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Abstract
Tissue micro-morphological abnormalities and interrelated quantitative data can provide 
immediate evidences for tumorigenesis and metastasis in microenvironment. However, the 
multiscale three-dimensional nondestructive pathological visualization, measurement, and 
quantitative analysis are still a challenging for the medical imaging and diagnosis. In this 
work, we employed the synchrotron-based X-ray phase-contrast tomography (SR-PCT) 
combined with phase-and-attenuation duality phase retrieval to reconstruct and extract the 
volumetric inner-structural characteristics of tumors in digesting system, helpful for tumor 
typing and statistic calculation of different tumor specimens. On the basis of the feature 
set including eight types of tumor micro-lesions presented by our SR-PCT reconstruction 
with high density resolution, the AlexNet-based deep convolutional neural network model 
was trained and obtained the 94.21% of average accuracy of auto-classification for the 
eight types of tumors in digesting system. The micro-pathomophological relationship of 
liver tumor angiogenesis and progression were revealed by quantitatively analyzing the 
microscopic changes of texture and grayscale features screened by a machine learning 
method of area under curve and principal component analysis. The results showed the 
specific path and clinical manifestations of tumor evolution and indicated that these pro-
gressions of tumor lesions rely on its inflammation microenvironment. Hence, this high 
phase-contrast 3D pathological characteristics and automatic analysis methods exhibited 
excellent recognizable and classifiable for micro tumor lesions.
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1  |   INTRODUCTION

Cancer continuously threatens human life and health glob-
ally, such as the latest clinical survey shows the 5-year sur-
vival rate of malignant tumors in digest system is 20%–40% 
on average.1 Research progresses on diagnosis and therapy 
strategy of malignant tumors has been achieving worldwide 
in many aspects, meanwhile it faces enormous challenges 
due to the complexity of tumorigenesis and development.2 
Actually, the formation of tumor stroma plays an important 
role in causing cancers, and the interactions between stro-
mal cells and cancer cells is essential for tumor typing and 
progression.3,4 Small morphological changes in tumor micro-
environment, such as in tumor microangiogenesis and tiny 
tissue lesion aspects, are likely become the distinguishing 
feature of cancer.5,6 Currently, the techniques of medical 
imaging, like positron emission tomography-computed to-
mography (PET/CT), magnetic resonance imaging (MRI), 
ultrasound, and histopathology examination, are still the 
main means of solid tumor detection and evaluation. Each 
technique has its own usable range owing to the limited 
spatial resolution, applicability for soft tissue or bone, com-
plexity of sample preparation and three-dimensional (3D) ob-
servation, especially inaccessible 3D structural information 
of soft tissues at the micrometer length scale for conventional 
medical imaging techniques in hospital.7,8 Some vascular 
geometric parameters like micro-vessel volumetric density 
(MVD), vessel diameter and length, can provide prognostic 
significance due to the differences between tumor tissues 
and adjacent normal tissues.9,10 Actually, a high-resolution 
3D nondestructive observation and quantitative analysis of 
soft solid tumor micro-morphology still remains a challeng-
ing task for revealing the tumor micro lesion evolutionary 
mechanism, and this will be more suitable for the application 
of different deep-learning algorithms to improve the auto-
classification accuracy of tumor diagnosis, rapidly developed 
with widely using high-performance computer.11,12 In this 
work, we employed the synchrotron radiation X-ray phase 
contrast microtomography (SR-PCT) and phase retrieval al-
gorithm (PR), superior in signal-to-noise ratio and density, to 
visualize micro-tissue tumor features and its irregular angio-
genesis networks.13-15 It is necessary for quantitative evalua-
tion of tumor lesion and its antiangiogenic drugs to identify 
malignant tumorigenesis, feature typing and staging, imma-
ture vessel structures, and tumor progression evolution path. 
However, the 3D observation and measurement of micro-
morphological features, less than 200 μm in diameter, is still 
limited or not satisfying. This affects the better understanding 
of mechanism of tumor evolution.16 We need to take more 
efforts to study micro-morphological characteristics and 
biology of tumor lesions. First, the high phase-contrast to-
mographic images of specimens of post-operation or biopsy 
via SR-PCT experiment and PR was obtained and compared 

with other modality images in a trans-scale correlation way. 
Second, the multiscale 3D pathological images with diagno-
sis significance were displayed and the statistical calculation 
of the volumetric tumor angiogenesis network was achieved 
to quantitatively evaluate the tumor lesions. Third, the deep 
convolutional neural network (DCNN) was successfully em-
ployed in tumor feature recognition and auto-classification, 
and consists of four different layers, namely convolutional, 
activation, pooling, and fully connected layers.17 In this study, 
the tumor micro-morphological features with high density 
resolution can be highlighted and extracted for the AlexNet 
based DCNN learning model,18 characterized with the sim-
ple and efficient cascaded stage for training and optimizing. 
For a large enough training dataset of the AlexNet-based 
DCNN, the image enhancement and rotation were applied 
to produce the fourfold augmented dataset of 0°, 90°, 180°, 
270° for the automated classification of tumor images, and 
49152 images finally for each tumor specimen. Finally, we 
extracted the tumor texture and grayscale characteristics of 
the gray level co-occurrence matrix (GLCM), gray-gradient 
co-occurrence matrix (GGCM), gray level histogram (GH), 
gray level differential statistics (GDS), and combined both 
feature screening methods of area under curve (AUC) and 
principal component analysis (PCA) to eliminated the re-
dundant feature quantity.19-21 Therefore, the correlation and 
staging of tumor microscopic structural changes was quanti-
tatively analyzed and indicated that the tumor microvascula-
ture growth has close relationship with the inflammation of 
tumor microenvironment.

2  |   MATERIALS AND METHODS

2.1  |  Tumor specimens and experimental 
preparation

The postoperative tumor specimens used for this study were 
obtained from the first affiliated hospital of Xinjiang Medical 
University (XJMU), with the consent of the patients and their 
families and approved by the ethics committee of XJMU. All 
tumor specimens of 100 cases, including liver, intestine, and 
stomach, showed moderate differentiation and low differen-
tiation based on pathological results. Without the preopera-
tive use of contrast agent, all tumor tissues were washed by 
phosphate buffered saline and fixed by 10% neutral formalin 
in postoperative 30  min. Prior to imaging experiments, all 
formalin-fixated specimens were cut into cylinder experi-
mental samples with diameter of 10, 6, 1 mm for adapting 
to different imaging field of views (FOVs) with different 
resolution of 6.5 μm/pixel, 3.25, 0.65 μm/pixel. A process of 
graded dehydration series of ethanol solution, including 40% 
ethanol solution (4°C) and 50%, 70%, 80%, 90%, 95%, and 
100% ethanol solution (indoor temperature), were employed 
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for all cut samples, then fully dried and stabilized in a plastic 
tube to avoid the motion artifacts associated with fresh tissue 
deformation and degeneration or movement during the bril-
liant synchrotron X-ray imaging measurement. After the SR-
PCT experiments, all tumor samples were preserved in 10% 
PFA solution for subsequent histopathological examination.

2.2  |  Examination of histopathology

All experimental samples were processed through dehydra-
tion and paraffin embedding, and then cut continuously into 
5 μm slices with subsequent hematoxylin and eosin (H&E) 
staining for LEICA-DM3000 microscopic observation.

2.3  |  Phase Contrast microtomography 
(PCT)

The SR-PCT experiment was performed in x-ray imaging and 
biomedical BeamLine BL13W1, at Shanghai Synchrotron 
Radiation Facility (SSRF). The high-brilliance Synchrotron 
beams produced from the 3.5GeV storage ring, can be mono-
chromated through a double-crystal monochromator to select 
X-ray photon energy of 15 keV, and the sample stage is lo-
cated at the 34 m downstream of the source approximately 
with a monochromatic X-ray beam of 50 mm (H) × 4 mm 

(V). There is not any optical element between sample and de-
tector in our SR-PCT experimental setup, shown in Figure 1, 
consisting of a six-dimensional high precision sample stage. 
The CMOS detector (HAMAMATSU C11440-22C) with 
pixel format of 2048*2048 and original pixel size of 6.5 μm 
was coupled with 25  μm-thickness scintillator and camera 
lens assembly, converting the incident X-rays into visible 
light and focused onto the CMOS device through a lens sys-
tem of the magnification factor of 1×, 2×, 10×. The FOVs 
are 13, 6.5, 1.3 mm2, respectively, corresponding to different 
effective pixel sizes 6.5, 3.25, 0.65 μm. The corresponding 
spatial resolution is about twice as the effective pixel size. 
Actually, the synchrotron-based imaging techniques are gen-
erally used for studying high-resolution ex vivo specimens, 
not for patients, mainly due to the limitation of biosafety 
doses. For whole organs or small animals, there will some 
medium and long beam lines with large size beam spots and 
equipped with large size detectors.

2.4  |  PR and image processing

A raw SR-PCT projections was acquired at sample-to-detector 
distance (SDD = 7 cm). The SDD yields a Fresnel-diffraction 
projection pattern on the detector plane, depicted as projec-
tions in Figure 1 and characterized as weak-absorption con-
trast and edge enhancements at the boundaries and interfaces 

F I G U R E  1   Schmatic of SR-PCT 
experimental setup and biomedical 3D 
reconstruction. SR-PCT, synchrotron-based 
X-ray phase-contrast tomography
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induced by phase distortion. For hard X-ray beams, the 
propagation-based phase-sensitive imaging can simply and 
directly achieve phase contrast, by placing a detector at a SDD 
downstream of a sample without any additional X-ray optics. 
The reconstructed intensity distribution of SR-PCT contains 
the 3D map of the linear attenuation coefficients and the 3D 
map of Laplacian of refraction index decrements of a sample. 
In the direct phase contrast imaging, it is difficult to achieve 
adequate image contrast between those bulk areas of weak-
absorption samples, except for the edge enhancements at the 
boundaries and interfaces arisen from the phase distortion. 
Therefore, a complicated PR process is required for visualiza-
tion and quantitative measurement of soft biomedical tissues.

All projection data was processed via background correction 
prior to PR, was applied to retrieve a phase map wit high density 
resolution from only a single free-space propagation radiogra-
phy. For obtaining an enhanced image contrast of weakly absorb-
ing samples in hard X-ray domain, the PR was employed into 
extracting a high phase-contrast map from any two-dimensional 
projection at a given single-distance D as following:

where � = 8.27 × 10−11m is the X-ray wavelength, D is the 
SDD. (x, y) and (u, v) denote the Cartesian coordinate and the 
Fourier conjugate coordinate, �  and � −1 denote the forward and 
backward Fourier transform operators, respectively. ID (x, y) is 
the transmitted X-ray intensity, Iin is the incident intensity.

� = �∕� is the ratio of real and imaginary parts (δ and β) 
of complex refraction index, representing the sensitivity of 
SR-PCT. For a constant � of soft biomedical samples, it can 
be estimated from X-ray databases, for instance CXRO, 2012, 
NIST database, or Henke et al. (1993).22 The tomographic re-
construction based on standard filtered back-projection algo-
rithm by using the software of PITRE3 compiled by BL13W1. 
The 3D quantitative segmentation and rendering was achieved 
through the scientific and industrial visualization & analysis 
software of Amira 6.0 (Visage Imaging) at SSRF.

2.5  |  Statistical analysis

The statistical analysis in this study was conducted with the 
SPSS Statistics (version 25; IBM). All results are showed as 
mean ± SD and t-test was performed for comparison between 
data sets conforming to normal distribution, where a p-value 
lower than 0.05 was predetermined as the significant level for 
statistical analysis.

2.6  |  DCNN learning and classification

The DCNNs architecture is a biologically inspired class of deep 
learning models that has achieved excellent performance on 
visual and speech recognition problems. A typical DCNN in-
volves four types of layers: convolutional, activation, pooling, 
and fully connected layers. Our DCNN model was constructed 
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F I G U R E  2   Schematic diagram of the 
DCNN for tumor micro-classification based 
on SR-PCT. DCNN, deep convolutional 
neural network; SR-PCT, synchrotron-based 
X-ray phase-contrast tomography
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based on a very famous DCNN named AlexNet, which was 
first proposed by Alex Krizhevsky et al. In the 2012 ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC-2012). 
Compared with the other structure-complex DCNN archi-
tectures (e.g., GoogLeNet, VGG et al.),23,24 AlexNet is a 
structure-simple and high efficient DCNN, which is easy to 
train and optimize. In this study, the AlexNet-based DCNN 
was employed to perform the automated classification of eight 
types of tumor lesions (T1–T8, depicted in next section), ex-
tracted, and generalized from image characteristics with the 
resolution of 6.5 μm/pixel in our SR-PCT experiments. The 
architecture generally consists of convolutional (yellow cube), 
activation (green cube), pooling (blue cube), and fully con-
nected layers (purple cube) followed by rectified linear unit 
ReLU and characterized with the simple and efficient cascaded 
stage for training and optimization,25 as shown in Figure 2. 
Each original tomographic dataset of our tumor specimens in-
cluded transverse, saggittal, coronal section images, cropped 
into 1024*1024 pixels and divided into four subgraphs with 
512*512 pixels, then resized into 227*227 pixels for an input 

image, 12288 original images per specimen, 100 tested speci-
mens in total. The output results denoted the probabilities of 
eight types (T1–T8) of tumor lesions, calculated by a soft-max 
function (red cube). In order to decrease over-fitting in neural 
networks through avoiding complex co-adaptations on train-
ing dataset, the dropout rate in our networks was 50%. Our 
DCNN platform was assembled by the Caffe package based 
on the Ubuntu 16.04 operation system, which consumed about 
10 h for training the models by using two graphic cards (Nvidia 
GeForce GTX TITAN X, 12GB), an Intel(R) i7-4790 K CPU 
@4.00 GHz and the RAM of 32 GB.

3  |   RESULTS

3.1  |  Morphological comparison and 
correlation

Synchrotron-based tans-scale sectional images of three types 
of tumor specimen showed more detailed structures and 

F I G U R E  3   Sectional images of liver (A–C), intestine (D–F), and stomach (G–I) cancers, respectively obtained by conventional CT (A, D, 
G; scalebar = 1 cm ), SR-PCT (B, E, H; scalebar = 100 μm), Histopathology (C, F, I; scalebar = 100 μm). Lesions in (B, E, H) corresponding to 
the white rectangle regions in (A, D, G), and the similar lesions between different imaging modalities highlighted by yellow circle 1,2,3. SR-PCT, 
synchrotron-based X-ray phase-contrast tomography
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morphological characteristics than that of conventional CT 
in hospital, and were well matched with those of pathologic 
examination (H&E), as shown in Figure 3. The macro- and 
advanced tumor lesions were well diagnosed as abnormal 
gray spots or areas by conventional CT in Figure 3A,D,G. 
The micro-pathologic features, such as those morphologies of 
arterioles, venules, sacs, internal septa, and inflammation re-
gions in soft tumor tissues, can be clearly observed and de-
marcated from the normal tissues at the level of microns by 
the SR-PCT technique, shown in Figure 3B,E,H corresponding 
to white rectangle areas. The micro-pathologic inner-structural 
information can subtly describe tumorigenesis and metastasis, 
associated with tumor classification and neoplasm staging pre-
cisely. According to the comparison labelled by the yellow cir-
cles in the Figure 3C,F,I, the SR-PCT slices were well matched 
with those of H&E microscopic examination, which demon-
strated the validity of tumor evaluation. Furthermore, the SR-
PCT technique can provide the three 3D structural observations 
without complex staining processes, exhibiting the soft tissue 
density resolution of different tumor lesions in digest system.

3.2  |  Multiscale 3D micro-pathological 
visualization of SR-PCT

The SR-PCT-based nondestructive 3D multiscale reconstruc-
tion exhibited comprehensive and volumetric observation of 

tumor lesion, helpful for more insightful assessment of tumor 
evolution. The reconstructed results with different resolutions 
(6.5, 3.25, 0.65 μm/pixel, seen in Figure 4A–C) showed the 
imperceptible and tans-scale changes, such as hepatic sinu-
soid, perivascular inflammation, microvascular proliferation, 
etc. Especially, the hepatic fibrosis stemming from hepatic 
veins and hepatic microcalcification can be identified and de-
picted by blue lines and red circle respectively in the higher 
resolution, shown in Figure 4C. In particular, the 3D render-
ings of peripheral normal microtissues (blue), tumor inflam-
mation (yellow arrows), microcystic infiltration (red arrows), 
labeled in Figure 4D–F, enable the 3D trans-scale visualization 
and correlation representation of physiology and pathology. It 
is impossible for conventional histopathologic examination to 
provide such 3D nondestructive inner micro-visualization.

3.3  |  Microvessel network in liver tumors

Tumor angiogenesis is an important hallmark of cancer in 
early diagnosis and treatment assessment. In this SR-PCT ex-
periment, the evolutionary process of liver tumor angiogenesis 
was revealed and generalized in Figure 5, which underwent 
the inflammatory infiltration (a), disseminated angiogenic 
micro-cyst clusters (b), microvascularization of tumor (c), 
abnormal microvessel network (d). The 3D tumor vessel 
network is characterized by highly irregular morphological 

F I G U R E  4   Tomographic sections and 
their 3D renderings of typical liver tumor 
specimens with different effective pixels: 
6.5 μm/pixel (A, D; scalebar: 500 μm), 
3.25 μm/pixel (B, E; scalebar: 250 μm), 
0.65 μm/pixel (C, F; scalebar: 50 μm). The 
enlarged views clearly display different 
pathological micro-morphologies by 
comparisons between yellow rectangles
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development, including the dendritic vessels (arrow 1), mi-
crovascular cystic proliferation (arrow 2), abnormal blood 
supply network (arrow 3) as seen in Figure 5E. The visualiza-
tion of tumor microenvironment is essential to study on tumor 
formation and metastasis. For quantitative analysis of tumor 
vascular specificity, the binary segmentation based on Otsu 
algorithm26 was achieved and shown in Figure 5F, which is 
generally necessary for the statistical analysis of geometric 
quantitative parameters, represented in discussion section.

3.4  |  Auto-classification of tumor lesions

There were three pathologists of the first affiliated hospital of 
XJMU were responsible for feature extraction and labeling. 
All 3D image data of samples derived from our SR-PCT with 
high phase contrast and high spatial resolution for DCNN 

training and testing. For conventional CT, it is difficult to 
identify the fine structures of soft tissue tumors during early 
or middle stages, which hardly implements the typing and 
staging for malignant tumor diagnosis. However, the high 
phase-contrast microstructures reconstructed from SR-PCT 
facilitates the auto-classification based on the high density and 
spatial resolution of 3D microstructures. The typical feature 
sets consisting of eight types of soft tissue tumors in digest 
system were presented and depicted respectively in Figure 6, 
which plays an important role in the auto-classification train-
ing via using the AlexNet-based DCNN model.

The auto-classification model of tumor lesions was trained 
and tested by the volume of 1,228,800 image datasets, in-
cluding three sets of training (70%), validation (15%) and test 
(15%). The tumor features were extracted and auto-classified 
into eight types (T1–T8). The accuracy of classification 
model can be calculated by the threefold cross-validation and 

F I G U R E  5   Visualization of evolutionary process and quantitative analysis of the liver tumor microvessels. Sectional images with the mass 
density scale-bar of (A) inflammatory infiltration, (B) angiogenic micro-cyst cluster, (C) micro-vascularization of tumor, (D) abnormal microvessel 
network in liver tumor microenvironment. The 3D rendering of a tumor vessel network (E), arrow denoted dendritic vessels, arrow 2 microvascular 
cystic proliferation, arrow 3 abnormal blood supply network and their corresponding binary segmentation (F)
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the random number of image dataset listed in Table 1. The 
statistic results showed the classified accuracies based on SR-
PCT sectional images all reached more than 90%, and average 
accuracy of eight types 94.21%, exhibiting a high sensitivity 
for phase-contrast tumor structural recognition. The accuracy 
of T4 and T5 are lower than average accuracy due to their 
higher morphological similarity compared to other groups.

4  |   DISCUSSION

Conventional CT currently plays a critical role in medical 
imaging for tumor diagnosis and therapeutic evaluation. It 

is well-known that early detection of malignant tumors is 
essential to improving survival. However, these fine struc-
tures and variations associated with early malignant tumors 
of soft tissues are often unable to be detected with conven-
tional attenuation-based CT due to small density change in 
soft tissue's tumor, limited absorption resolution and insuf-
ficient X-ray source brightness. Although the histopathology 
examination can provide high-resolution slices, it is neces-
sary to undergo complex preprocess of samples, including 
dehydration, paraffin embedding, cutting, staining, baking, 
etc. In addition, it cannot satisfy the 3D and nondestructive 
observation, and is not sufficient in diagnosing and under-
standing of carcinogenesis from volumetric fine-structural 

F I G U R E  6   Auto-classification standard set consisting of eight characteristic types of tumor growths in digest system based on the synchrotron 
radiation micro-computed tomography (SR-μCT) technique. (A) T1: disseminated inflammation, demarcated by blue line and the normal area 
shown with arrows; (B) T2: circumvascular micro-cyst cluster, demarcated by blue line and shown with arrows; (C) T3: micro-vascularization 
dilation; (D) T4: cavitation lesions, denoted by the yellow arrow; (E) T5: abnormal vessel network with septa; (F) T6: multifocal fibrosclerosis, 
indicated by blue lines; (G) T7: radiolucent rings and low-density mass, shown clearly by the blue line and arrow; (H) T8: microcalcification, 
indicated by arrows; T1–T6 high incidence in liver cancer, T7 in intestinal cancer, T8 in gastric cancer. The length of scale bar is 150 μm

Types of tumor lesions

Statistic results

Average accuracy (%) Dataset_1 Dataset_2 Dataset_3

T1 93.82 51157 51396 50962

T2 96.33 52018 52307 51952

T3 95.51 50983 50365 50931

T4 90.35 51201 51863 52011

T5 91.40 52008 52034 51209

T6 95.65 50991 51123 50978

T7 95.63 51564 51200 51089

T8 94.98 50872 50239 51200

T A B L E  1   the classification accuracies 
for SR-PCT-based model by 3-fold 
cross-validation
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features and 3D perspectives. However, the SR-PCT com-
bined with PR exhibited the highly phase-sensitive and mul-
tiresolution 3D visualization of fine structural characteristics 
and their micro-morphological types (T1-T8) of malignant 
tumors in our experiment, helpful to reduce uncertainty of 
early diagnosis and avoid overuse of biopsy, percutaneous 
needle aspiration, or surgical resections. In particular, the 
SR-PCT can guarantee feature segmentation and structural 
parameter statistics in tumor microenvironment due to its 
high contrast-to-noise ratio, demonstrated by the quantitative 
analysis of microvessel network of the liver tumors, shown 
in Figure 7, including the distribution of diameters, sectional 
areas, volumetric densities (3D-MVD) of liver tumor mi-
crovessels, and their comparisons with that of normal liver 
tissues. Each statistics was implemented in sample volume 

of 3.5  mm (height)*3.5  mm (width)*3.5  mm (length), and 
the sample size in every statistical group is 20 (n = 20). It is 
evident that the size distributions of liver tumor microves-
sels are significantly wider than that of normal tissues, and 
the degree of tumor lesions is increasing with rapid tumor 
vessel growths. This often provides prognostic significance 
from immature vessel structures to abnormal blood flow. The 
vascular diameter of normal tissue changes proportionally 
with vessel branching evenly, but that of tumor vasculature 
will not arborize in order and their diameters become thicker 
as tumor-vessel tortuous extension. The two-dimensional 
microvessel density in histopathology is critical for tumor 
clinical diagnosis, and the volumetric microvessel density 
(3D-MVD) in this study was calculated in different tumor tis-
sue regions (inner regions and surface regions) and compared 

F I G U R E  7   Quantitative analysis and comparisons of microvessel network of tumor liver based on the SR-PCT technique. The distributions 
of different diameters of microvessels in liver tumors and normal tissues (A); The total sectional areas in different diameter intervals (B); The 
statistical results of 3D-MVD in different liver tumor regions (C); The typical statistical sample groups of microvessel network in normal liver 
tissues (D1) and liver tumors (D2) respectively, and each sample set consisting of 20 samples; ** denoting p < 0.05. SR-PCT, synchrotron-based 
X-ray phase-contrast tomography
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with adjacent normal tissues. From the Figure 7C, we can see 
that the 3D-MVD results vary remarkably and the average 
of tumor 3D-MVD is obviously higher than that of normal 
tissue, and furthermore the blood flow in tumor surface areas 
higher and complicated than that in tumor inner areas and 
normal tissues due to the irregular vascular structure and den-
sity distribution. The findings are helpful for further study on 
the irregular dynamics in tumor blood supply associated with 
abnormal 3D-MVD and their topological structure.

To further investigate the malignant tumor early diagno-
sis, it is necessary to explore the screening and classification 
method at the level of microscopic structures of tumor le-
sions. Here we trained the AlexNet-based DCNN model by 
using the SR-PCT datasets to identify eight types of tumor le-
sions in digesting system, which achieved the high accuracy 
of auto-classification (average 94.21%) and demonstrated the 
excellent model performance. This is mainly because the SR-
PCT combined with PR can provide the high contrast and 
resolution sectional images for discriminations of the fine 
structural characteristics and morphological distributions 
with small tissue density changes. The AlexNet-based DCNN 
model with appropriate 5 convolutional layers facilitate the 
high auto-classification accuracy based on the SR-PCT-
based training model, which can be served as a complemen-
tary tool for conventional CT-based training application. Due 
to the pathological features of SR-PCT images at the resolu-
tion level of about a few microns, they are totally different 
from that of conventional CT and histopathological images, 
and our image data can provide more abundant tumor micro-
morphological features, and there are few reports on DCNN 
of SR-PCT experimental data. It may be unfair to compare 
the accuracy of DCNN based on different modalities and 
scales imaging datasets. The accuracy of DCNN classifica-
tion model trained by HE pathological sections was 78.2% 
for four types, reported in our previous study.18 However, the 

average classification accuracy of SR-PCT data can reached 
up to about 94.2% for eight types, benefiting from the phase-
contrast micro-morphologcial features.

For quantitative analysis of the micro-morphological 
correlation of inflammatory microenvironment and malig-
nant liver tumor growth and metastasis, we extracted the 49 
texture features of tumor SR-PCT sectional images using 
GLCM, GGCM, GH, GDS, wavelet, respectively, listed in 
Table 2.

In order to eliminate the correlation and redundancy ef-
fects between the 49 features, we combined AUC of ROC 
and PCA to optimize the feature selection and analysis. The 
screening criteria were set as greater than 0.75 by calculating 
the AUCs of the features, and there are 18 adequate features 
shown in Figure 8A. Then the screened AUC feature set was 
further reduced dimensionally by the PCA method, in which 
the eigenvalue is greater than 1, and the accumulating con-
tribution rate greater than 90%. There are 4 PCAs that meet 
above criteria, including PCA1_60.34%, PCA2_13.59%, 
PCA3_10.69%, and PCA4_ 7.10%, shown in Figure 8B. The 
mean ± SD of PCAs (PCA1 + PCA2 + PCA3 + PCA4) of 
the four typical tumor microfeatures were calculated and 
shown in Figure 8C, indicated that the mean PACs of tumor 
structural features successively distributed in the range of 
±2, and shifted from positive value to negative value with 
the deterioration of tumor lesions, and stage c displaying 
tumor microvascularization dilation has the inflection point 
of PCAs shifting. In Figure 8D, the curve of stage a has a 
high and narrow peak denoting the disseminated inflamma-
tion stage, the curve of stage b has a wide and flat peak de-
noting circumvascular micro-cyst cluster, the curve of stage 
c became narrowing gradually and appeared differentiation 
denoting the tumor microvascularization dilation and small 
tissue lesion, and the curve of stage d took on distinct dif-
ferentiation and arise two lesion peaks denoting the tumor 

Feature types Eigenvalue

GLCM (0°, 1) Energy (A1), homogeneity (A2), contrast (A3), correlation (A4)

(45°, 1) Energy (B1), homogeneity (B2), contrast (B3), correlation (B4)

(90°, 1) Energy (C1), homogeneity (C2), contrast (C3), correlation (C4)

(135°, 1) Energy (D1), homogeneity (D2), contrast (D3), correlation (D4)

GGCM Small gradient dominance (E1), large gradient dominance (E2), uneven 
distribution of gray scale (E3), uneven distribution of gradient (E4), 
energy (E5), mean value of gray scale (E6), mean value of gradient (E7), 
mean squared error of gray scale (E8), mean squared error of gradient 
(E9), correlation (E10), gray entropy (E11), gradient entropy (E12), 
mixed entropy (E13), inertia (E14), inverse difference moment (E15)

GH Mean value (H1), Variance (H2), Skewness (H3), Kurtosis (H4), Energy (H5)

GDS Contrast (I1), Angular second moment (I2), Entropy (I3), Mean value (I4)

Wavelet M1, M2, M3, M4, M5, M6, M7, M8, M9

Abbreviations: GDS, gray level differential statistics; GGCM, gray-gradient co-occurrence matrix; GH, gray 
level histogram; GLCM, gray level co-occurrence matrix.

T A B L E  2   Feature extraction for tumor 
micro-structural quantitative analysis
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abnormal microvessel network and severe tissue lesions in 
liver tumor microenvironment. Actually, the tumor microvas-
cularization dilation of stage c is an important demarcation of 
tumor lesion mutation, rapidly developing in tissue inflam-
mation microenvironment, shown in Figure 8E. Therefore, 
the micro-morphological lesions of tumor based on SR-PCT 
technique can be quantitatively measured and assessed by 
machine learning, which will provide data support for dis-
crimination of benign or malignant tumor, and tumorous 
grading and staging.

In addition, the synchrotron-based phase-contrast com-
puted tomography can achieve the fast, low-dose, 3D 

imaging for soft biomedical samples for hard X-rays. In our 
experiment, the exposure times are 5, 20, and500 ms, corre-
sponding to different effective pixel sizes of 6.5, 3.25, and 
0.65 μm, and projection numbers 1080, 720, and 600, respec-
tively. The achievable doses can be approximately calculated 
as following:

where E is the photon energy, Fx is the total photon fluence 
per tomographic scan (3.0*1010photons/mm2/s @15 keV), 

Dose = Fx ⋅ E ⋅

�en

�
,

F I G U R E  8   Quantitative analysis of micro-morphological development in the liver tumor growth and metastasis. (A) Feature selection based 
on the AUC (area under curve) method from 49 features, there are 18 AUCs of features greater than 0.75; (B) four PCAs (principal component 
analysis) whose accumulating contribution rate greater than 90%. The optimal combination of features based on AUC and PCA methods can 
be served as quantitative analysis of different liver tumor structural lesions; (C) four typical microscopic pathological SR-PCT features in liver 
tumor lesions, and their main PCAs value distribution; (D) The normalization connections and changes of four typical lesions in liver tumor 
microenvironment; (E) the 3D rendering of liver tumor micro-morphological climacteric from inflammation to vascularization. SR-PCT, 
synchrotron-based X-ray phase-contrast tomography
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and μen/ρ denotes the mass energy-absorption coefficient 
of samples. The estimated doses are in the range of 5000-
10,000  Gy per tomographic scan and approximate reso-
lutions between 2 and 13  μm, producing images with an 
appropriate level of signal-to-noise ratio. Actually, there 
were no artifacts found in our reconstructed results due to 
the experimental samples preprocessed with dehydration 
and fixation. In addition, the sample temperature didn't 
rise much because most of hard X-ray photons transmitted 
rather than absorbed for soft tissues.

5  |   CONCLUSION

The high phase-contrast trans-scale 3D micro-
morphological characteristics of tumors reconstructed 
from SR-PCT technique is better helpful for understand-
ing of tumorigenesis and microvascular abnormalities, 
which is also a complementary tool for diagnosis of early 
tumor screening and typing. The findings of multimodal-
ity and multiscale correlations and complementarities in 
tumor microenvironment will be essential for determining 
the early diagnosis and treatment strategies of tumors. The 
DCNN-based pathological classification of tumor based on 
the SR-PCT microscopic inner structural feature datasets 
has good potential in tumor staging diagnosis and clinical 
evaluation. The quantitative calculation and analysis based 
on machine learning of GLCM and GGCM can provide a 
data support and scientific evidence for tumorigenesis and 
its development.
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