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When facing ambiguous images, the brain switches
between mutually exclusive interpretations, a
phenomenon known as bistable perception. Despite
years of research, a consensus on whether bistability is
driven primarily by bottom-up or top-down mechanisms
has not been achieved. Here, we adopted a Bayesian
approach to reconcile these two theories. Fifty-five
healthy participants were exposed to an adaptation of
the Necker cube paradigm, in which we manipulated
sensory evidence and prior knowledge. Manipulations
of both sensory evidence and priors significantly
affected the way participants perceived the Necker
cube. However, we observed an interaction between the
effect of the cue and the effect of the instructions, a
finding that is incompatible with Bayes-optimal
integration. In contrast, the data were well predicted by
a circular inference model. In this model, ambiguous
sensory evidence is systematically biased in the
direction of current expectations, ultimately resulting in
a bistable percept.

Introduction
Perception has been defined as the process of

combining available information to create valid and
useful interpretations of the world. Although our
phenomenological experience prompts us to presume
that perceptual decisions are trivial, the truth might
be very different. An interesting example is the visual
perception of depth. When we see an object, our brain
must reconstruct its three-dimensional (3D) shape
from a two-dimensional (2D) retinal image; in other
words, the brain must solve an inference problem (Von
Helmholtz, 1866). Unfortunately, these problems are
ill-posed, as in most cases, the 2D retinal projection is
compatible with many different 3D objects (Kersten,
Mamassian, & Yuille, 2004). The brain must combine
ambiguous information received by peripheral sensors
(e.g., disparity cues, movement cues) with pre-existing
information (either hard-wired or learned) concerning
properties of the environment or the potential cost of
a wrong decision to cope with perceptual uncertainty
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(Mamassian & Landy, 1998; Zhang, Xu, Jiang, &
Wang, 2017). These combinations are expressed in
Bayes’ theorem, in which prior probability distributions
and sensory likelihoods are multiplied, resulting in
a posterior probability distribution over possible
solutions to the perceptual problem. Generally, only
a single dominant (most probable) interpretation will
emerge from these constraints.

However, when the level of ambiguity is too
high, the identification of a single interpretation is
not possible. Strikingly, ambiguous figures that are
compatible with more than one plausible interpretation
(Necker, 1832; Wheatstone, 1838) lead to bistable
(or more generally multistable) perception (Blake
& Logothetis, 2002). When presented with those
figures, the perceptual system is unable to commit to
a single stable interpretation and instead oscillates
between mutually exclusive interpretations every few
seconds. A famous figure known to induce bistability
is the Necker cube (NC) (Necker, 1832) (Figure 1A),
in which a 2D collection of lines is automatically
interpreted as a 3D cube, which is either “seen from
above” (SFA interpretation) or “seen from below” (SFB
interpretation). Interestingly, the NC is an asymmetrical
stimulus, as it generates an implicit preference for
the SFA interpretation (i.e., the general preference of
humans to interpret things as if they were located below
the level of their eyes) (Dobbins & Grossmann, 2010;
Mamassian & Landy, 1998).

Although the concept of perception as inference
under uncertainty offers a principled method to
explain the efficiency of perceptual systems and
certain perceptual illusions, it less directly accounts for
bistable perception. Indeed, if the brain uses explicit
representations of uncertainty (e.g., a probability
distribution instead of a point estimate) (Lochmann
& Deneve, 2011; Ma, 2012; Ma & Jazayeri, 2014;
Pouget, Dayan, & Zemel, 2003), ambiguous stimuli
should be recognized as such and not generate a
unique, persistent representation. Notably, bistable
perception is far from unique in that case. Although
many studies have reported that the brain is able to
reach Bayes-optimal decisions (Ernstme & Banks,
2002; Körding et al., 2007; Shen & Ma, 2016; Weiss,
Simoncelli, & Adelson, 2002), numerous tasks exist in
which human behavior deviates significantly from a
Bayesian observer (Acerbi, Vijayakumar, & Wolpert,
2014; Beck, Ma, Pitkow, Latham, & Pouget, 2012;
Drugowitsch, Wyart, Devauchelle, & Koechlin, 2016;
Hudson, Maloney, & Landy, 2007).

Deviations from Bayesian optimality might be the
consequence of highly non-linear and state-dependent
interactions between feedback and feedforward streams
of information in brain circuits (Heeger, 2017). Some
of these effects are quantified by the circular inference
framework (Jardri & Denève, 2013). According to
this framework, hierarchical processing in the brain is

Figure 1. Stimuli and instructions. (A) Different Necker cubes
were used to induce bistable perception, in which the 2D figure
is perceived as a 3D cube with either the left or the right side
located closer to the observer. Even in the case of the
completely ambiguous stimulus (1), people have an implicit
preference to interpret the cube as seen from above (SFA
interpretation), which was interpreted as an implicit prior. This
prior was refuted by tilting the stimulus (4). Sensory evidence
was manipulated by adding visual cues in the form of contrasts
(2-3 and 5-6). The contrast was strong (3 and 6) or weak (2 and
5) and supported (2 and 3) or contradicted (5 and 6) the implicit
prior. (B) A further manipulation of the prior was achieved by
providing correct or wrong information to the participants
about which interpretation was generally stronger (explicit
prior). The instructions either supported or contradicted the
implicit prior. An additional control group received no particular
instructions. Crucially, all groups received the same visual
instructions (including the stimulus and the two possible
interpretations) and the differences were only the verbal
instructions to avoid additional priming effects. Note that the
color used in the present figure has only been added for
illustration purposes; during the experiment, participants were
presented with full cubes.

analogous to the propagation of probabilistic messages
(beliefs) in a hierarchical model of the world (Bishop,
2006). The combination of feedforward and feedback
inputs is equivalent to the product of a prior and
likelihood in Bayes’ theorem. However, because neural
circuits are highly recurrent, sensory evidence and
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Figure 2. Experimental design. The task was inspired by a
previous study (Mamassian & Goutcher, 2005). Instructions
were provided at the beginning of the experiment (each
participant received one set of instructions, creating a
between-subjects design) and were followed by a short training
phase to familiarize participants with the stimulus and the
switches. During each run, one version of the cube was
continuously presented to the participants, who were asked to
discontinuously report their dominant percept by pressing a
button every time a sound was heard. Each run consisted of 25
sound trials (mean inter-sound interval = 1.5 seconds). The
main experiment consisted of 30 runs separated into six blocks
of five runs each. In each block, a different variant of the
stimulus was used. The first and fourth blocks always contained
the ambiguous cube. The four cue conditions were randomly
assigned to the four remaining blocks.

prior information easily reverberate and are artificially
amplified through feedforward/feedback loops in the
brain, resulting in the corruption of sensory evidence
by prior information and vice versa. This reverberation
can be avoided if excitation (E) and inhibition (I) are
perfectly balanced in cortical circuits (Jardri & Denève,
2013), a well-known property of the healthy brain
(Okun & Lampl, 2008; Xue, Atallah, & Scanziani,
2014).

Recently, our team hypothesized a link between an
E/I imbalance in patients with schizophrenia and the
occurrence of psychotic symptoms (hallucinations and
delusions). This hypothesis was recently reinforced
by experimental evidence in a probabilistic reasoning
task (Jardri, Duverne, Litvinova, & Denève, 2017).
Interestingly, we also detected a certain amount of
circularity in healthy participants, particularly the

corruption of sensory evidence by prior information.
If circular inference is a more general mechanism than
initially predicted, an interesting question arises: is it
possible to detect evidence of circularity (Leptourgos,
Denève, & Jardri, 2017) in the perceptual behaviors
of healthy subjects in the absence of any psychotic
experience? Here, we propose that bistability represents
an example of percepts induced by this type of
circularity.

We induced bistability in healthy participants using
the NC to investigate this theory. We asked how
different pieces of information, including pre-existing
priors (i.e., the SFA preference), newly acquired priors
(i.e., instructions), and visual cues, were combined to
generate the percept. We compared different Bayesian
and circular inference (CI) models for their abilities
to fit the data. We particularly sought to understand
whether circularity and aberrant correlations between
priors and sensory evidence significantly contributed to
the way we perceive the world.

Methods
This study adhered to the tenets of the Declaration

of Helsinki. Participants were healthy volunteers
meeting the following inclusion criteria: age > 18 years,
provision of informed consent, normal or corrected-
to-normal near visual acuity, no past or current medical
history of neurological or psychiatric disorders, and
no current or recent use of psychotropic medication or
toxic drugs. Near visual acuity was quantified using the
Parinaud score; we considered values ≤2 as normal. Of
the 65 participants initially recruited, 10 were excluded
because of outlying mean relative predominance values
(with cutoffs set to Q1 − 1.5 × IQR and Q3 +
1.5 × IQR, where Q1 and Q3 are the lower and upper
quartiles, respectively, and IQR is the interquartile
range). Importantly, 7 of the 10 excluded participants
also exhibited qualitatively bizarre behavior (such
as opposite effects of visual cues (negative slopes),
no effect of visual cues (flat curves with the relative
predominance [RP] constantly at or below chance) or
extreme values (close to 0 or 1) of the RP (particularly
in the ambiguous or weak-cue condition)), indicating
a misunderstanding of the instructions, low attention
levels or fatigue (the exclusion of only those seven
participants did not change any of the results; see
Supplementary Figure S6).

Experimental setting and procedure

The general procedure (Figure 2) was inspired by
the protocol devised by Mamassian and Goutcher
(Mamassian & Goutcher, 2005) and consisted of six
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Comparison

Variables
Tilted

(n = 12)
Instr. Supp.
(n = 14)

Instr. Contr.
(n = 14)

No Instr.
(n = 15) Test p

Age 23.33 28.64 28.93 29.27 1.31* 0.28
Mean (SD) (2.77) (7.19) (9.60) (11.73)
Education 17.25 19.07 18.57 18.00 1.77* 0.16
Mean (SD) (2.42) (1.94) (2.17) (1.96)
Sex ratio (male:female) 3:9 7:7 8:6 9:6 3.87† 0.28

Table 1. Demographic characteristics of the 4 groups (without outliers). The four groups did not differ in terms of age, education, or
sex.
*F-test.
†Chi-square test.

blocks of five consecutive runs. During each run, a
200 × 200 pixel NC displayed in the middle of a black
screen was continuously presented to the participants.
Using a forced-choice method, we asked participants
to report their ongoing interpretation as soon as they
heard a warning sound, which occurred 25 times in
a pseudo-regular manner (mean inter-sound interval
= 1.5 seconds, uniformly distributed between 1 and
2 seconds). Each response corresponded to a trial,
providing a discontinuous sampling of the perceptual
dynamics of the task. Runs were separated by a black
screen that was presented for a duration of 10 seconds
to minimize between-run influences. The experiment
was also interspersed with five between-block breaks
of non-predefined durations. Before the experiment,
participants were informed that they would be presented
with empty cubes, the two possible interpretations of
which were explicitly described. The basic instruction
was to passively view these cubes without trying to
constrain perception.

We manipulated sensory evidence either by
making the cubes homogeneously gray (i.e., perfectly
ambiguous) or cuing them by shadows (Figure 1A
(1-3 and 5-6)). This additional depth information was
intended to bias perception toward one interpretation
or the other. It was specified by two parameters. First,
its orientation was defined in relation to the implicit
prior. A shadow falling on the top left corner was
expected to emphasize the SFA preference and thus was
classified as a supporting cue. Conversely, a shadow
that fell on the bottom right corner was characterized
as a contradictory cue, as it differed from the implicit
bias. Second, the strength of the cue (which is also
potentially conceived in terms of the amount of sensory
information) was controlled by the shadowing contrast
level. Weak and strong cues corresponded to 20% and
30% contrast, respectively. The first and fourth blocks
always consisted of the presentation of an ambiguous
cube. The other blocks were randomly allocated a
different type of cue, defined by the 2 × 2 factorial
combination of two possible orientations (contradicting
or supporting) and two possible strengths (weak or
strong).

Participants were separated into four groups (n = 12,
14, 14, and 15) that differed in terms of how we altered
their prior knowledge. The first group was presented
with a tilted cube, which was expected to neutralize
the SFA implicit bias (Figure 1A (4)). The remaining
three groups viewed a normal cube—where the implicit
prior is deemed present—but received different types of
instructions, which we used to manipulate their implicit
prior. In group 2, the instructions explicitly mentioned
the presence of the implicit bias:

“When looking at the cube, most people tend to see it with its
front side on the right. In other words, a natural tendency ex-
ists to see the cubemostly ‘from above’; In the present experi-
ment, we aim to study the characteristics of this spontaneous
preference.”

Because the statement was correct, the instructions
were considered to support the spontaneous bias
(supporting instructions). In group 3, participants were
informed about a natural tendency to primarily perceive
the cube as though it were viewed from below. The
wording was similar, but the statement was incorrect,
thus contradicting the implicit prior (contradictory
instructions). In group 4, the participants received no
complementary information. In this case, their prior
knowledge was considered similar to the implicit bias
(neutral instructions). Notably, the difference among the
four groups was only the verbal instructions, while all
groups received the same visual instructions, including
the stimulus and the two possible interpretations, to
avoid any additional priming effects. As shown in
Table 1, the four groups did not significantly differ in
terms of demographic characteristics.

Participants were additionally instructed to gaze at a
fixation point in the middle of the screen to neutralize
the potential confounding effects of eye movements. A
training session allowed each participant to familiarize
himself/herself with the stimuli and the apparatus.

The experiments were implemented in MATLAB v.
2011b (MathWorks, Natick, MA) using Psychtoolbox v.
3.0.10. Stimuli were displayed on a 17-inch LED screen
with a resolution of 1280 × 1024 pixels. Responses
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were collected using a classical computer keyboard. A
chin-cup and forehead bar ensured the immobilization
of the participant’s head at a distance of 60 cm between
the eye and the screen.

Model-free analysis

Measured variable
RP was calculated by determining the grand mean of

responses across trials, runs, and participants. It was
interpreted as the general probability to perceive one
interpretation or the other in each trial. A value of 1 or
0 corresponded to the complete dominance of the SFA
or SFB interpretation during perception, respectively.
A value of 0.5 would characterize a purely chance level,
where the two percepts are equiprobable.

Statistical analysis
Because RP is a ranged variable, we exclusively

performed non-parametric analyses. The effects of
priors, sensory evidence, and their interaction were
tested using a linear mixed-effects model comprising
the effects of cues and instructions, as well as their
interaction as fixed effects, together with Gaussian
random effects for intercepts and slopes. For an analysis
of significant omnibus effects, we performed post hoc
comparisons using either paired or unpaired rank-sum
tests to clarify simple effects on the 2 × 2 design.
Finally, one-sample Wilcoxon signed-rank tests were
performed to compare the mean RPs with values of
0.5 (i.e., the chance level). All significance tests were
performed on the final sample of the 55 participants
(n = 12, 14, 14, and 15 participants in each group,
respectively), the analyses were two-tailed with an alpha
value of 0.05 and were performed using the statistical
toolbox of MATLAB v. 2011b (MathWorks).

Model-based analysis

Models
We conceptualized perception as an inferential

process in which the brain generates a subjective belief
about the possible interpretations of the NC (i.e., a
posterior probability) and uses it to make a perceptual
decision, particularly whether it is an SFA or SFB cube.
Three different models were fitted to the average RPs of
the four groups. All the models assumed independence
between the sequential perceptual decisions within a
run. They differed in how the three main effects of the
experiment (sensory evidence S, an implicit prior Pimpl,
and an explicit prior Pexpl) were combined to generate
the posterior probability P(X|S, Pimpl,Pexpl). In this
expression, X is a binary variable that corresponds to

the 3D interpretation (X = 1 corresponds to SFA,
X = 0 corresponds to SFB).

Three different models were used, each implementing
a different method of doing hierarchical probabilistic
inference. All are based on a message-passing algorithm
called Belief Propagation (Bishop, 2006) (see the
Supplementary Material – Computational Modeling
section for more information about the models). The
simplest model that was fitted to the data is the naïve
Bayes (NB) model, which assumes perfect integration of
likelihoods and priors according to the Bayes theorem.
Consequently, it is equivalent to a basic multiplicative
rule (Rubén Moreno-Bote, Knill, & Pouget, 2011;
Rubén Moreno-Bote, Shpiro, Rinzel, & Rubin, 2008)
[additive rule in the log scale] (eq. 1; Figure 3A, left
panel). The weighted Bayes (WB) model extended the
NB model by assuming only partial trust of the sensory
evidence and prior information (eq. 2; Figure 3A,
middle panel). Crucially, both models are Bayesian
models that generate an exact inference. Finally, the
third model is a CI model (Jardri et al., 2017) and the
information is not only weighted, as in the WB model,
but it is also amplified, because of information loops
(eq. 3; Figure 3A, right panel). As a result, the CI model
is generating a sub-optimal inference, which renders it
qualitatively different from the other two models.

The three models are quantitatively described by the
following equations:

LRP = LS + Limpl + Lexpl (1)

LRP = F (LS, wS ) + F
(
Limpl + Lexpl , wP

)
(2)

LRP = F (LS + F (LS, wS ) + F (LPr, wP) , wS )
+F (LPr + F (LS, wS ) + F (LPr, wP) , wP) (3)

where F(L, w) is a sigmoid function:

F (L, w) = log
(

weL + 1 − w

(1 − w) eL + w

)
(4)

and LPr = Limpl + Lexpl. LRP corresponds to the
log-ratio of the RP and is equal to the log-posterior
ratio. That assumption is based on the hypothesis
that perceptual decisions are made using probability
matching, a commonly observed strategy in sequential
“two-alternative forced-choice” tasks (Daw, O’Doherty,
Dayan, Seymour, & Dolan, 2006; Drugowitsch et
al., 2016; Rubén Moreno-Bote et al., 2011). The
application of Softmax to the log posterior odds (a
more appropriate model for perceptual decisions)
would only induce a global change in the gain of
the former (more information is provided in the
Supplementary Material – Softmax Decision Criterion
and Supplementary Figure S2) and would not affect
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Figure 3. Models and model predictions. (A) Three different
models were used to fit the data. The simplest model (naïve
Bayes [NB], left panel) consisted of a simple addition of the
sensory evidence and prior on the log scale and is equivalent to
a three-layer generative model in which all the connections are
equal to 1. The weighted Bayes (WB) model (middle panel)
further assumes that only partial trust exists between the
nodes of the generative model. Importantly, both the NB and
WB models do exact inference. Finally, we used a circular
inference (CI) model (right panel) that further allows
reverberation and overcounting of sensory evidence and prior
knowledge. (B) The log(RP) ratio predicted by the models as a
function of the log-likelihood ratio. The NB model predicts a
linear dependence, whereas both the WB and CI models predict
sigmoid curves (due to the saturation imposed by the weights).
Furthermore, the three models generate different predictions
about the slope of the curves around zero. The NB and WB
models predict a slope of 1 and less than 1, respectively, and
only the CI model predicts a slope greater than 1. (C) In the CI
model, the slope of the log-likelihood/log-posterior curve also
depends on the log-prior as a result of the reverberations,
indicating an interaction between the two different types of
information (Leptourgos et al., 2017). Weaker priors are
associated with steeper sigmoid curves. The reason is the
saturating effect of the weight when priors and sensory inputs
are congruent (they are both positive/negative).

any of our conclusions (models equipped with a
Softmax decision criterion were also fitted to the data;
see Supplementary Figure S3).

LRP = log
(

RP
1 − RP

)
(5)

The log-likelihood ratio Ls, the implicit log-prior
ratio Limpl and the explicit log-prior ratio Lexpl are
calculated using the following equations:

Ls = log
(

S
1 − S

)
(6)

Limpl = log
(

Pimpl

1 − Pimpl

)
(7)

Lexpl = log
(

Pexpl

1 − Pexpl

)
(8)

Because none of these variables were known, they
were all treated as free parameters (Limpl is equal to
0 in the case of the tilted cube [group 1] and Lexpl is
equal to 0 when no explicit instructions are provided
[groups 1 and 4]). We further considered symmetry
both for the effects of the cues and the instructions to
reduce the total number of free parameters needing
to be optimized to the greatest extent possible,
resulting in four free parameters (Ls,strong, Ls,weak,
Limpl,and Lexpl). As a control, we also considered the
case of asymmetrical instructions (Ls,strong, Ls,weak,
Limpl,Lexpl,SFA, and Lexpl,SFB) (see Supplementary
Figure S3).

Finally, wS and wP (appearing only in the WB and CI
models) correspond to participants’ trust (or weight)
of the sensory evidence and priors, respectively, and
constituted the two additional free parameters of those
models:

wS = P (X = 1|S = 1) = P (X = 0|S = 0) (9)

wP = P (X = 1|P = 1) = P (X = 0|P = 0) (10)

Importantly, because the SFA prior was completely
uninformative in the case of the titled cube (the “point
of view” (SFA or SFB) does not predict any feature
of the configuration of the tilted cube, which remains
true even if we are highly confident about our point of
view), we considered the following:

wP > 0.5 i f normal cube, wP = 0.5 i f tilted cube (11)

meaning that there is stronger CI in the normal cube
condition, in which our beliefs about our point of view
affect our beliefs about the configuration of the cube
and vice versa (creating an inference loop). As a control,
we also considered the case in which wP has the same
value in all conditions (see Supplementary Figure S3).
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An illustration of the different models is presented
in Figure 3A. The CI model (Figure 3A, right panel)
hypothesizes that the perceptual system generates
an approximate inference because of the inefficient
control of the information that is propagated in
the hierarchical network (Jardri & Denève, 2013).
That lack of efficient control leads to a failure
to efficiently remove redundant messages (i.e., a
reverberating prior, which is misinterpreted as sensory
evidence, re-ascends the hierarchy and corrupts the
likelihood term and redundant sensory evidence,
which descends the hierarchy and corrupts the prior
term). Additionally, as described in a previous study
(Jardri et al., 2017), a cross-term is added to each
component, rendering likelihood and prior information
completely inseparable. Because of those extra terms,
the sensory evidence and prior components become
aberrantly correlated and subsequently generate an
interaction (Leptourgos et al., 2017). The WB model
(Figure 3A, middle panel) was derived from the CI
model by removing the reverberated terms, whereas
the NB model (Figure 3A, left panel) was generated by
further assuming that wS = wP = 1.

The CI model used here was similar to the
model used by Jardri and colleagues to explain
participants’ behaviors (both individuals suffering
from schizophrenia and healthy participants) in a
probabilistic reasoning task (Jardri et al., 2017).
Nevertheless, an important difference must be
highlighted. In the present study, the redundant
messages corrupted the original messages only once
(overcounting of information still occurred, but the
amount of amplification was constrained), which is
equivalent to setting aS and aP (the parameters in the
original model that represented the number of times
the redundant messages were considered) equal to 1.
We had two reasons for constraining the values of
these parameters. First, fixing the number of loops
did not qualitatively change the results. Indeed, the
resulting model predicted both a slope greater than
1 and an interaction between sensory evidence and
priors, the two characteristic features of circular
inference observed in the data. Second, the additional
complexity (two additional free parameters) did not
further improve the fit (see Supplementary Figure S3).

Figure 3B illustrates the predictions of the three
models. In contrast to the linear NB model, both
the WB model and the CI model are non-linear
models, due to the saturation of the posterior that is
caused by the weights. Importantly, the three models
generate different predictions about the slope of the
log-likelihood/log-posterior curve around 0: the NB
model and WB model predict a slope equal to and less
than one, respectively. Interestingly, only the CI model
generates a slope that is greater than one, due to its
overcounting of the prior and of sensory evidence (e.g.,
if we assume Limpl = Lexpl = 0 and wS = wP = 1, eq. 3

becomes LRP = 3LS, indicating that the sensory input
is counted three times instead of one). Moreover, it
predicts an interaction between the prior and sensory
evidence such that the slope differs, depending on the
prior strength and weight (Figure 3C).

Finally, in eqs. 1-3, we assumed that the instructions
act as an additional prior term, essentially altering
the strength of the implicit preference independently
of the presence of a visual cue. As a result, any
interaction between the effect of the cue and the
effect of the instructions is forbidden under Bayesian
formalisms and is only explained by non-Bayesian
mechanisms, such as the presence of circular inference.
Notably, alternative interpretations of the instructions
(which are even more complex) might also generate
this interaction, particularly likelihood-dependent
instructions or instructions that directly affect the
reliability of the sensory evidence. Those additional
models were also considered and compared to the CI
model (see Supplementary Figure S3).

Model fitting
All the models were fitted to the data by minimizing

the mean squared distance between the log(RP) ratio
for the different conditions and the predictions of the
models. Instead of simply considering the means, we
used data points from each participant, completely
using the available information but assuming that the
parameters did not vary between participants. The
optimal values for parameters were obtained using a
non-linear programming method (sequential quadratic
programming; a built-in MATLAB function) that is
appropriate for non-linear constrained multivariable
functions. The optimization process was repeated 100
times for each model, with initial values chosen each
time randomly from the parameter space, to avoid local
minima. The robustness of the results was evaluated
using a “Jackknife” resampling method (Efron & Stein,
1981), which consists of refitting our models to all the
possible subsamples of size (N-1) (sequentially deleting
one participant from our initial sample of size N =
55; the total number of subsamples is equal to the
initial sample size N) and recalculating the Bayesian
information criterion (BIC) scores.

Model comparison
We compared the quality of the fits for the three

models using BIC scores. We approximated the
likelihoods of all the models as normally distributed.
The BIC score was then calculated using the following
equation:

BIC = nlog(σ 2) + klog (n) (12)
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Figure 4. Relative predominance between conditions. (A) The four subplots illustrate the four different prior conditions: tilted cube
(top left plot, green; n = 12) or normal cube with no instructions (top right plot, blue; n = 15), supporting instructions (bottom left
plot, yellow; n = 14) or contradictory instructions (bottom right plot, red; n = 14). The x-axis presents the five cue conditions, ranging
from a strong cue supporting the SFB interpretation (left panels) to a strong cue supporting the SFA interpretation (right panels). Thin
lines correspond to the behaviors of single participants (outliers are not presented), and thick lines represent the average RP for each
group calculated after removing the outliers (± SE). (B) Between-groups comparison of average RP values. A linear mixed-effects
model revealed significant effects of sensory evidence (p < 0.001) and the prior (contradictory instructions, p < 0.001) and tilt (p <

0.001) manipulations. We also observed a cue x instruction interaction for the contradictory instructions (red curve) compared with
supporting instructions (yellow curve, p = 0.016) and the tilted cube (green curve, p = 0.021).

where n is the total number of data points (5 points per
participant), σ 2 is the mean squared error, and k is the
number of free parameters (4 for the NB model and 6
for the other models).

Results
Model-free analysis

The effects of prior knowledge and the manipulations
of sensory evidence are presented in Figure 4. RP
values were not significantly different between the
2 ambiguous blocks (runs 1-5 and 16-20) in any of
the groups (p > 0.1), indicating only minor effects
of fatigue (at least until the 20th run) and a stable
effect of the instructions. The manipulation of sensory
evidence significantly affected bistability, with RP
increasing as the visual cue changed from strongly
contradicting to strongly supporting (β = 0.415,
p < 0.001). The manipulation of prior knowledge
through the instructions only affected RP in the case
of contradicting instructions, with a significant overall
reduction in RP (β = -0.096, p < 0.001). Tilting the
cube in the absence of any instruction resulted in a

significant decrease in RP (β = 0.103, p < 0.001),
which substantiated the effect of an implicit prior that
naturally biases perception toward SFA dominance (the
RP in the case of a tilted cube – ambiguous condition
was not significantly different from chance, p > 0.05).
Importantly, we identified a significant interaction
between the continuous effect of cue and the effect of
contradicting instructions (compared to the normal
cube with supporting instructions and the tilted cube
with no instructions; β = 0.265, p = 0.016 and β =
0.265, p = 0.021, respectively). This interaction should
not be present for a purely Bayesian observer because
the contribution of sensory evidence and priors (when
expressed as the log odds ratio) should be additive.

Model-based analysis

Figure 5 illustrates the best-fitting NB (5A), WB
(5B), and CI models (5C) and the values of the free
parameters in the three models are presented in
Supplementary Figure S1. The three models predicted
very different values for likelihoods and priors. These
differences were easily explained by the assumption of
perfect trust in sensory evidence and priors in the NB
model, whereas the other two models predict much
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Figure 5. Observed and predicted log(RP) ratios as a function of the log-likelihood ratio. Different colors correspond to different prior
conditions. Thin lines represent data from single participants, highlighted points correspond to average RPs (± SE), and thick lines
illustrate the predictions generated by the models. The three models are presented separately, since the likelihood was itself
considered a free parameter [(A): NB, (B): WB, and (C): CI]. The models were fitted to aggregated data from all participants by
minimizing the mean squared distance between the observed and predicted log(RP) ratios.

lower weights (wS = 0.77, wP = 0.59 for the WB model
and wS = 0.66, wP = 0.59 for the CI model).

The NB model qualitatively captures most trends
in the data (see also Supplementary Figure S5), with
the following exceptions. First, it underestimates RP
in the case of the normal cube without instructions
(Figure 5A, blue curve), and second, it is unable to
predict the correct slopes. The latter limitation is
particularly striking in the case of a normal cube with
contradicting instructions, where the slope is larger
than predicted (i.e., >1; Figure 5A, red curve). The WB
model performs better than the NB model under most
conditions, but it also underestimates the effect of the
cue when the instruction contradicts the SFA preference
(see Figure 5B, red curve). In contrast, the CI model
captures this last trend (see Figure 5C), suggesting
that the variability of the cue effect (the slope) under
different conditions is due to circularity in the inference
process. CI also explains the asymmetry between
supporting and contradictory instructions (the latter
but not the former exerts a significant effect on RP),
without adding new free parameters (e.g., asymmetrical
explicit prior Lexpl). Supporting instructions push the
prior belief toward stronger positive values. It thus
falls into the saturating part of the sigmoidal curve
(induced by the non-linear “factors” F). In this range,
an increase in the prior strength exerts little effect on the
posterior. In contrast, contradictory instructions bring
the total prior closer to zero, where the slopes of the
sigmoid are larger. This shift results in a stronger effect
of the contradicting instructions, without requiring any
asymmetry in Lexpl (Supplementary Figure S4).

A quantitative comparison of the three models
using BIC scores, which penalizes the use of extra

Figure 6. Comparison of the three models. The CI model
outperforms both the NB and WB models (note that a positive
difference indicates lower BIC score for CI and thus better
performance). Fitting was repeated multiple times, and one of
the participants was removed each time (“Jackknife”
resampling method). In all cases, (55 possible subsamples), the
CI model outperformed the other two models by producing a
difference in BIC scores greater than 4.5, whereas in 48/55
cases, the difference was greater than 6. Error bars correspond
to standard deviations of the jackknife estimates.

free parameters in the WB and CI models, indicated
that the CI model significantly outperformed the
two Bayesian models (Figure 6). A lower BIC score
indicates that the model provides a better fit for the
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data, with a difference >2 considered positive and a
difference >6 considered strong (Kass & Raftery, 1995).
A “Jackknife” resampling method was used to evaluate
the robustness of those results. In all cases (N = 55
possible subsamples), the CI model outperformed the
other two models by presenting a difference in BIC
scores >4.5, whereas in 48/55 cases, the difference
was >6.

Discussion
The goal of the current study was to decipher

how priors and sensory evidence are combined to
shape bistable perception. We particularly wished to
investigate whether this integration is probabilistically
optimal or if other principles are involved, contributing
to the debate on whether bistable perception is a
by-product of perceptual inference (regardless of
its neural implementation). Our results suggest an
imperfect neural implementation of probabilistic
inference, possibly due to an imbalance between
excitation and inhibition in neural circuits.

Consistent with a previous report (Dobbins &
Grossmann, 2010), we observed asymmetry in the way
participants interpreted the completely ambiguous NC.
This finding supports an implicit preference (implicit
prior) to perceive objects in an SFA configuration
(Mamassian & Landy, 1998). More surprisingly, this
preference was explicitly manipulated by providing
the participants information that either confirmed or
rejected it (explicit prior). Consistent with previous
studies (Klink, van Ee, & van Wezel, 2008; Levelt, 1967;
Mamassian & Goutcher, 2005), the addition of visual
cues also significantly biased perception toward the
corresponding interpretation. The qualitative effects
of implicit priors, explicit priors and sensory evidence
appeared compatible with a probabilistic combination
of information, suggesting that a Bayesian inference
was still involved.

However, we also observed a significant interaction
between priors and sensory evidence that was not
explained by the exact inference. In particular, the effect
of sensory cues was stronger when the prior was more
ambiguous (e.g., when the implicit preference for SFA
was contradicted by instructions) and weaker in the
absence of a prior (e.g., a tilted cube). In contrast,
Bayes’ theorem predicts that sensory cues are weighted
according to their reliability, independently of the prior.
After comparing the parametric models, the present
data were better represented by a CI model, in which
prior beliefs (i.e., the instructions and SFA preferences)
corrupt new sensory evidence (i.e., ambiguous cues
are misinterpreted as supporting the current belief)
and vice versa (CI is the simplest model that is able to
explain all the main features of the data; more complex

models (e.g., assuming different softmax temperature β
per group and asymmetrical instructions) might have
a similar explanatory power but contain far too many
free parameters). This corruption could be the result of
feedback signals to sensory areas, that are insufficiently
controlled by inhibition (Jardri & Denève, 2013). This
feedback might also cause multistable perception
(i.e., generate a bistable attractor; see Supplementary
Figure S7) by temporarily stabilizing the current
percept, despite the absence of supporting evidence
(Leptourgos et al., 2017).

These findings add new elements to a long-lasting
debate in neuroscience that questions whether
perception is mainly driven by bottom-up processes
or whether top-down effects are equally important
(Heeger, 2017). Multiple studies have investigated how
low- or high-level manipulations affect bistability,
without offering definitive answers. For the former,
authors have used priming or suppressing effects
(usually attributed to adaptation) (Kanai & Verstraten,
2005; Nawrot & Blake, 1989; Joel Pearson & Brascamp,
2008; Joel Pearson & Clifford, 2005), changes in retinal
location (Long & Toppino, 2004), manipulation of
the type of presentation (continuous–intermittent)
(Leopold, Wilke, Maier, & Logothetis, 2002; Orbach,
Ehrlich, & Heath, 1963), and direct manipulation of
the properties of the stimulus, such as the intensity
(Lynn, 1961) and completeness (Babich & Standing,
1981). In contrast, studies of high-level manipulations
have focused on the effects of volition (Toppino, 2003;
Van Ee, Van Dam, & Brouwer, 2005), expectation
and prediction (Denison, Piazza, & Silver, 2011),
attention (Chong & Blake, 2006; Dieter & Tadin,
2011; Stonkute, Braun, & Pastukhov, 2012), learning
(Haijiang, Saunders, Stone, & Backus, 2006), mental
imagery (Pearson, Clifford, & Tong, 2008), knowledge
of reversibility (Rock, Hall, & Davis, 1994), and finally
the preference for stimuli with a statistical structure
similar to natural images (Baker & Graf, 2009; Dobbins
& Grossmann, 2010; Zhou, Zhang, Liu, Yang, & Qu,
2010). However, the present study was not designed to
test specific neural mechanisms, such as adaptation and
noise.

Consistent with the findings from the present study,
some authors have focused on how these various
effects are combined (Díaz-Santos et al., 2015; Intaite,
Noreika, Šoliunas, & Falter, 2013; Kornmeier, Hein,
& Bach, 2009). According to Moreno-Bote et al., cue
combinations in a bistable display are well explained
by a multiplicative law (their predictions are similar
to the NB model described here) (Moreno-Bote et al.,
2011; the same group proposed that bistability is a
form of exploration (Moreno-Bote, Shpiro, Rinzel, &
Rubin, 2010)), whereas Zhang and colleagues reported
that different types of priors are effectively combined
(Zhang et al., 2017). Here, we have extended our study
a step further and investigated how top-down (prior



Journal of Vision (2020) 20(4):12, 1–15 Leptourgos et al. 11

manipulation) and bottom-up (sensory cues) effects
interact. Rather than inducing a prior through learning,
as is widely performed in the literature (Haijiang et al.,
2006; Pearson et al., 2008), we directly manipulated
participants’ expectations. This manipulation assumes
that instructions generate a high-level prior that affects
perceptual processing in a manner similar to a learned
prior (Schmack et al., 2013).

Despite the amount of available data and the
apparent simplicity of the problem, very few published
studies have applied normative explanations for bistable
perception that include data fitting (Moreno-Bote et
al., 2011). Although a proposal of a complete model
of bistable perception based on circular inference is
beyond the scope of this paper, our current results
suggest that a local message passing algorithm with
the addition of information loops might constitute
the basic principle of such a normative model. Some
alternative normative models have relied on a simplified
form of Markov Monte-Carlo sampling. More
precisely, they assumed that the current percept is based
on taking one sample from the posterior distribution
and using this sample as a prior for the next time step
(Gershman, Vul, & Tenenbaum, 2012; Sundareswara
& Schrater, 2008). However, Markov Monte-Carlo
sampling requires very long sampling times (because of
the temporal correlation between samples) to generate
an accurate inference. A possible argument in favor of
circular inference would be its ability to quickly and
accurately reach correct conclusions in most perceptual
tasks, except for particularly ambiguous cases (Jardri &
Denève, 2013), making circular inference a powerful
model of perceptual inference in unambiguous cases.

From a methodological perspective, and in contrast
to most studies on bistable perception in which
participants continuously report the dominant
percept with a sustained button press (Brascamp,
van Ee, Pestman, & van den Berg, 2005; Pastukhov
& Braun, 2011), we asked participants to respond
discontinuously after being exposed to a go-signal
(Mamassian & Goutcher, 2005). This procedure has
two main advantages. First, it minimizes the role of
attention. Indeed, attention plays a crucial role in
bistable perception, particularly the perception of
certain bistable stimuli (Li, Rankin, Rinzel, Carrasco,
& Heeger, 2017; Toppino, 2003). The inability to
control for differences in attentional load between
participants potentially represents an important source
of uncertainty and even partially explain the substantial
variability that has frequently been observed in some
publications (see (Mamassian & Goutcher, 2005)).
Second, this procedure is less affected by differences in
reaction times, as one could use the time of the sound
as a proxy for the time of the decision. Consequently,
discrete sampling not only appears to be an ideal
method for a rigorous experimental exploration of
bistable perception but is also useful for adapting this

task to specific clinical populations with well-known
attentional and motor problems.

We have argued in our previous studies that
circularity (and, consequently, the observed interactions
between sensory inputs and prior knowledge)
potentially result from an imperfect tuning between
excitatory and inhibitory signaling in cortical and
subcortical circuits (Jardri & Denève, 2013; Jardri
et al., 2016; Leptourgos et al., 2017). Indeed, based
on extensive evidence, an E/I imbalance in favor of
excitation is a central neurophysiological impairment
in patients with schizophrenia (Foss-Feig et al., 2017;
Jardri et al., 2016), a psychiatric disorder that has been
linked to CI (Jardri & Denève, 2013; Jardri et al., 2017).
At the implementation level, various mechanisms
have been suggested, including dysfunctions of local
interneurons in cortical microcircuits (Lewis, Pierri,
Volk, Melchitzky, & Woo, 1999) or a dysconnectivity
within long-range inhibitory loops (Murray &
Anticevic, 2016). In both cases, reverberations (and
interactions) occur on a fast timescale, within a few
tens/hundreds of milliseconds (timescale of a single
trial). Additionally, those processes also accumulate
over multiple trials and are driven by the inherent
dynamics/persistent activity of the different neuronal
populations (this dynamical aspect has been largely
neglected in the present paper and will be the focus
of future studies). Importantly, unequivocal evidence
linking CI to an E/I imbalance is currently lacking, and
other implementations might also be involved.

Finally, some limitations must be acknowledged.
First, because of the type of priors used (instructions),
we were obligated to use a between-subjects design,
which prevented us from comparing the effects of
different instructions on the same participant. As
a result, only five conditions were analyzed per
participant, and we were only able to fit our models to
averaged data, ignoring variability between participants
(see also (Ernst & Banks, 2002; Moreno-Bote et al.,
2011). Second, all themodels considered here were based
on an assumption of temporal independence between
the percepts at the time of the sounds. This assumption
was partly justified by the weak autocorrelation of
the averaged data (see Supplementary Figure S8),
although these autocorrelations may be stronger in
individual participants (Sundareswara & Schrater,
2008). Nevertheless, temporal statistics would not affect
the qualitative predictions of the models (Moreno-Bote
et al., 2011). In particular, temporal statistics without
circular inference would not provide a valid alternative
to the present findings, including the slopes and the
cue × instruction interaction. Third, a response
bias might partially account for the effects of the
instructions (explicit priors). However, a response
bias would exert a similar effect on responses across
different cue conditions, while not altering perceptual
processing. Although the aforementioned possibility



Journal of Vision (2020) 20(4):12, 1–15 Leptourgos et al. 12

represents one interpretation of the data, it remains
highly improbable, given the non-linear interaction
observed between instructions and visual cues (see also
Supplementary Figure S9 for additional arguments).
Finally, although CI was the winning model in all the
model comparisons that we implemented (Figures 6 and
S3), in certain cases it was only marginally better (e.g.
when assuming Softmax with different β parameters
across groups). Future studies, possibly involving larger
samples, neural data, and testing different predictions
of the CI framework (see Figure S7; Leptourgos et al.,
2017), are necessary in order to arbitrate between those
alternatives and decipher the exact role of circularity in
(bistable) perception.

Overall, this study confirms that circular inference
is observed in healthy individuals to a certain extent.
This unprecedented observation prompts a range of
crucial questions that suggest opportunities for further
research: in what other ways would circularity affect
cognition, and what are its neural substrates? Crucially,
we must determine under what circumstances circular
inference generates aberrant beliefs or percepts, such
as those observed in pathological (neurological or
psychiatric) contexts.

Keywords: bistability, Necker cube, Bayesian
inference, circular inference
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