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Abstract

Purpose: The gradient-optimized methods are overcoming the traditional feathering

methods to plan field junctions in craniospinal irradiation. In this note, a new gradi-

ent-optimized technique, based on the use of a background dose, is described.

Methods: Treatment planning was performed by RayStation (RaySearch Laborato-

ries, Stockholm, Sweden) on the CT scans of a pediatric patient. Both proton (by

pencil beam scanning) and photon (by volumetric modulated arc therapy) treatments

were planned with three isocenters. An ‘in silico’ ideal background dose was created

first to cover the upper-spinal target and to produce a perfect dose gradient along

the upper and lower junction regions. Using it as background, the cranial and the

lower-spinal beams were planned by inverse optimization to obtain dose coverage

of their relevant targets and of the junction volumes. Finally, the upper-spinal beam

was inversely planned after removal of the background dose and with the previously

optimized beams switched on.

Results: In both proton and photon plans, the optimized cranial and the

lower-spinal beams produced a perfect linear gradient in the junction regions, com-

plementary to that produced by the optimized upper-spinal beam. The final dose

distributions showed a homogeneous coverage of the targets.

Discussion: Our simple technique allowed to obtain high-quality gradients in the

junction region. Such technique universally works for photons as well as protons

and could be applicable to the TPSs that allow to manage a background dose.
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1 | INTRODUCTION

In craniospinal irradiation the large target volume needs complex

treatment planning. With the exception of helical tomotherapy treat-

ments, it entails setting multiple isocenters and matching a large

number of fields to obtain satisfactory plans.1,2 The field junction

area is a critical region, because under-dosage may compromise

tumor control, while over-dosage may increase the risk of serious

radiation-induced late effects, e.g. spinal cord radionecrosis.

Field-junctions planning techniques have often been investigated

over the course of the years. The irradiation technique evolved from

conformal to intensity modulated and recently pencil beam scanning
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proton therapy. In line with these developments, the techniques for

planning field junction evolved from the moving junction techniques,

often referred to as field feathering, to the method exploiting the

potential of dose modulation and inverse planning.

It has recently been shown that the most robust field-junction to

setup errors is obtained by the so-called gradient-optimized meth-

ods, i.e. by producing a slow, linear and complementary dose gradi-

ent at the beam edges in the overlapping region between adjacent

beams.3,4 These methods showed a reduced sensitivity to longitudi-

nal setup errors compared to the conventional feathering methods.5

Dose deviations increased linearly with setup errors, and the magni-

tude of increase depended on the junction length,3 i.e. the ratio

between the dose error and the prescribed dose was proportional to

the ratio between the setup error and the junction length.6

The gradient-optimized methods are overcoming the traditional

multiple-junction shifts, and no standardized planning method exists.

In the following paragraphs, we describe a new gradient-optimized

technique to plan field junction, based on the use of a background

dose. Typically, a background dose is the dose resulting from a previ-

ous irradiation, when it is managed by the treatment planning systems

(TPS) to optimize the successive re-irradiation over the previous dose

distribution. In our approach, the background dose was modeled a pri-

ori to produce a background gradient in the junction area, and it is

used to guide inverse planning of the treatment beams.

2 | METHODS AND RESULTS

TPS simulations were performed in RayStation (RaySearch Laborato-

ries, Stockholm, Sweden) on the CT scans of a pediatric patient.

Both a proton treatment by pencil beam scanning and a photon

treatment by volumetric modulated arc therapy (VMAT) were

planned with three isocenters. Dose prescription was 36 GyE in 20

fractions. Proton treatment was planned by two opposed oblique-

lateral cranial fields plus two additional postero-anterior spinal

beams. VMAT was planned by full arc spanning from �180 to 179

degrees around the patient with a 4 degree gantry spacing.

The planning treatment volumes (PTV) were delineated as in

Fig. 1(a). Brain, upper-spinal and lower-spinal PTVs were separated

by the upper- and lower-junction PTVs. The background dose was

designed to cover the upper-spinal PTV by the prescription dose and

to produce a perfect dose gradient along the upper- and lower-junc-

tion PTVs [Fig. 1(a)]. The cost function objectives used during the

optimization workflow are reported in Table 1. The background dose

was produced in silico using a numerical computing environment

(MATLAB�, The MathWorks.inc, Natick, MA, USA). Patient CT data

and structures are exported from the TPS in DICOM format and

then uploaded into the numerical computing environment. The back-

ground dose was built as a three dimensional matrix with the same

size of the CT scan (Fig. 2). To generate it, three contoured volumes

were considered: upper-junction, upper-spinal and lower-junction. In

each CT slice containing an upper-spinal contour, the voxels of the

background dose matrix inside the contour were assigned by a uni-

form value equal to 36 GyE (= 100% of the prescription dose). Each

CT slice containing an upper-junction contour was numbered with a

number Ns, being in the more cranial slice Ns = 1 and in the more

caudal slice Ns = N. Then in each CT slice the voxels of the back-

ground dose matrix inside the upper-spinal contours were assigned

by a uniform value equal to Ns/N 9 36 GyE. The same procedure

was applied for the CT slices containing a lower-junction contour,

F I G . 1 . Field junction by the background
dose technique (a) with protons by pencil
beam scanning (on the left, b–d) and with
photons by VMAT (on the right, e–g). The
target was divided into five volumes: brain,
upper-junction, upper-spinal, lower-
junction, and lower-spinal. Dose
distributions of the optimized brain and
lower-spinal fields (b, e), of the optimized
upper-spinal field (c, f) and total dose
distributions (d, g) are shown.
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but using an inverse CT slice numbering along the cranio-caudal

direction. Each voxel of the dose matrix outside the upper-junction,

upper-spinal, and lower-junction volumes was assigned by zero

value. The obtained dose matrix was then interpolated to fit to the

spatial resolution of a TPS computed dose matrix (typically

0.2 9 0.2 9 0.2 cm3) and then exported in DICOM format to be

uploaded by the TPS as in Fig. 1(a). In the future, a specific script

can be realized to produce the same dose distribution by using Ray-

Search scripting tools. The background dose covered upper-spinal

PTV by the prescription dose to avoid (by using a max-dose objec-

tive, see Table 1) in the optimization of the brain and lower-spinal

beams that any undesired spot was delivered to the upper-spinal

PTV. While keeping such dose as a background, in a first step the

brain and the lower-spinal beams were planned, by inverse optimiza-

tion, in order to obtain dose coverage of the respective PTVs and of

the junction volumes. To produce a perfect dose gradient along the

upper- and lower-junction PTVs, uniform doses objectives (with dose

set at the prescription dose, see Table 1) were applied, so that the

dose produced by the optimized beams plus the background dose

was uniform at the end of the optimization. The dose distributions

obtained after removal of the background dose are shown in

Fig. 1(b) (proton) and Fig. 1(e) (photon). In the junction PTVs, the

dose distribution was characterized by a complementary dose gradi-

ent with respect to the original background dose. Finally, in the sec-

ond step of the optimization procedure (Table 1), the upper-spinal

field was inversely planned using the dose obtained by the previ-

ously optimized brain and lower spinal fields as background dose.

The dose distributions of the optimized upper-spinal fields are

reported in Figs. 1(c) and 1(f). The final dose distributions [Figs. 1(d)

and 1(g)] showed a homogeneous coverage of the PTVs.

TAB L E 1 Planning objectives and workflow.

Step # Optimized beam(s) Applied background dose Cost function objectivesa

1 Brain;

Lower-spinal

Background dose produced in silico and

shown in Fig. 1(a)

Brain PTV: uniform dose 36 GyE;

Upper-junction PTV: uniform dose 36 GyE;

Upper-spinal PTV: max dose 36GyE

Lower-junction PTV: uniform dose 36 GyE;

Lower-spinal PTV: uniform dose 36 GyE

2 Upper-spinal Dose distribution obtained by the previous

step 1

Brain PTV: max dose 36 GyE;

Upper-junction PTV: uniform dose 36 GyE;

Upper-spinal PTV: uniform dose 36 GyE

Lower-junction PTV: uniform dose 36 GyE;

Lower-spinal PTV: max dose 36 GyE

aThe target was divided into five volumes [as shown in Fig. 1(a)]: brain, upper-junction, upper-spinal, lower-junction and lower-spinal.

F I G . 2 . Background dose generation.
Patient CT data and structures are
exported from the TPS and uploaded into
a numerical computing environment
(MATLAB�, The MathWorks.inc, Natick,
MA, USA). To generate the background
dose, three contoured volumes were
considered: upper-junction, upper-spinal
and lower-junction. In each CT slice
containing an upper-spinal contour, the
voxels of the background dose matrix
inside the contour were assigned by a
uniform value equal to 100% of the
prescription dose. In each CT slice
containing an upper- or lower-junction
contour, the voxels of the background
dose matrix inside the contour were
assigned by a uniform value, which
depended on the position along the cranio-
caudal direction, to produce a perfect dose
gradient along the upper- and lower-
junction PTVs [see Fig. 1(a)].
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3 | DISCUSSION

It has been demonstrated that gradient-dose junctions reduce the

risk of dose overlap or underlap owing to field setup errors com-

pared with the conventional feathering technique.5 Feathering can in

principle be as robust if enough (i.e. very many) “feathers” are used,

but the feathering planning and quality assurance process would

require much more work to be practicable. For a given junction

planned by a gradient method, deviations increased linearly with

setup error, and the magnitude of increase depended on the junction

length. Given the same setup errors, a larger gradient length reduced

the associated dose deviations.3 Even though in the gradient method

there is some anatomical limitation to the upper junction length,

potential dose deviations in the upper and lower junctions were

small after kilovoltage alignment.4

After the first studies where adjacent beams were intentionally

overlapped to alleviate the issues of beam edge matching,7,8 differ-

ent approaches were proposed to properly obtain dose gradient in

the junction area. In Myers et al.,9 using VMAT, the junction area of

the target where the two arcs overlapped was contoured as four,

equal-in-length sections. These sections were used to guide inverse

planning and shape the dose gradients across the field junction.

Using proton pencil beam scanning, in Lin et al.3 the target was

divided along the cranio-caudal axis in four equally spaced segments

and in Stoker et al.10 in four to ten equally sized segments to guide

optimization. Using pencil beam scanning proton therapy, a different

approach was recently proposed4,6 that introduced an ancillary beam

(used only to guide the inverse planning and not for dose delivery)

to produce in the junction region a linear dose-gradient along the

cranio-caudal axis.

In the comparison among different techniques, at least three dif-

ferent features should be considered: (a) quality (i.e. the uniform lin-

earity) of the obtained gradient in all the junction area, (b) simplicity, to

avoid cumbersome planning procedure and (c) applicability to different

irradiation techniques (i.e. photon and protons) and different TPSs.

The techniques that segmented the targets to guide the plan-

ning of field junction were applicable to different irradiation

modalities and in fact they were reported both for photons9 and

protons.3 However, they suffer of cumbersome procedures and

poor quality of the linear gradient when increasing the length of

the junction area, resulting in step-shaped gradients.9 To improve

the quality of the junction, the number of segments should be

increased with a consequent increase in plan complexity, and

many volumes to be managed during optimization. On the other

hand, the ancillary beam method4,6 easily produced high quality

gradients, but it is applicable only if a proton therapy machine

equipped with pencil beam scanning is commissioned on the

TPS.

The technique described in this short note could overcome the

limitations of the other gradient-optimized methods. In fact, it pro-

duced high-quality gradients in a very simple way and it could be

applicable for both protons and photons and therefore it can be con-

sidered ‘universal’. Furthermore, it can be implemented in all TPSs

that allow to manage a background dose (for example in EclipseTM,

Varian Medical Systems, Inc. where a similar technique has been

used to create the split fields for large field IMRT planning).
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