiation, other than the advantage of reducing the total treatment planning time. On

the other hand, the plan quality of the RapidPlan, is one of the commercial knowledge-based

planning solutions developed by Varian Medical Systems (Palo Alto, CA), was altered

Fig 6. Box plots of the structure-based prediction model showing the absolute differences of dosimetric parameters between the ground truth and the prediction

in all test cases. The difference was calculated by subtracting the ground truth from the prediction. The first axis shows the absolute dose differences for dose-specific

parameters such as Dx%, and the second axis shows the absolute volume differences for volume-specific parameters such as VxGy.

https://doi.org/10.1371/journal.pone.0232697.g006

Table 4. Comparison of prediction performance using the average absolute dose difference�.

Objects CT-based Structure-based Nguyen et al. [4]

Dmax Dmean Dmax Dmean Dmax Dmean

PTV 1.68 ± 0.01 1.98 ± 0.02 1.31 ± 0.01 0.64 ± 0.01 1.80 ± 1.09 1.03 ± 0.62

Bladder 1.67 ± 0.01 9.14 ± 0.06 1.21 ± 0.01 2.61 ± 0.02 1.94 ± 1.31 4.22 ± 3.63

Rectum 1.91 ± 0.01 5.39 ± 0.02 1.14 ± 0.01 2.34 ± 0.01 1.26 ± 0.62 1.62 ± 1.07

Body 1.68 ± 0.01 0.96 ± 0.01 1.31 ± 0.01 0.67 ± 0.01 1.80 ± 1.09 0.48 ± 0.35

Femoral head_L 3.92 ± 0.04 1.93 ± 0.02 1.53 ± 0.01 0.45 ± 0.01 3.87 ± 3.26 1.79 ± 1.58

Femoral head_R 2.41 ± 0.03 1.77 ± 0.01 1.34 ± 0.01 0.54 ± 0.01 5.07 ± 4.99 2.55 ± 2.38

Value = mean ± SD

�Average absolute dose difference [%] = |(Dground truth−Dprediction)/Dprescription|�100

https://doi.org/10.1371/journal.pone.0232697.t004
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depending on the registered model [27], and manual touch-up or additional manual objective

was necessary to get equally good IMRT plans [28, 29]. Compared with such knowledge-based

planning approach, it is simplified to create the dose prediction model because only the pairs

of CT and RT-dose images are needed for the creation of the model.

Although we did not select the range of input CT images for confirming the generalizability

of the generated dose distribution around the target, large differences were not seen outside

the irradiation fields and good agreements of DVH curves were found (Figs 2–4). However,

worse target coverages, such as D98% or the D95%, were observed in the CT-based prediction

model (Tables 2 and 3). This was caused by an underdose to the PTV margin. The area was

covered by a total of the 1 cm margin from the prostate, and therefore GAN could not train

the dose distribution for the peripheral area even if the entire CT dataset was trained into the

2D GAN. This is because there was no obvious anatomical structure which showed the concept

of the margin around the prostate. For example, the shape of the bladder differs depending on

the amount of urine in each patient. This shape variation might have affected the results of

training in the doses to the PTV margin on the bladder side. If the entire 3D CT image was

trained into the 3D GAN, the underdose to the PTV margin could be fixed. Actually, Babier

et al. reported that, compared to the 2D GAN, the 3D GAN better learned the vertical relation-

ship between adjacent axial slices for predicting the dose distribution in oropharyngeal cancer

cases [6]. Moreover, although the dose differences were mainly observed along the beam path

in both prediction models (Fig 3), we found that the dose differences of the left or right femoral

head in the CT-based prediction model and the structure-based prediction model were within

approximately 2% and 1% on average, respectively. According to a previous report, the dose

differences that were observed along the beam path can be fixed by incorporating both ana-

tomical and beam geometry information into the network [9].

Nguyen et al. predicted the dose for IMRT of prostate cancer patients from patient image

contours of PTV and OARs using U-net based architecture, and reported that the average

value of the absolute differences in Dmax and Dmean was under 5% of the prescription dose in

PTV and OARs [4]. When we compared our results with these previous results, we found that

the average absolute dose differences of most evaluation metrics in the structure-based model

were smaller than those of Nguyen et al. by using the GAN (Table 4). Some papers demon-

strated that the prediction of the GAN outperformed the U-net based architecture [5,11], and

this tendency was also seen in the present study (Table 4). Moreover, an extremely small devia-

tion was observed in both prediction models and the prediction performance was comparable

to the previous results even when the CT images were used for the training (Table 4). We

assumed that the adversarial training between the generator and the discriminator might have

contributed to the improvement of prediction performance, because the poor quality outputs

from the generator were regarded as "fakes" by the discriminator.

In the pix2pix, PatchGAN was used for the discriminator that only penalizes the structure

in local image patches [19], which means the discriminators only look at small patches in an

image and try to determine whether each is real or fake. Therefore, even if the part of the rec-

tum was covered from PTV, the generated dose to rectum could be a good prediction of the

original dose distribution (Figs 3 and 4). According to a previous report, the use of 70 × 70

receptive fields yields better results for the image-to-image translation task [19], and thus a

patch size of 70 × 70 was used for the discriminator receptive fields in the present study. The

selection of receptive fields is important to preserve the structure and convert the voxel values.

Kida et al. reported that when too large a receptive field was used for the discriminator, the

training was affected by the structure and location of the organs, while when the receptive field

was too small, the local structural pattern could not be detected and only the voxel values were

converted, ignoring the structure [18].
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Several limitations in this study bear mention. First of all, although we randomly divided

the candidate 90 patients into groups of 81 patients (90%) for training and 9 patients (10%) for

testing, the testing cases might not be sufficient to fully evaluate the proposed models. More-

over, the bias of PTV information, such as the target size or the volume in patients assigned to

the training cases, might influence the results of predicted dose distribution in the testing

cases. However, since there is no significant difference between the training and the testing

cases regarding the PTV volume (S3 Fig), the authors consider that the trained cases are exten-

sive. Future work will be focused on increasing the number of testing cases. Second, our pre-

diction model was trained to generate the dose distribution for fixed IMRT planning, rather

than the VMAT. Therefore, it is unclear whether the GAN can synthesize an accurate dose dis-

tribution for VMAT. However, we consider that it would be easier to train the dose distribu-

tion of VMAT than the dose distribution of the fixed IMRT because the VMAT plan has a

more continuous dose distribution owing to the rotational irradiation, and the dose differ-

ences were mainly observed along the beam path when predicting the dose distribution for

IMRT (Fig 3). Finally, when predicting the dose distribution of SIB, it is difficult to train the

dose distribution from only the CT datasets, because the anatomical features cannot reflect the

dose levels that were determined by the treatment planner. However, the structure-based

model could predict the dose distribution of SIB, because the model can learn the dose infor-

mation determined by the treatment planner from the delineated structure. In fact, some pre-

vious works have succeeded in predicting the dose distribution of SIB in head and neck cancer

patients by entering the patient structures based on the dose levels into the network [5–8].

However, we hypothesize that the dose distribution of SIB could be generated even with the

CT-based prediction model by integrating radiomics analysis into the model. Previous works

demonstrated that a radiomics-driven framework can automatically detect the region of pros-

tate cancer or high-risk volumes based on the Gleason score without a human intervention

[30–32].

Conclusions

Accurate and rapid dose prediction was achieved by entering patient CT datasets into the

GAN-based framework. The dose differences of all dosimetric parameters except for D98% and

D95% for PTV were within approximately 2% and approximately 3% for OARs in the CT-

based dose prediction model, while the dose differences of all dosimetric parameters in the

structure-based prediction model were within approximately 1% for PTV and approximately

2% for OARs, with a mean prediction time of approximately 5 seconds for IMRT of prostate

cancer patients. The rapid dose prediction based on the CT images could reduce the time

required for both the iterative optimization process for IMRT and the structure contouring.

Thus the total treatment planning time could be greatly shortened, allowing for physicians and

dosimetrists to focus their expertise on more challenging cases.
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