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Diabetic cardiomyopathy is defined as a ventricular dysfunction initiated by alterations in cardiac energy substrates in the absence of
coronary artery disease and hypertension. Hyperglycemia, hyperlipidemia, and insulin resistance are major inducers of the chronic
low-grade inflammatory state that characterizes the diabetic heart. Cardiac Toll-like receptors and inflammasome complexes may
be key inducers for inflammation probably through NF-𝜅B activation and ROS overproduction. However, metabolic dysregulated
factors such as peroxisome proliferator-activated receptors and sirtuins may serve as therapeutic targets to control this response by
mitigating both Toll-like receptors and inflammasome signaling.

1. Introduction

Cardiac complications are the leading cause of morbidity
and mortality in diabetic patients [1]. First introduced by
Rubler et al. in 1971 [2], diabetic cardiomyopathy (DCM)
is characterized by the direct effect of diabetes on cardiac
structure and function in the absence of coronary artery
disease, hypertension, or other cardiac pathologies. DCM
entails the damage of the myocardium through fibrosis,
steatosis, apoptosis, and hypertrophy [3] and results from
the switch of substrate supply to free fatty acids (FFA) that
follows the reduced levels of insulin, glucose transporters,
and glucose consumption [4, 5]. Subsequent disruption of
calcium homeostasis and myocardial remodeling leads to a
progressive impairment of ventricular myocyte contractil-
ity that may result in heart failure [6–8]. In addition, an
increasing body of evidence suggests a potential link between
oxidative energy metabolism dysregulation and chronic low-
grade inflammation [4, 9].

Inflammatory signaling in cardiomyocytes usually occurs
as an early response tomyocardial injury and entails cytosolic

and mainly mitochondrial reactive oxygen species (ROS)
overproduction [10, 11]. Classical following steps mainly
involve increased activation of the proinflammatory nuclear
transcription factor-𝜅B (NF-𝜅B), and the related expres-
sion of cytokines (i.e., tumour necrosis factor-𝛼 (TNF𝛼),
interleukins (IL-1𝛽, IL-6), and chemokines (i.e., MCP-1)),
adhesion molecules (i.e., selectins and adhesion molecules
(ICAM-1, VCAM-1)), and successive migration of leukocytes
into the myocardium [12, 13]. Migrated monocytes can
further develop into tissue macrophages, which can then be
polarized into two main groups, M1 and M2, accounting for
their trend towards inflammation or healing, respectively.
We and others have reported that myocardial inflammation
develops in human patients and experimental models of type
1 (T1DM) and type 2 (T2DM) diabetes mellitus [8, 14, 15].
There is evidence that chronic progression of hypertrophy,
fibrosis, and ventricular dysfunction is correlated with a local
increase in cytokines [16] and activation of NF-𝜅B [17, 18].
General inflammatory stimuli in the diabetic heart include
hyperglycaemia, hyperlipidemia, ROS, angiotensin II, and
endothelin-1 [4, 19]. Activation of Toll-like receptors (TLRs)
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and the inflammasome complex has recently been proposed
to be central in cardiac inflammation and likely in the
pathogenesis of DCM.

2. Toll-Like Receptors and
Cardiac Inflammation

TLRs are membrane-anchored proteins present in several
cell types ranging from macrophages and T and B cells
to nonimmune cells such as cardiomyocytes [20, 21]. They
work as pattern recognition receptors (PRRs) implicated in
tailoring innate immune signaling [22]. TLRs elicit conserved
inflammatory pathways culminating in the activation of NF-
𝜅B and activating protein-1 (AP-1). TLR ligands include high-
mobility group B1 (HMGB1), heat shock proteins (HSP60,
HSP70), endotoxins, and extracellular matrix components
[23]. Also ROS canmodifymembrane components and cause
the release of factors that interact with and activate TLRs.
In this sense, it has been shown that TLR2 participated
importantly in the mechanism of ROS-induced activation
of NF-𝜅B and AP-1 [24]. The proximal events of TLR-
mediated intracellular signaling are initiated by interactions
with cytosolic adapters, mainly myeloid differentiation pri-
mary response protein 88 (MyD88) [25]. MyD88 recruits the
IL-1R-associated kinase (IRAK) and TNFR-associated factor
(TRAF) to induce ubiquitination and proteasomal degrada-
tion of the inhibitors of NF-𝜅B (I𝜅Bs), thus enabling NF-𝜅B
translocation into the nuclei and further ROS generation [25]
(Figure 1(a)). The isoforms predominantly expressed in car-
diomyocytes are TLR2 and TLR4, although up to ten cardiac
TLR mRNAs have been identified in several clinical contexts
including obesity and T2DM [26–29]. TLR2 and TLR4 have
a central role in the pathogenesis of diverse heart disorders.
Both are strongly upregulated in chronic dilated cardiomy-
opathy and heart failure [30], serving as upstream inducers
of a large variety of proinflammatory molecules including
ICAM-1, chemokines, TNF𝛼, interleukins, HSPs, interferon-
𝛾 (IFN𝛾), and inducible nitric oxide synthase (iNOS) [21,
28, 31]. Activation of TLR2 and TLR4 eventually leads to
reduction of ejection fraction through NF-𝜅B-dependent
mechanisms [31, 32]. However, the specific distinction of
the mechanisms and targets between TLR2 and TLR4 in
cardiac inflammation is a rapidly evolving knowledge that
presents some divergence. Boyd et al. reported that stimula-
tion of TLR2 and TLR4 in HL-1 cardiomyocytes decreased
contractility and initiated NF-𝜅B-dependent inflammatory
response, involving upregulation of ICAM-1, chemokines,
and macrophage inflammatory protein-2 (MIP-2). However,
only TLR4 activation induced the proinflammatory cytokine
IL-6 [31]. More recently, Ma et al. [30] uncovered the
differential effects of TLR2 and TLR4 in a doxorubicin-
induced mice model of chronic dilated cardiomyopathy.
TLR2 blockade reduced myocardial expression of a variety
of proinflammatory factors including IFN𝛾 and MCP-1.
Conversely, TLR4 blockade increased secretion of MCP-1,
IL-13, and transforming growth factor-𝛽

1
(TGF𝛽

1
). Besides

structural cardiomyopathies, TLR2 and TLR4 have progres-
sively gained credit as important contributors to entities of

metabolic nature such as cardiac lipotoxicity. In this line,
TLR4 knockdown abrogated NF-𝜅B-dependent inflamma-
tory response and lowered insulin resistance in high-fat fed
mice [33].

2.1. Activation of TLRs in DCM. Several studies have
addressed the role of TLRs in cardiac inflammation using
models of T1DM, T2DM, and obesity, which share an envi-
ronment characterized by high circulating levels of glucose
and FFA and elevated tissue levels of ceramides. Although
no direct interaction between glucose and FFA with TLRs
has been described [34], high levels of glucose and lipids
have been shown to stimulate TLR2 and TLR4 [33, 35,
36], thus suggesting the existence of unknown intermedi-
ates. High-fat diet-induced obese mice exhibited myocardial
macrophage infiltration as well as higher expression levels
of TLR4, MyD88, and IL-6 [37]. Consistent with this, both
diabetic TLR2 and TLR4-deficient mouse hearts showed
lower triglyceride accumulation during the early stages of
diabetes, as well as restricted leukocyte infiltration and a
marked decrease of NF-𝜅B and MyD88 and phosphorylation
of IRAK1 [20, 38]. Different studies in T1DM mice models
show that TLR4 silencing prevents cardiac lipid accumu-
lation, hyperglycemia-induced myocardial apoptosis, and
ventricular remodeling and dysfunction. It also suppresses
the diabetic upregulation of NADPH oxidase activity and
thus ROS production [20, 39]. Furthermore, genetic analysis
of patients has pointed an association between TLR4 poly-
morphisms, diabetes prevalence, and the severity of chronic
cardiomyopathy [40, 41]. However, besides the focus on
the alterations of cardiomyocytes, leukocyte activation and
transmigration into the diabetic myocardium constitute a
pivotal process in the inflammatory response. Hyperglycemia
has been shown to upregulate TLR2, TLR4, MyD88, and
IRAK-1 phosphorylation and TLR-mediated transactivation
of NF-𝜅B in human monocytes from T2DM patients [28,
42]. Concurrently, TLR2 increased in mononuclear cells
from long-standing T1DM patients [43]. In macrophages
from a model of nonobese T2DM mice, Mohammad et al.
described a ten-fold increase of TLR4 and higher levels of
cytokines, while anti-inflammatory IL-10 was downregulated
[21]. Consistent with this view, monocytes from T2DM
patients also exhibited significant increment in proinflam-
matory cytokines and TLR2 and TLR4 ligands (HMGB1 and
HSPs) [28]. Similar to what occurred in cardiomyocytes,
siRNA knockdown of TLR2 and TLR4 led to decreased NF-
𝜅B activity and IL-1𝛽 release in monocytes [42]. Therefore,
it seems that TLRs may be activated in both cardiomyocytes
and leukocytes, in DCM-associated cardiac inflammation
ten-fold.

3. Inflammasomes and Cardiac Inflammation

The inflammasome is a group of multimeric protein com-
plexes composed of a cytoplasmic receptor of the Nod-
Like Receptor (NLR) family, an adaptor protein termed
ASC (Apoptosis-associated Speck-like protein containing
an N-terminal caspase recruitment domain CARD), and
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procaspase-1 [44]. The best characterized complex is the
NLRP3 inflammasome, which has been identified in a wide
range of cells including macrophages, cardiofibroblasts, and
cardiomyocytes [45–48]. NLRP3 has been reported to be held
in an inactive state by cytoplasmic chaperones. Once NLRP3
is freed, subsequent oligomerization leads to the recruitment
of procaspase-1, thus promoting autocleavage and activation
[44]. Active caspase-1 can eventually process IL-1𝛽 and IL-18
precursors, serving as enhancer of multiple proinflammatory
pathways including NF-𝜅B, mitogen-activated protein kinase
(MAPK), IFN𝛾, chemokines, and ROS and also promoting
insulin resistance [49] (Figure 1(b)). NLRP3 can be acti-
vated by long-chain saturated FA (i.e., palmitate), ceramides,
modified LDL, and hyperglycemia [50–52]. However, NLRP3
does not have a known direct ligand and it requires two-
checkpoint activation process including a priming step and a
second activation step [53]. NF-𝜅B is the traditional priming
signal for the transcription of the NLRP3 gene [54], whereas
novel mechanisms have recently emerged as a second step.
These are based on posttranslational activation of NLRP3
by deubiquitination [55], oxidized mitochondrial DNA [56],
and potential ligands such us thioredoxin-interacting protein
(TXNIP) [57]. In addition, a recent study by Bauernfeind et
al. has revealed that NLRP3 expression is critically regulated
by myeloid specific microRNA-223 [58]. Nevertheless, to
date, most data about NLRP3-inflammasome implication in
heart disease and inflammation come from murine models
of ischemic damage and dilated cardiomyopathy [48, 59,
60]. In a model of dilated cardiomyopathy, NLRP3 abla-
tion was related to a general reduction in proinflammatory
cytokines maturation, reduced mononuclear infiltrate, main-
tained myocyte organization and structure, and preserved
systolic performance [48]. In addition, these hearts increased
phosphorylation of I𝜅B𝛼, what is consistentwithNF-𝜅B regu-
lated NLRP3 gene expression. Further evidence shows upreg-
ulation of the NLRP3-inflammasome effector caspase-1 in
murine and human myocardial infarction [61]. In this study,
deletion of endogenous caspase-1 consistently ameliorated
the ventricular function of the postinfarcted heart. However,
many aspects are in need of further clarification. NLRP3
mRNA levels have been found to be markedly diminished in
heart samples from the right atrium of patients undergoing
coronary bypass surgery [60]. Moreover, Zuurbier et al.
have recently reported that deletion of NLRP3 resulted in
decreased myocardial IL-18 and IL-6 levels, but this effect
was not observed for IL-1𝛽 and TNF𝛼 levels. Also, deletion
of the ASC component did not downregulate IL-6, IL-1𝛽, or
TNF𝛼 [59]. Despite this, gene polymorphisms andmutations
in the human NLRP3-inflammasome have been shown to be
associated with an increase of IL-1𝛽 and IL-18, higher levels of
C-reactive protein (CRP), and severe inflammation [62–64].

3.1. Activation of NLRP3-Inflammasomes in DCM. Notmuch
research has been done to assess the plausible implication of
inflammasomes in experimental models of DCM. However,
as for TLRs, several recent studies have emphasized that
NLRP3 inflammasomes might represent the link between
inflammation and metabolic disorders such in the diabetic

heart. It is known that NLRP3 signaling affects glycol-
ysis and insulin sensitivity and simultaneously enhances
both local myocardial cytokine levels and infiltration by
macrophages [51, 65]. Recent data also suggest that NLRP3
is responsible for sensing obesity-associated host-derived
inducers of caspase-1, such as ROS and lipotoxic ceramides
and palmitate [66]. In fact, NLRP3 inflammasomes have
been proposed to sense and mediate downstream inflam-
matory events of glycotoxicity and lipotoxicity during the
pathogenesis of T2DM [45, 57]. Cardiac NLRP3, caspase-
1, and IL-1𝛽 expression was substantially increased in obese
mice and human subjects [45]. Moreover, caloric restriction
and exercise-mediated weight loss in obese individuals with
T2DM were shown to effectively reduce the expression levels
of NLRP3 [67]. In contrast to the scarce contributions in
cardiomyocytes, research on NLRP3 inflammasomes has
intensively focused on inflammatory cells. NLRP3 has been
reported to increase effector T-cell number, thus eliciting
macrophage transmigration. Further, NLRP3 upregulates the
pool of proinflammatory cytokines such as IL-1𝛽, IL-18, and
IFN𝛾 and promotes insulin resistance in M1 macrophages
[45]. In addition, both ceramides and palmitate require an
intact NLRP3 signaling to induce caspase-1 activation and IL-
1𝛽 and IL-18 release frommacrophages [45, 66].Thus, NLRP3
inflammasomemay also participate in the cardiomyocyte and
monocyte response in DCM-associated inflammation.

4. Potential Crosstalk between
TLRs, Inflammasomes, and Metabolic
Dysregulation in DCM

Interestingly, TLR2 and TLR4-mediated ROS generation and
NF-𝜅B transactivation upregulate NLRP3 pathway through
multiple direct and indirect mechanisms, which account for
both NLRP3 priming and the secondary steps of activation
(Figure 2). First, ROS/NF-𝜅B has been reported to enhance
the expression of NLRP3 and caspase-1 target pro-IL-1𝛽, and
NF-𝜅B sites in NLRP3 promoter have been identified [36,
54, 67]. Second, ROS/NF-𝜅B facilitatesNLR posttranslational
deubiquitination [55]. And third, ROS/NF-𝜅B increases the
amount of TXNIP and oxidized mitochondrial DNA, which
might serve as ligands of NLRP3 [56, 57]. Thus, NLRP
inflammasome activation is likely to be a key outcome of TLR
stimulation in DCM.Moreover, another connection between
TLRs and inflammasomes may be through metabolic dys-
regulated factors, such as peroxisome proliferator-activated
receptors (PPARs) and sirtuins (Sirts) (Figure 2). Activation
of PPARs is a key process in the myocardial switch of
substrates in DCM and has recently emerged as a link
between metabolism disturbance and pathological inflam-
matory/oxidative phenomena [68]. The PPAR transcrip-
tion factor family is extensively known to regulate cardiac
metabolism, mainly through PPAR𝛼 and PPAR𝛽/𝛿 isoforms
together with PGC-1𝛼 coactivator [69]. PPAR𝛼/PGC-1𝛼
leads to transcriptional induction of pyruvate dehydrogenase
kinase-4 (PDK4), FAT/CD36 transporter, and FFA oxida-
tion enzymes [70], thereby facilitating mitochondrial FFA
import and 𝛽-oxidation-dependent metabolism in expenses
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of glucose assimilation. Thus, NF-𝜅B and p38-mediated
PPAR𝛼/PGC-1𝛼 inhibition has been described as an impor-
tant pathological mechanism in DCM progression [71]. In
addition, a wide body of evidence indicates that PPARs miti-
gate inflammation. PPARs lower nuclear factor of activatedT-
cells (NFAT) signaling and prevent the expression of NADPH
oxidase subunits, resulting in ROS amelioration [72, 73].
PPARs also downregulate TLR2 and TLR4 signaling by either
blocking TLR expression or its NF-𝜅B and AP-1-dependent
pathways [74–76].The effects on NF-𝜅B seem to be mediated
through direct physical interactions, sequestration of NF-
𝜅B coactivators, and transcriptional control of NF-𝜅B-related
proinflammatory genes [77–79]. Other DNA-independent
mechanisms to inhibit NF-𝜅B include activation of ERK-
MAPK pathway, mainly by impairing phosphorylation of
factors such as p38- and JNK-MAPK [4]. Notably, these
are also targets of TLR-Myd88/IRAK signaling in the heart
[18, 80]. Further direct evidence from obese T2DMmice has
demonstrated that PPAR𝛽/𝛿 and PPAR𝛾 downregulate both
TLR2 andTLR4 signaling [75, 81].Moreover, TNF𝛼 and IL-1𝛽
have been reported to be clearly decreased upon activation of
PPAR𝛼 [82, 83], which can be linked with impaired NF-𝜅B-
dependent induction of NLRP3 inflammasome. In a model
of chronic high-fructose-induced diabeticmice, Collino et al.
described that PPAR𝛽/𝛿 stimulation attenuated NLRP3-
dependent caspase-1 activation and IL-1𝛽 production [74].
Also, the NLR family promoter harbours binding sites for
PPAR𝛾 [84]. More complex evidence regards the interference
of the inflammasome assembly by phospholipase C, cyclic
AMP, and protein kinase C, which are known regulators and
targets of PPARs [85–87].

In addition to PPARs, Sirtsmay constitute another alleged
nodal connection between metabolism and TLR and/or
inflammasome-dependent inflammation [88] (Figure 2).
Moreover, Sirts have been largely reported to interfere
with the molecular pathogenic substrate of heart failure
and thereby ameliorate cardiac outcome [89]. Epigenetic
modulation by this class III deacetylase limits oxidative
stress and inflammatory responses by targeting a relevant
set of transcription factors including NF-𝜅B, PPARs, and
PGC-1𝛼 [90]. Sirtuin-1 (Sirt1), the most studied Sirt in the
heart, works as an energy sensor and supports oxidative
energy metabolism through PPAR𝛼/PGC-1𝛼 and AMP-
activated protein kinase (AMPK) signaling, which also
contribute to inhibit NF-𝜅B and inflammation [91]. Mice
overexpressing Sirt1 and exposed to high-fat diet show
attenuated lipid-induced inflammatory responses [92]. Also,
Sirt1 was reported to stimulate antioxidants manganese
superoxide dismutase (MnSOD) and nuclear respiratory
factor-1 (Nrf1) in the heart, downregulating NF-𝜅B targets
TNF𝛼 and IL-6 [93]. Several mechanisms for the modulation
of NF-𝜅B signaling by Sirt1 have been described. First,
Sirt1 has been associated with PPAR𝛼-dependent inhibition
of p65 subunit of NF-𝜅B [94]. Second, Sirt1 may directly
modulate NF-𝜅B-dependent immune responses and coupled
ROS production by deacetylating p65 [95]. And third, Sirt1
can negatively regulate the expression of TNF𝛼 and IL-1𝛽
by binding to specific sites in their promoters [96]. Further
connections between Sirt1, TLRs and inflammasomes

include Sirt1 downregulation by palmitate-induced miR-195
and Sirt1 cleavage by caspase-1 [92, 97]. Taken together,
activation of both PPARs and Sirt1 may control the TLR
and inflammasome-dependent pathways of inflammation in
DCM, which may be useful for a therapeutic target.

5. Prospective Therapeutic Targets for DCM

Despite the prolific area of research linking inflammation,
diabetes and metabolic heart disease, the drugs currently
employed in the care of diabetic patients have not generally
been based on an anti-inflammatory strategy. Pharmaco-
logical modulation of TLRs undoubtedly arises as a highly
attractive therapeutic strategy for DCM. In this regard,
several TLR antagonists have been assessed in diverse models
of myocardial contractile dysfunction. Selective inhibition
of TLR2 by immunoglobulin G (IgG) has been successfully
attempted to ameliorate NF-𝜅B and leukocyte infiltration
in ischemic murine hearts [98]. TLR4 antagonists, eri-
toran, and geldanamycin resulted in attenuated myocardial
inflammatory responses including reduced p-JNK and NF-
𝜅B nuclear translocation and decreased gene transcripts of
TNF𝛼, IL-1𝛽, IL-6, MCP-1, MIP-1𝛼, and MIP-2 [99, 100].
These data underscore the potential benefit of blocking
TLR signaling for DCM. However, an increasing number
of TLR inhibitors are not being proportionally tracked by
studies measuring their impact in animal models of cardiac
disease [101, 102]. The discovery of novel mechanisms for
common drugs also paves the way for potential therapeutic
strategies. For example, statins attenuated the upregulation
of TLR4 and TLR2, inhibited NF-𝜅B, and decreased the
circulating levels of TNF𝛼, MCP-1, and CRP in a mice model
of dilated cardiomyopathy [103, 104]. Also, angiotensin II
receptor blocker valsartan decreased TLR4-mediated NF-𝜅B
activity and subsequent cytokine release in a rat model of
ischemic heart [105]. In addition, cumulative evidence on
NF-𝜅B and TNF𝛼 targeting suggests the therapeutic value of
specific modulation of TLR downstream effectors. Triptolide,
a potent NF-𝜅B immunomodulator and TNF𝛼 monoclonal
antibody treatment significantly decreased TNF𝛼, IL-1𝛽,
ICAM-1, VCAM-1, and subsequentmyocardial infiltration by
macrophages and T-cells in diabetic hearts [106, 107].

No NLR antagonist has been identified yet, and increas-
ing efforts are being invested as a result of successful
blockade of downstream effectors IL-1𝛽 and caspase-1 in
DCM. Very recent evidence reported that intravenous IgG
therapy protected neurons in an experimental model of
stroke through a mechanism involving suppression of the
NLRP3 inflammasome activity [108]. Moreover, the anti-
IL-1𝛽 Anakinra [109] and Gevokizumab [110] clinical trials
resulted in reduced TNF𝛼, IL-6, IL-1𝛽, and CRP. How-
ever, despite reducing biomarkers of heart disease, they
did not restore hyperglycemia. Nonimmune antagonists of
the inflammasome machinery are equally compelling. Pral-
nacasan, a caspase-1 blocker, has been reported to attenuate
inflammation in a model of DCM by reducing IL-1𝛽, IL-
18, TNF𝛼, and IFN𝛾 levels, intracardiac macrophage, and
lymphocyte infiltrates and also to improve insulin sensitivity
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Figure 1: TLRs andNLRP3 inflammasome activation in the proinflammatorymyocardium. (a) Activation of TLR2 and TLR4, (b) andNLRP3
inflammasome complexes in cardiomyocytes.

[107, 111]. Novel anti-inflammasome properties have been
described for classical antidiabetics such as metformin and
sulfonylurea. Metformin may affect NLRP3 signaling by
enhancing autophagy through AMPK [66, 112] or increas-
ing Sirt1 action [113, 114]. In this line, AICAR, an AMPK
agonist, could also restore the formation of autophagosomes
and thereby inhibit both caspase-1 and ROS generation in
palmitate-treated macrophages [66]. Sulfonylurea glyburide
also suppressed the NLRP3-dependent caspase-1 activation
and IL-1𝛽 release [115]. Finally, Jourdan et al. showed that the
blockade of cannabinoid receptor type 1 (CB1R) lowered the
levels of NLRP3, ASC, IL-1𝛽, IL-18, NF-𝜅B, and caspase-1 in
macrophages from ZDF rats [116].

Beyond the regulation of TLRs and inflammasomes,
therapeutic benefit of PPARs and Sirt1 stimulation on T2DM
and its cardiac complications has been reported in recent
years [117–120]. Interestingly, a PPAR𝛼 agonist, fenofibrate,
decreased TLR4 and MyD88 expression in a model of multi-
ple sclerosis [121]. PPAR𝛾 agonist pioglitazone substantially
inhibited the expression of TLR2, TLR4, MyD88, and NF-
𝜅B in macrophages from obese T2DM mice [75]. More-
over, PPAR𝛽/𝛿 agonist GW0742 impaired NLRP3 inflam-
masome activity in high-fructose diet-induced diabetic mice
[74]. Since TLR4 downregulation was identified as an anti-
inflammatory mechanism of the insulin-sensitizer incretin

glucagon-like peptide-1 (GLP-1) [122], and considering that
a PPAR𝛽/𝛿 agonist markedly upregulated GLP-1 in obese
T2DM mice [123], it is possible that PPAR𝛽/𝛿 stimulation
may be a valid therapeutic tool for DCM. In the same
way, a bulk of emerging evidence has identified Sirts as a
future therapeutic target for diabetic complications. In this
sense, small molecule activators of Sirt1 are currently being
developed. ZDF rats undergoing this treatment effectively
improved whole-body glucose homeostasis and insulin resis-
tance [124]. However, no attempt to measure the impact of
Sirt1 enhancement in DCM has been made.

6. Conclusions

TLRs and the inflammasome signaling platforms could be
twomain breakthroughs on cardiac inflammation. Emerging
evidence supports a model in which hyperglycemia and FFA
stimulate TLRs as upstream inducers of proinflammatory
mechanisms in DCM. TLR-dependent NF-𝜅B and ROS
appear to regulate both the priming and posttranslational
steps required for the assembly and activation of the inflam-
masome. However, metabolic dysregulated factors such as
PPARs and Sirt1 can downmodulate DCM inflammation by
interfering with TLRs and inflammasome signaling. Thus, a
new set of potential therapeutic approaches for DCM may
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include the stimulation of PPARs and Sirt1 and the inhibition
of TLR2, TLR4, andNLRP3. Further, targeting proximal TLR
mediators Myd88 and IRAK and the activation steps of the
inflammasome may yield some clinical benefit in DCM.
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M. H. Tschöp, “Sirt1 protects against high-fat diet-induced
metabolic damage,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 105, no. 28, pp.
9793–9798, 2008.

[93] R. R. Alcendor, S. Gao, P. Zhai et al., “Sirt1 regulates aging and
resistance to oxidative stress in the heart,” Circulation Research,
vol. 100, no. 10, pp. 1512–1521, 2007.

[94] A. Planavila, R. Iglesias,M.Giralt, andF.Villarroya, “Sirt1 acts in
association with PPAR𝛼 to protect the heart from hypertrophy,
metabolic dysregulation, and inflammation,” Cardiovascular
Research, vol. 90, no. 2, pp. 276–284, 2011.

[95] F. Yeung, J. E. Hoberg, C. S. Ramsey et al., “Modulation of
NF-𝜅B-dependent transcription and cell survival by the SIRT1
deacetylase,” EMBO Journal, vol. 23, no. 12, pp. 2369–2380,
2004.

[96] T. F. Liu, B. K. Yoza, M. El Gazzar, V. T. Vachharajani, and C.
E.McCall, “NAD+-dependent SIRT1 deacetylase participates in
epigenetic reprogrammingduring endotoxin tolerance,” Journal
of Biological Chemistry, vol. 286, no. 11, pp. 9856–9864, 2011.

[97] H. Zhu, Y. Yang, Y. Wang, J. Li, P. W. Schiller, and T. Peng,
“MicroRNA-195 promotes palmitate-induced apoptosis in car-
diomyocytes by down-regulating Sirt1,” Cardiovascular Re-
search, vol. 92, no. 1, pp. 75–84, 2011.

[98] F. Arslan, M. B. Smeets, L. A. J. O’Neill et al., “Myocardial
ischemia/reperfusion injury is mediated by leukocytic toll-like
receptor-2 and reduced by systemic administration of a novel
anti-toll-like receptor-2 antibody,”Circulation, vol. 121, no. 1, pp.
80–90, 2010.

[99] H. Ehrentraut, C. Weber, S. Ehrentraut et al., “The toll-like
receptor 4-antagonist eritoran reduces murine cardiac hyper-
trophy,”European Journal ofHeart Failure, vol. 13, no. 6, pp. 602–
610, 2011.

[100] R. C. Barber, D. L. Maass, D. J. White, L.-Y. E. Chang, and J. W.
Horton, “Molecular or pharmacologic inhibition of the CD14
signaling pathway protects against burn-related myocardial
inflammation and dysfunction,” Shock, vol. 30, no. 6, pp. 705–
713, 2008.

[101] W. Piao, S. N. Vogel, and V. Y. Toshchakov, “Inhibition of TLR4
signaling by TRAM-derived decoy peptides in vitro and in
vivo,”The Journal of Immunology, vol. 190, no. 5, pp. 2263–2272,
2013.

[102] N. Matsunaga, N. Tsuchimori, T. Matsumoto, and M. Ii, “TAK-
242 (resatorvid), a small-molecule inhibitor of Toll-like receptor
(TLR) 4 signaling, binds selectively to TLR4 and interferes
with interactions between TLR4 and its adaptor molecules,”
Molecular Pharmacology, vol. 79, no. 1, pp. 34–41, 2011.

[103] P. Chansrichavala, U. Chantharaksri, P. Sritara, and S. C.
Chaiyaroj, “Atorvastatin attenuates TLR4-mediatedNF-𝜅B acti-
vation in aMyD88-dependent pathway,”Asian Pacific Journal of
Allergy and Immunology, vol. 27, no. 1, pp. 49–57, 2009.
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