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Abstract: Pattern recognition receptors (PRRs) play a central role in the inflammation that ensues
following microbial infection by their recognition of molecular patterns present in invading microor-
ganisms but also following tissue damage by recognising molecules released during disease states.
Such receptors are expressed in a variety of cells and in various compartments of these cells. PRR
binding of molecular patterns results in an intracellular signalling cascade and the eventual activation
of transcription factors and the release of cytokines, chemokines, and vasoactive molecules. PRRs
and their accessory molecules are subject to tight regulation in these cells so as to not overreact or
react in unnecessary circumstances. They are also key to reacting to infection and in stimulating the
immune system when needed. Therefore, targeting PRRs offers a potential therapeutic approach
for chronic inflammatory disease, infections and as vaccine adjuvants. In this review, the current
knowledge on anti-viral PRRs and their signalling pathways is reviewed. Finally, compounds that
target PRRs and that have been tested in clinical trials for chronic infections and as adjuvants in
vaccine trials are discussed.

Keywords: pattern recognition receptors; toll-like receptors; RIG-like receptors; viral infection;
anti-viral drugs; vaccine adjuvant

1. Introduction

Infection as well as tissue injury/stress can activate inflammatory responses. Inflam-
mation is widely recognised by the cardinal symptoms of fever, redness, oedema, pain,
and loss of function. Inflammation is necessary to help with the removal of the source of
infection, to help protect the infected tissue(s), and to restore homeostasis. Both immune
and non-immune cells produce cytokines, chemokines, and vasoactive peptides. These
molecules attract immune cells such as neutrophils that are normally restricted to the vas-
culature, allowing them to enter into the inflamed or infected tissue [1–3]. Viruses cannot
survive or replicate themselves and so need a host. They possess several distinct features
that have allowed our immune system to develop a number of strategies to detect and
remove viruses [4]. However, viruses have in turn developed strategies of their own to hide
and evade our immune system. They can be detected at several stages in their life cycle
and our immune system usually initiates an appropriate response [5]. These responses are
usually initiated by a key family of receptors known as pattern recognition receptors (PRRs)
that recognise pattern-associated molecular patterns (PAMPs). The binding of PAMPs to
PRRs results in the initiation of an appropriate and regulated inflammatory response to
the infection [6]. PRRs can be grouped into RIG-like receptors (RLRs), NOD-like receptors
(NLRs), C-type lectin receptors, and Toll-like receptors (TLRs). Stimulating these receptors
may help in the fight against infection. This review will discuss the current knowledge
specifically on anti-viral PRRs and molecules that target them that have been tested to date
in clinical trials.
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2. Anti-Viral Pattern Recognition Receptors

Viruses can be categorised as RNA viruses, DNA viruses or retroviruses (which can
have RNA or DNA in some cases). They can also be categorised by whether their nucleic
acid is positive or negative sense. In addition, replication of these viruses also generates
intermediate molecules such as ssRNA and/or dsRNA [7,8]. These nucleic acids are
distinct from the host and are often contained in a specific compartment following infection
separate from host nucleic acid [9,10]. Anti-viral pattern recognition receptors employ a
variety of strategies to detect nucleic acids from viruses and some bacteria. Detection can
occur in the endosomes (usually following phagocytosis by immune cells) or in the cytosol
of immune and non-immune cells where they sense DNA or RNA from viruses that have
shed their protein coat prior to replication or genome integration [11].

The first PRRs to be discovered were Toll-like receptors. They are most highly ex-
pressed in immune cells, but some are also expressed in non-immune cells such as epithelial
cells. Basal expression levels vary across the body [12,13]. TLRs 1, 2, 4, 5, 6 and 10 are found
on the cell surface and generally detect bacterial or fungal PAMPs and some viral proteins,
whereas TLRs 3, 7, 8, 9 are located intracellularly and mostly detect viral and bacterial
nucleic acids. The cellular localisation of PRRs is important to their function. Intracellular
TLRs act within the endosomal compartment, which generally excludes host nucleic acid
and allows them to better distinguish foreign RNA/DNA from that of the host, the in [14].

Other receptor families such as RLRs, NLRs and DNA sensors such as absent in
melanoma 2 (AIM2) and cyclic GMP-AMP synthase (cGAS) can recognise a range of
microbial nucleic acids in the cytosol [4]. This strategy allows the innate immune system
to detect nucleic acids from viruses at different stages of their life cycle and cellular
localisation. PRR activation culminates in the release of type I interferons and cytokines
such as interleukin 1β (IL1β), IL6 and tumour necrosis factor α (TNFα) [11,15]. Type I
interferon release acts in paracrine and autocrine pathways via interferon alpha receptor 1
and 2 (IFANR1/2). This leads to activation of signalling pathways that culminates in the
induction and release of interferon stimulated genes (ISGs) such as 2′, 5′-oligoadenylate
synthetase (OAS) and protein kinase R (PKR) that help suppress virus replication and
assembly in the host cell [16]. Cytokines alter the vasculature to help activate and recruit
immune cells to the site of infection [17].

In humans, there are 10 TLR family members that are membrane-bound receptors
located intracellularly and on the cell surface [14]. Ligand binding is carried out by the
extracellular domain, which consists of leucine-rich repeats (LRRs), while intracellular
signalling is carried out by the intracellular Toll-interleukin-1 resistance domain (TIR) [18].
Ligand recognition initiates a signal transduction cascade within the cytoplasm via myeloid
differentiation primary response gene 88 (MyD88), an adaptor molecule, and specific
kinases such as IL1 receptor-associated kinases (IRAK) 1/2/4. A series of phosphorylation
reactions activates transcription factors such as nuclear factor kappa-light-chain-enhancer
of activated B cells (NF-κB), or interferon regulatory factors (IRF) 3/5/7. These then move
to the nucleus inducing transcription of cytokines and interferons (Figure 1) [19].

The intracellular TLR, TLR3 was identified as recognising polyinosinic-polycytidylic
acid (poly(I:C)), a synthetic analogue of double stranded RNA (dsRNA) [20]. TLR3 is impor-
tant in recognising ssRNA viruses such as respiratory syncytial virus (RSV), encephalomy-
ocarditis virus, West Nile virus and small interfering RNAs [19]. Its role has been illustrated
using tlr3 deficient mice, which are susceptible to lethal viral infection [21]. TLR7 recog-
nises ssRNA from viruses such as vesicular stomatitis virus (VSV), influenza type A (IAV)
and human immunodeficiency virus (HIV) but was originally described as recognising
imidazoquinolinone chemical derivatives such as imiquimod and resiquimod [19,22].

Expression of TLR7 is relatively high in plasmacytoid dendritic cells (pDCs). TLR8
also recognises ssRNA and is similar phylogenetically to TLR7. Interestingly, no release
of interferon or cytokines occurs in the absence of TLR7 following ssRNA stimulation
but immune responses are normal in TLR8 deficient mice [19,22]. It may have other roles
in immune response. TLR9 has been shown to recognise unmethylated CpG containing
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ssDNA and it induces the expression and release of Type 1 interferon [23]. Like TLR7,
TLR9 has relatively high constitutive expression in pDCs and B cells. It is important
in the prevention of replication by certain viruses such as herpes simplex virus (HSV)
and adenovirus [24,25]. Further details of TLR signalling have been discussed in detail
elsewhere [26].
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Figure 1. Anti-viral pattern recognition signalling pathways. Shown in this figure are the various signalling pathways
used to respond to viral infection from DNA, RNA and retroviruses. Each of the major forms of nucleic acids that act as
PAMPs from such viruses are illustrated along with the PRRs they bind to including TLRs, RLRs and DNA sensors such as
cGAS. Each pathway activates specific kinases via their own adaptor molecules, and this ultimately leads to the activation
of transcription factors that translocate to the nucleus and help initiate the transcription of cytokines such TNFα and IL6 or
type I interferons, e.g., IFNβ, which then get released from the cell.

TLR recognition of RNA and DNA is limited to the endosomal compartment of
immune cells. Other PRRs have evolved for sensing nucleic acids in different cellular



Cells 2021, 10, 2258 4 of 15

locations and cell types to detect viruses at different stages of their life cycle [27]. The second
category of PRR are the cytosolic RNA sensors. These are DExD/H box helicases (DHX)
and include retinoic acid inducible gene I (RIG-I), melanoma differentiation-associated
antigen 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2) which does not
have the N-terminal caspase recruitment (CARD) domain. RIG-I and MDA5 are primarily
involved in the cytosolic recognition of RNA viruses whereas LGP2 regulates MDA5
and RIG-I signalling [28]. RLRs are expressed across many tissues and cell types. RIG-I
recognises short RNA molecules (<300 bp) in the cytosol containing 5′-diphosphates as well
as 5′-triphosphorylated uncapped RNA. MDA5 recognises long dsRNA (>300 bp) as well
as high molecular weight branched RNAs [7]. Both receptors use mitochondrial anti-viral
signalling protein (MAVS) to signal leading to activation of the inhibitor of κB kinase (IKK)-
related kinases TANK-binding kinase (TBK1) and IKKi which then activate the transcription
factors IRF3 and IRF7 and induce type I interferon transcription (Figure 1) [15,29]. Viruses
commonly recognised by RIG-I include (−)ssRNA viruses such as influenza A/B as well
as (+)ssRNA viruses, e.g., hepatitis C virus whereas MDA5 commonly recognises dsRNA
viruses as well as some (+)ssRNA viruses [4].

The third category of PRRs are cytosolic receptors that recognise microbial DNA dur-
ing infection. DNA is mostly contained within the nucleus or mitochondria in mammalian
cells. During infection, viruses inject DNA into the cytosol of cells. DNA sensors include
absent in melanoma 2 (AIM2) and cyclic GMP-AMP (cGAMP) synthase (cGAS) among
others. This then activates an endoplasmic reticulum-bound adaptor called stimulator
of interferon genes (STING). STING undergoes a conformational change and inducing
the production of type I interferon via the activation of TBK1 and IRF3 (Figure 1). All of
these are widely expressed and recognise DNA from DNA viruses, retroviruses, genomic
DNA and cyclic dinucleotides (CDNs) from bacteria and self-DNA from dead cells [30,31].
Recognition of cytosolic DNA by AIM2 activates the inflammasome leading to activation
of caspase 1 which subsequently cleaves gasdermin and leads to the release of interleukin
1 and 18 [32,33]. Upon recognition of DNA of various sizes by cGAS it can synthesise
cGAMP from ATP and GTP ([34–36].

3. Pharmacological Targeting of PRRs

PRRs and their signalling pathways could be pharmacologically targeted at the re-
ceptor level, the downstream kinases, or the protein–protein interactions between adaptor
molecules. This review will highlight the receptors specifically as targets rather than down-
stream events. To date, PRR agonists, antagonists and antagonistic antibodies have been
designed. Clinical trials have evaluated these molecules as adjuvants for vaccines and
cancer as well as for infections, acute and chronic inflammatory diseases, and neurological
conditions. This review will focus on those tested for anti-virals and adjuvants for vaccines.
Reviews focusing on PRRs as targets in cancer and other inflammatory diseases can be
found elsewhere [37,38].

3.1. PRR Agonists as Anti-Viral Drugs

Despite vaccination programmes being in place in many countries, there is a still an
unmet clinical need to treat hepatitis B and C viruses, human immunodeficiency virus
(HIV), human papillomavirus (HPV), herpes simplex virus (HSV) and more recently
coronavirus (SARS-CoV-2) infections. These infections are associated with chronic disease
and are lethal in many cases. Stimulating anti-viral pathways by using agonists of PRRs
may help reduce the viral load and hence the associated disease. Hepatitis B virus (HBV) is
a non-cytopathic DNA virus that is a common cause of liver disease. The virus generates
intermediates of closed circular DNA in the nucleus of hepatocytes which have a long
half-life and that get transcribed [39]. Stimulating the anti-viral immune response could aid
in reducing chronic infection. As agonists of the anti-viral TLRs can induce anti-viral gene
expression, these have been developed and tested in patients with chronic HBV infection
but results to date have varied.
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The TLR7 agonists tested to date in phase I trials include GS-9620, RO7020531 and
TQ-A3334 were all shown to be safe and well tolerated in hepatitis B patients and healthy
volunteers [40–43]. Vesatolimod (GS-9620) and TQ-A334 were also shown to induce anti-
viral genes (e.g., ISG15) in a dose dependent manner [40–42]. However, in a phase II trial of
GS-9260, there was no significant reduction in the levels of the disease marker hepatitis B
surface antigen [40,42]. It has been suggested from ex vivo studies that TLR7 agonists may
increase T and NK cell activity [44]. There have been many other trials conducted on these
molecules (see Table 1) but results have not been reported. Due to their similar responses,
TLR8 agonists such as selgantolimod (GS-9688) has been tested in healthy volunteers and
chronic hepatitis B patients with no serious adverse events reported in either cohort as well
as dose-dependent induction of cytokines such as IL-12 [45,46]. Finally, recent research
has focused on the role the non-endosomal pattern recognition receptors, in particular
RIG-I given the role of cytoplasmic nucleic acid sensors in mediating anti-viral responses.
Based on the validation of its anti-viral activity in an animal model of chronic hepatitis
B, an orally available prodrug (small molecule nucleic acid) and RIG-I/NOD 2 agonist
called Inarigivir (SB9200) has recently been tested [47,48]. In phase II trials (ACHIEVE
trial), it caused a reduction in HBV DNA and RNA and had mild/moderate adverse events
reported [49–51]. There have, however, been a number of other trials with this molecule
that have since been terminated due to reports of liver injury.

Table 1. Shown in the table is a list of PPR agonists that have been tested in clinical trials for viral infections. Indicated is the
viral infection, the name of the molecule, its target and the clinical trial information such as the trial number, the phase it has
reached and the current status. HBV—hepatitis B virus; HCV—hepatitis C virus; HIV—human immunodeficiency virus;
HPV—human papillomavirus; HSV—herpes simplex virus; SARS-CoV-2—severe acute respiratory syndrome coronavirus 2.

Virus Molecule Type Target Clinical Trial No. Phase Status Reference

HBV GS-9620 Agonist TLR7 NCT02166047 II Completed [40,42]
RO7020531 Agonist TLR7 NCT03530917 I Completed [43]

NCT04225715 II Recruiting
NCT02956850 II Active, not recruiting

TQ-A3334 Agonist TLR7 CTR20182248 I Completed [41]
NCT04180150 II Recruiting
NCT04202653 II Not yet recruiting

GS-9688 Agonist TLR8 NCT03491553 II Completed [45,46]
NCT03615066 II Completed
NCT04891770 II Not yet recruiting

SB9200 Agonist RIG-I/NOD2 NCT03434353 II Completed [50,51]
NCT03932513 II Terminated
NCT04023721 II Terminated
NCT04059198 II Terminated
NCT02751996 II Completed

HCV ANA773 Agonist TLR7 NCT01211626 I Completed [52]
RO7020531 Agonist TLR7 NCT02956850 I Active, not recruiting

NCT03530917 I Completed [53]
PF-

04878691/852A Agonist TLR7 NCT00810758 I Completed [54]

GS-9620 Agonist TLR7 NCT01591668 I Completed [55,56]
Resiquimod Agonist TLR7/8 II [57]
IMO-2125 Agonist TLR9 NCT00728936 I Completed [58]

NCT00990938 I Completed
CpG10101 Agonist TLR9 NCT00277238 I Completed [59]

NCT00142103 I Completed
SD-101 Agonist TLR9 NCT00823862 I Completed
SB9200 Agonist RIG-I/NOD2 NCT01803308 I Completed [60,61]
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Table 1. Cont.

Virus Molecule Type Target Clinical Trial No. Phase Status Reference

HIV Poly ICLC Agonist TLR3 NCT02071095 I/II Completed [62]
Rintatolimod Agonist TLR3 [63]

NCT00000735 I Completed [64]
NCT00001000 I Completed [65]
NCT00035893 II Completed
NCT00000713 I Completed

GS-9620 Agonist TLR7 NCT03060447 I Completed [66]
NCT02858401 I Completed [67]

MGN1703 Agonist TLR9 NCT03837756 II Recruiting
NCT02443935 I/II Completed [68,69]

HPV Imiquimod Agonist TLR7 NCT00761371 IV Completed [70]
CTRI/2009/091/000055 II/III Completed [71]

HSV Resiquimod Agonist TLR7/8 II Completed [72]
II Completed [73]
III Completed [74]

SARS-
CoV-2 PUL-042 Agonist TLR2/6 and 9 NCT04312997 II Active, not recruiting

NCT04313023 II Recruiting
NCT02124278 I Completed

Chronic hepatitis C viral (HCV) infection can lead to liver cirrhosis and carcinoma [75].
Similar to hepatitis B infection, Toll-like receptor agonists have been tested but are at an
earlier stage of development [76]. In phase I trials, the TLR7 agonists ANA773, GS-9620,
RO7020531 and PF-04878691 have all been administered (mostly by oral route but also
by other routes) to hepatitis C patients and healthy volunteers with no serious adverse
events reported [52–56]. Significant decreases in serum HCV RNA levels in the highest
dose group were reported as well as dose-related interferon responses [52]. Similarly,
the TLR7/8 agonist Resiquimod (R-848) was shown to also reduce viral levels in HCV
patients in a phase II trial but was associated with serious adverse events such as fever and
lymphopenia [57]. TLR9 agonists including IMO-2125, CpG10101 and SD-101 have also
been tested in phase I trials. These were safe, well tolerated and showed dose-dependent
increases in cytokine levels and a reduction in HCV RNA when given subcutaneously
for 4 weeks [52–60]. There have not been any further reports on testing and the extent
of their efficacy is not known in these patients. Finally, Inarigivir (SB9200), the RIG-
I/NOD 2 agonist, tested in phase I trials showed good activity against resistant hepatitis C
variants after phase I testing [61]. It was also demonstrated to be safe, well tolerated and
reduced viral replication A in randomised phase I ascending dose trial in chronic hepatitis
C patients [60].

HIV infection affects millions worldwide and can become latent even in people who
have been successfully treated with highly active anti-retroviral therapy (HAART). Viral
particles can re-emerge later when therapy is interrupted. Using TLR agonists could be
useful as latency reverting agents [77]. Given their ability to induce type I interferons and
hence anti-viral genes, TLR3, TLR7 and TLR9, agonists have been tested in this domain.
The TLR3 agonists Pol ICLC and Poly I:PolyC12U (Rintatolimod) were tested in phase
I and II trials. Both were shown to have minimal toxicity. No significant effects on HIV
levels were reported but an increase in CD4+ cell counts in patients and in the case of
Rintatolimod could reduce the likelihood of category C HIV infection [62–65]. The oral
TLR7 agonist GS-920 given to HIV patients on antiretrovirals showed an induction of
immune cell activation and a decrease in proviral DNA in phase Ib trials but larger studies
will be needed to confirm its efficacy [66,67]. In a phase Ib/IIa open label trial, the TLR9
agonist MGN1703 (Lefitolimod) led to activation of plasmacytoid dendritic cells, cytotoxic
natural killer cells and CD8+ T cells as well as increased detection of HIV1 RNA in the
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plasma of a proportion of HIV patients when given subcutaneously. Separately, it was also
shown to be safe and induce increased HIV1 T cell specific responses [68,69].

Human papillomavirus (HPV) infection is associated with the presentation of anogen-
ital warts as well as cervical and anal cancers. Like many viral infections mentioned so far,
imiquimod has been tested in trials for HPV. Administered to HPV patients with warts as
a cream (5%) caused decreases in viral load as measured by HPV DNA as well as increases
in IFN, TNF and IL12 mRNA [78]. HIV patients have a higher risk of anogenital warts
and those patients on HAART were tested in an open label phase 4 trial where it was
shown to be safe. Total wart clearance and decreasing HPV viral load was reported in a
significant number of patients [70]. In subsequent double-blind RCT trials, those treated
with imiquimod showed clearance for HPV6 and a significant decline in HPV11 viral
load [71].

Herpes simplex virus II infection is also known to lead to genital warts, and it can
establish persistent infection by evading immune responses [79]. Topical application of
TLR agonists may therefore be of use in inducing an anti-viral response. The TLR7/8
agonist resiquimod has been tested as a topical gel applied twice weekly in phase II/III
trials with varying results related to viral shedding and healing with adverse events such
as erythema and erosion at the site more common in the treatment groups. Despite some
efficacy in phase II trials, it was concluded that there was no efficacy with the treatment
group in the phase III trials [72–74]. Finally, given the events of the past year, it is worth
noting that several trials have begun investigating the effects of an aerosolised version
of the mixed combination of TLR2/6 (Pam2) and TLR9 (ODN) agonists called PUL-042
in reducing the severity of COVID-19 caused by SARS-CoV-2 infection. No results were
available at the time of writing.

3.2. PRR Agonists as Vaccine Adjuvant

For many years, vaccines have failed in trials due to a lack of efficacy and/or dura-
bility and often because immune responses were not strong enough to antigens. The
use of adjuvants has helped resolve this but there was still a limited number of these
molecules that were safe. PRR adjuvants have recently been test in trials due to their
ability to bridge the innate and adaptive immune systems [80]. There have been several
trials which have evaluated TLR agonists as adjuvants (see Table 2). Many of these have
improved the efficacy and safety profiles of drugs and vaccines with the most effective
being TLR3/5/7/8/9 agonists. In the case of Hepatitis B vaccines, they have been com-
bined with TLR4, TLR7, TLR8 TLR9 agonists. Most of these trials reached phase III. The
TLR4 agonists monophosphoryl lipid A (MPL) and its synthetic mimetic RC-529 have been
combined separately with recombinant hepatitis protein vaccines and each were shown
to be safe, well tolerated, and to induce higher sustained anti-HB titers as well as T cell
responses years after administration [81–84]. The TLR7 agonist imiquimod and the TLR7/8
agonist resiquimod have also been combined with protein subunit vaccines for hepatitis B
in separate phase II and phase III trials. Only results for imiquimod have been published
and topical pretreatment with imiquimod cream at the injection site did not enhance the
humoral response to 3 intradermal injections of the hepatitis B recombinant vaccine [85].
A combination of the TLR9 agonist CpG DNA and the hepatitis B surface antigen 1018 has
been called Heplisav [86]. It was shown to be immunogenic and well tolerated in phase I
trials and subsequently shown to significantly enhance humoral responses to the hepatitis
B surface antigen vaccine [87,88]. This combination was demonstrated in phase III trials to
improve immunogenicity and it allows for fewer doses over a shorter period [89–91].
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Table 2. Shown in the table is a list of PPR agonists that have been tested in clinical trials as vaccine adjuvants. Indicated
is the viral infection, the name of the molecule, its target and the clinical trial information such as the trial number, the
phase it has reached and the current status. HBV—hepatitis B virus; HIV—human immunodeficiency virus; HPV—human
papillomavirus; HSV—herpes simplex virus; IAV—influenza A virus.

Virus Molecule Type Target Clinical Trial No. Phase Status Reference

HBV MPL Agonist TLR4 NCT00698087 III Completed [81]
NCT00697242 III Completed
NCT02153320 III Completed [83]

I Completed [84]
RC-529 Agonist TLR4 II Completed [82]

Imiquimod Agonist TLR7 NCT04083157 III Active, not recruiting
NCT03307902 II/III Completed

NTR1043 Completed [85]
Resiquimod Agonist TLR7/8 NCT00175435 I/II Completed

CpG 1018 Agonist TLR9 I [87,88]
NCT00511095 II Completed
NCT00435812 III Completed [90]
NCT02117934 III Completed [90,91]
NCT01005407 III Completed [89,90]
NCT04843852 II Not yet recruiting

HIV Poly ICLC Agonist TLR3 NCT01127464 I Completed
MPL Agonist TLR4 NCT00001042 I Completed [92]

RC-529 Agonist TLR4 NCT00076037 I Completed [93]
3M-052-AF Agonist TLR7/8 NCT04177355 I Recruiting
CpG 1018 Agonist TLR9 NCT04177355 I Recruiting
CpG7909 Agonist TLR9 NCT00562939 I/II Completed [94]

Muramyl dipeptide Agonist NOD2 NCT00001042 I Completed [92]

HPV MPL Agonist TLR4 NCT04590521 IV Not yet recruiting
NCT00316706 III Completed [95,96]

Imiquimod Agonist TLR7 II [97]
NCT01957878 II Completed
NCT00941811 II Completed
NCT00788164 I Recruiting
NCT02689726 I Terminated
NCT00988559 I Completed

ISRCTN32729817 III Completed [98,99]

HSV MPL Agonist TLR4 NCT00224484 III Completed [100]
CpG 1018 ISS Agonist TLR9 III Completed

IAV Rintatolimod Agonist TLR3 NCT01591473 I/II Terminated [101]
VAX125 Agonist TLR5 NCT00730457 I Completed [102]

NCT00966238 II Completed [103]
VAX128 Agonist TLR5 NCT01172054 I Completed [103]
VAX102 Agonist TLR5 NCT00603811 I Completed [104]

NCT00921973 I Completed [105]
Imiquimod Agonist TLR7 NCT01508884 I Completed [106]

NCT03472976 I Completed
NCT02960815 II Completed
NCT02103023 III Completed [107]
NCT04143451 III Recruiting

Resiquimod Agonist TLR7/8 NCT01737580 I Completed

Despite success with antiretroviral drug therapy, there is still a need for vaccines
for HIV/AIDS. Many TLR agonists have been tested with various types of HIV vaccines.
Poly ICLC, a TLR3 agonist has been combined with DCVax (a fusion protein consisting
of an antibody to the dendritic cell receptor CD205 and the HIV gag p24 protein). This
was tested in a phase I trial using healthy volunteers, but no results were available at
the time of writing. The TLR4 agonist MPL and the NOD2 agonist muramyl dipeptide
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(MDP) were combined with the recombinant protein gp120 subunit vaccine in an initial
phase I trial and showed neutralising antibody activity [92]. The TLR4 agonist RC-529 was
combined with a multi-epitope peptide cytotoxic T lymphocyte HIV vaccine in initial phase
I trials. While the vaccine was safe and tolerable it was only mildly immunogenic [93].
The TLR7/8 agonist 3M-052-AF and the TLR9 agonist CpG 1018 have been combined in
separate trials with a gp140 vaccine in phase I trials and are still in the recruitment phase.
CP7909, a TLR9 agonist was proposed to work as a latency inhibitor and in conjunction
with antiretroviral therapy work to rescue the proviral reservoir in virologically suppressed
infected patients [94].

Human papillomavirus vaccines have had success in recent years. Several trials have
been designed to investigate the efficacy and safety of combining these with TLR agonists in-
cluding MPL (TLR4) and imiquimod (TLR7). Cervarix, a vaccine against HPV16/18 strains
uses an adjuvant called AS04, containing MPL and aluminium salt. In a phase III trial
of over 2000 adolescent girls aged 10–14, the mean titers of antibodies to both strains
were shown to be maintained at higher levels up to 10 years later in those vaccinated
with the AS04 adjuvant [95,96]. TLR7 agonists have also been tested in trials with topical
administration of imiquimod prior to vaccination with the HPV16 vaccine. It was reported
in phase II trials that imiquimod treatment led to significantly greater local infiltration of T
cells in lesion responders [97]. It has also been tested with the quadrivalent vaccine but did
not show any differences in this instance [98,99]. There have been other phase II trials but
either the results have not been reported or in one case, the trial was terminated due to
lack of efficacy.

Herpes simplex virus 2 is regarded as a primary causative agent of genital herpes.
Prophylactic vaccination is proposed to help reduce sexual transmission. An investigational
HSV vaccine (glycoprotein D subunit vaccine) has been tested with some TLR agonists
including MPL (as AS04) and the TLR9 agonist CpG1018. It was reported that the vaccine
had an acceptable safety profile, it was well tolerated and immunogenic, as determined
by geometric mean concentration of anti-gD2 antibodies. However, there was no control
group to determine the effect of imiquimod [100].

Influenza infections cause thousands of deaths annually and mutation makes it dif-
ficult to control. Vaccination is key to reducing mortality. An intranasal quadrivalent flu
vaccine FluMist was combined with the TLR3 agonist rintatolimod (Ampligen) and tested
in a phase I/II trial. Despite being reported to be well tolerated, improving antibody titers,
and demonstrating cross-reactivity to strains of avian flu, the trial was terminated [101].
Recently, a vaccine called VAX125 was generated by combining the TLR5 agonist flagellin
with the H1N1 influenza virus HA1 domain. A phase I open label trial showed it to be
safe and well tolerated when give as a single dose intramuscularly [102] and that it could
induce a potent antibody immune response (10-fold over baseline) in elderly subjects [103].
Different domains of flagellin have been fused to the vaccine generating VAX128A, B
and C. When tested in healthy subjects these were demonstrated to be safe and immuno-
genic [108]. VAX102 is a fusion of flagellin with the matrix protein 2 ectodomain. Phase I
trial results demonstrated safety and immunogenicity [105]. A follow up study reported
higher antibody levels in response to M2E (four-fold over baseline) [104].

Finally, imiquimod was given topically prior to an intradermal trivalent influenza
vaccine and found to be safe, well tolerated. It also significantly increased, prolonged, and
expedited the immunogenicity of the vaccine [106,107]. A phase III trial with young healthy
volunteers confirmed as much as well as showing increased immunogenicity against non-
vaccine strains where there is often antigenic drift such as H3N2 [106]. A phase I trial was
conducted involving the topical administration of a resiquimod (TLR7/8 agonist) gel prior
to the intradermal Intanza vaccine in elderly patients but results were not available at the
time of writing.
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4. Perspectives/Conclusions

In summary, agonists of ant-viral TLRs (TLRs 3, 7, 8 and 9) seem to hold the most
promise as both anti-viral drugs and as vaccine adjuvants. As many of the PRR signalling
pathways culminate in NF-κB and IRF activation (Figure 1), targeting the pathway down-
stream could affect all innate immune responses during infection. Therefore, it is more
prudent to target upstream events which enhance or reduce specific PRR activity but
allow other receptors to recognise and response to microbes. Inhibiting downstream PRR
signalling could interfere with the cross-talk between individual pathways. Future ap-
proaches could be targeting specific domains in PRRs such as the LRR domain involved in
ligand recognition in TLRs, targeting the ATP-binding sites or the NOD oligomerisation
domain/NACHT domain in NLRs, targeting the TIR domain or recruitment of adaptors
such as Mal or RIP2, targeting kinase activity or targeting some of the regulatory proteins
involved in signalling. To date, most compounds evaluated in clinical trials are agonists
of TLRs but that is not surprising given TLRs were the first PRRs to be described. As
the importance of other PRRs in viral infections are uncovered it is expected that newer
molecules will be developed and tested in trials. Overall, these receptors still hold a lot of
promise as targets in inflammatory and infectious diseases.
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