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Abstract

Background: Observational evidence suggests that improving fetal growth may improve adult health. Experimental
evidence from nutritional supplementation trials undertaken amongst pregnant women in the less developed world
does not show strong or consistent effects on adult disease risk and no trials from the more developed world have
previously been reported.
Objective: To test the hypothesis that nutritional supplementation during pregnancy influences offspring disease risk
in adulthood
Design: Clinical assessment of a range of established diseases risk markers in young adult offspring of 283 South
Asian mothers who participated in two trials of nutritional supplementation during pregnancy (protein/energy/vitamins;
energy/vitamins or vitamins only) at Sorrento Maternity Hospital in Birmingham UK either unselected or selected on
the basis of nutritional status.
Results: 236 (83%) offspring were traced and 118 (50%) of these were assessed in clinic. Protein/energy/vitamins
supplementation amongst undernourished mothers was associated with increased infant birthweight. Nutritional
supplementation showed no strong association with any one of a comprehensive range of markers of adult disease
risk and no consistent pattern of association with risk across markers in offspring of either unselected or
undernourished mothers.
Conclusions: We found no evidence that nutritional supplements given to pregnant women are an important
influence on adult disease risk however our study lacked power to estimate small effects. Our findings do not provide
support for a policy of nutritional supplementation for pregnant women as an effective means to improve adult health
in more developed societies.
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Introduction

The nutritional “fetal origins” hypothesis holds that
physiological adaptation to nutritional status during gestation
has life-long consequences for health[1,2]. Experimental
animal models support the plausibility of this suggestion[3,4].
Human evidence for the importance of fetal nutrition as an
influence on adult health is based mainly on observational
studies showing that smaller birth size (which may reflect
poorer nutrition in utero) is associated with greater adult risk of
cardiovascular and metabolic disease[5-7]. It is possible that
this association is confounded by factors independently
associated both with birth size, and with adult disease risk[8].
The most reliable solution to this problem of confounding is
random allocation of exposure status within an experimental
design. If fetal nutrition does influence adult health it is unclear
whether improving the nutritional status of pregnant women
generally, or those showing evidence of under-nutrition, will
benefit the adult health of their offspring[9]. A further issue in
this regard is that over-nutrition during fetal life may lead to
increased risk of some cancers[10]. A small number of follow-
up studies of children whose mothers participated in trials of
nutritional supplementation during pregnancy conducted in the
less developed world have yielded inconclusive evidence in
relation to effects on cardiovascular and metabolic outcomes
and no evidence in relation to effects on cancer risk[11-14]. We
assessed a group of young adults whose mothers participated
in a randomised controlled trial of nutritional supplementation
during pregnancy[15,16]. The primary outcome assessed in
this trial was infant birth weight. Amongst mothers showing
evidence of under-nutrition, supplements given in later
pregnancy were effective in increasing offspring birth weight.
We investigated the effect of supplementation on physiological
markers of disease risk of young adult offspring of unselected
mothers, and mothers with evidence of under-nutrition.

Subjects and Methods

Ethics Statement
All participants provided written informed consent. All study

procedures were approved by South Birmingham Local
Research Ethics Committee (LREC no. 0273).

Details of participants and procedures in the original
unselected and selected trials of nutritional supplementation at
the Sorrento maternity hospital in Birmingham have been
published elsewhere[15-17].Briefly, all South Asian mothers
booking for maternity care prior to 20 weeks gestation between
April 1979 and June 1980 were invited to participate. 153
mothers (see Figure S1) booking between April and October
1979 were randomised to receive one, of three, nutritional
supplementation regimes between booking and delivery.
Supplementation regimes were vitamins only (vitamin C 30mg
and iron 3mg in 369 ml of flavoured carbonated water);
carbohydrate and vitamins (as vitamins plus 1146KJ, the
contemporary recommended extra daily allowance in
pregnancy, of carbohydrate as glucose again in 369 ml of
flavoured carbonated water) and protein, carbohydrate and
vitamins (as carbohydrate and vitamins in 246 ml of flavoured

carbonated water but with 11% of the energy, the
contemporary recommended ratio, from protein in the form of
chocolate flavoured skimmed milk powder).130 mothers
booking between November 1979 and June 1980 were all
given vitamins (Orovite 7: vitamin A 0.75mg, thiamine 1.4mg,
riboflavin 1,7mg, pyridoxine 2.0mg, nicotinamide 18mg,
ascorbic acid 60mg, calciferol 2.5 µg daily delivered in sachets
for dissolving in water) and monitored till 28 weeks gestation.
At this point, 45 mothers showing evidence of under-nutrition
(on the basis of incremental triceps skin-fold measurements
less than or equal to 20 µm per week) were again randomised
to one of the three, supplementation regimes. In this trial those
randomised to vitamins only continued to receive Orovite 7;
those randomised to carbohydrate and vitamins received
Orovite 7 plus 1810 KJ daily (additional allowance to allow for
shorter period of supplementation) of carbohydrate in the form
glucose syrup and those randomised to protein, carbohydrate
and vitamins received Orovite 7 plus 1810 KJ daily 90% of
energy as carbohydrate (glucose syrup) and 10% as protein
(chocolate flavoured skimmed milk powder). Mothers showing
no evidence of under-nutrition continued to receive vitamins.
No placebo arm was included in the trials both for ethical
reasons and reflecting concerns that a placebo controlled study
might bias recruitment. Mothers recruited knew that they would
at least receive vitamin supplements. The aim of the original
trials was to evaluate the effects of protein and carbohydrate
supplementation on birth weight and in this regard a
comparison with vitamins only was appropriate.

Supplements were delivered in batches to the mothers’
home at five week intervals. Blinding of mothers to their trial
allocation group was not attempted. Empty containers from the
previous delivery were collected to assess apparent
consumption. Maternal compliance was also checked by study
midwives and dieticians and monitored through blood
biochemistry. Analysis was by intention to treat.

Personal identifier information for women who participated in
the trial and their offspring were extracted from archived trial
and maternity records. Individuals were then traced through the
NHS central register.

All living offspring for whom contact details were available
were sent a letter describing the study and inviting them to
attend for a clinical assessment at the Wellcome Trust Clinical
Research Facility at the Queen Elizabeth Hospital in
Birmingham. Non-responders were sent reminder letters.
Home-visits and telephone calls were used to confirm contact
details and receipt of the study invitation. Results of maternal
tracing and offspring follow up in clinic are summarised in a
modified CONSORT diagram (see Figure S1).

Participants attended the clinic in a fasting state; a baseline
blood sample was obtained prior to administration of a
standard glucose tolerance test. Further blood samples were
obtained at 30 and 120 minutes after the glucose load. Fasting
blood samples were used to assess blood lipids, glucose,
glycosylated haemoglobin, C peptide, testosterone and Sex
Hormone Binding Globulin according to standard methods.
Insulin and glucose were also estimated on the 30 and 120
minutes post glucose samples according to standard methods.
Insulin resistance and beta cell sensitivity was estimated using
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the HOMA method[18]. Sex Hormone Binding Globulin and
testosterone have been shown to be associated with insulin
resistance[19].

Insulin like growth factors IGF1 and IGFBP3, the levels of
which have been associated with increased risk of some
common cancers [20,21], were also measured on fasting
samples according to standard methods.

Participants were fitted with a Spacelabs 90207 ambulatory
blood pressure monitor that was collected after completion of
24 hours of measurement allowing estimation of mean systolic
and diastolic blood pressure over the measurement period[22].

Participants provided a 24 hour urine sample that was tested
for steroid metabolites using gas chromatography/ mass
spectroscopy. Urinary cortisol:cortisone (F/E) ratio was taken
as a marker of 11 B- hydroxysteroid dehydrogenase 2 activity
in the kidney (with increased ratios suggesting the impaired
activity associated with failure to inactivate cortisol to cortisone
associated with hypertension), tetrahydrocortisol + 5 allo
tetrahydrocortisol: tetrahydrocortisone (THF + 5a – THF/ THE)
ratio was taken to be a marker of 11 B- hydroxysteroid
dehydrogenase 1(increased ratios suggesting the impaired
activity associated with adiposity)[23]. Participants also
underwent whole body dual-energy x-ray absorptiometry
(DEXA) scanning to allow assessment of total body fat. Height
and weight were assessed using standard methods and body
mass index was calculated as weight in kilograms divided by
height in metres squared. All clinic staff undertaking
assessments were blind to initial trial allocation. Information on
birth weight was taken from trial records.

Statistical methods 
We investigated the primary null hypothesis that nutritional

supplementation during pregnancy has no influence on disease
risk in adulthood. We had no strong a priori basis to expect an
effect of a particular size in relation to any of the disease risk
markers measured with a particular supplementation regime. In
the original Sorrento studies the strongest effect on birth weight
was seen amongst offspring of mothers selected on the basis
of their apparent under-nutrition who received protein,
carbohydrate and vitamin supplements as described above.
Mean values of infant birth weight and all adult outcome
variables along with their standard errors were calculated
according to original trial allocation and were compared using
analysis of covariance amongst participants assessed as
adults. Birth weight according to trial allocation was also
examined amongst the larger group of participants successfully
traced as adults. The original Sorrento studies were
randomised therefore an unadjusted intention to treat analysis
was appropriate. In the original studies a stronger effect on
birth weight amongst under-nourished mothers was seen in a
per protocol analysis excluding apparently non-compliant
mothers[16]. We also repeated our analysis amongst offspring
of mothers deemed to be nutritionally at risk excluding offspring
of apparently non-compliant mothers. Around half of those
eligible were successfully followed up in adulthood (see Figure
S1) and the potential confounding factors of age, sex and adult
adiposity were not evenly distributed across intervention

groups in the follow up sample. Accordingly we repeated
analyses adjusting for age sex and adult adiposity.

Not all individuals assessed as adults had full information on
all measures. To increase power and investigate the possibility
that this might have led to bias we used multiple imputation of
missing adult data using the ICE routine in Stata 10[24]. All
variables in the analysis were used in the imputation model.
After imputation, analyses were carried out on 5 imputed data
sets and the results combined appropriately using Rubin’s
Rules[25]. Adult analyses were then undertaken both on those
with complete case information on the variables and on a
dataset where missing values were imputed to allow
comparison of the two. Where residuals from the analysis of
covariance were significantly non-normal (Shapiro-Wilk p<0.05)
bootstrap methods were invoked.

One participant in Trial I was excluded from the analyses as
they had been measured on only one of the adult disease risk
markers (BMI).

Anonymised study data are available on request from the
corresponding author.

All analyses were performed using Stata 10[26].

Results

118 offspring of mothers participating in the original Sorrento
trials were assessed in clinic between June 2002 and October
2004. Participant characteristics at follow up are given in table
1. Assessed offspring of mothers in the second trial who
showed no evidence of under-nutrition are not considered in
the analyses presented here (n=33). Amongst the 85
participants included in the analysis 40 (47%) were female
(table 1). Mean age at assessment was 22.9 years (SD 0.9)
and participants were healthy in terms of standard risk markers
(table 1).

Distribution of those assessed according to allocation in the
original trial is given in table 2. Table 2 also shows offspring
birth weight according to trial allocation in the original trial,
amongst the traced cohort and amongst those assessed as
adults. There is no strong evidence of differences in birth
weight according to supplementation regime amongst offspring
of unselected mothers (ANOVA F2,62 =0.73, p=0.48) . Amongst
children of under-nourished mothers those receiving protein-
energy supplements have higher birth weights however in the
group of these children assessed as adults this difference is no
longer apparent and any difference between groups is small
and imprecisely estimated.

Table 3 shows offspring cardiovascular and metabolic
disease risk according to trial allocation amongst children
assessed in clinic whose mothers received nutritional
supplements from week 18 of gestation and were unselected
on the basis of nutritional status. There is no consistent
evidence of differences in risk status according to
supplementation regime either before or after multiple
imputation of missing values or adjustment for age, gender and
adult adiposity. Fasting glucose is higher amongst offspring of
mothers receiving protein energy supplements though this
effect is only apparent in the unadjusted analysis and is in the
opposite direction to effects on fasting insulin which is lowest
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amongst offspring of mothers receiving protein energy
supplements (an effect most apparent after adjustment).

Table 4 shows between group differences in risk factors
amongst offspring of unselected mothers with the vitamins only
group as the reference category. There is no strong evidence
apparent of differences in individual risk factors between
groups and no evidence of a pattern of lower risk in either of
the energy supplementation groups compared to the vitamins
only group.

Table 5 shows offspring cardiovascular and metabolic
disease risk according to trial allocation amongst children
assessed in clinic whose mothers received nutritional
supplements from week 28 of gestation on the basis of their
showing evidence of under-nutrition. Again, there is no
consistent evidence of differences in risk status according to
supplementation regime either before or after multiple
imputation of missing values or adjustment for age, gender and
adult adiposity.

Table 6 shows between group differences in risk factors
amongst offspring of mothers selected on the basis of
nutritional status with the vitamins only group as the reference

category. As with offspring of unselected mothers there is no
strong evidence apparent of differences in individual risk
factors between groups and no evidence of a pattern of lower
risk in either of the energy supplementation groups compared
to the vitamins only group.

Discussion

Amongst young adult offspring of mothers randomised to
receive one of three nutritional supplementation regimes during
pregnancy either unselected or selected on the basis of
evidence of their nutritional status we found no evidence that
supplementation influenced adult risk markers of
cardiovascular disease, diabetes or cancer. Amongst mothers
with evidence of under-nutrition, protein-energy
supplementation during the final pregnancy trimester was
associated with increased birth weight but this increase was
not associated with any strong or consistent change in any
marker of adult disease risk measured. These risk markers
included many of those found to be associated with birth size in
observational studies such as blood pressure [27], markers of

Table 1. Patient characteristics of adult children from the Sorrento studies of maternal nutritional supplementation (values
are mean ± SD, unless stated otherwise).

 Trial I (unselective supplementation in all mothers from week 18)
Trial II (selective supplementation in nutritionally at risk mothers
from week 28)

Trial Group
Protein, Carbohydrate
and Vitamins1

Carbohydrate and
vitamins2 Vitamins only3   

Protein, Carbohydrate
and Vitamins4

Carbohydrate and
vitamins5 Vitamins only6

n 21 23 21 8 4 8

Gender, n (%)       

Male 13 (62%) 9 (39%) 12 (57%) 5 (63%) 1 (25%) 5 (62%)

Female 8 (38%) 14 (61%) 9 (43%) 3 (38%) 3 (75%) 3 (38%)

Age at follow-up
(years)

23.0 ± 1.1 22.9 ± 0.8 23.0 ± 1.0 22.6 ± 0.5 22.3 ± 0.3 22.9 ± 0.6

Systolic BP (mmHg) 115.8 ± 8.5 115.8 ± 6.5 113.6 ± 6.8 115.4 ± 7.4 111.3 ± 10.3 110.5 ± 7.5

Diastolic BP
(mmHg)

66.5 ± 6.6 68.6 ± 4.8 67.8 ± 4.2 67.3 ± 7.6 63.0 ± 2.9 66.5 ± 5.8

Fasting glucose
(mmol/l)

5.0 ± 0.5 4.7 ± 0.5 4.8 ± 0.4 4.9 ± 0.3 4.4 ± 0.4 4.9 ± 0.3

Fasting insulin
(pmol/l)

45.2 ± 26.6 63.3 ± 48.0 52.2 ± 30.3 25.8 ± 17.4 14.0 49.5 ± 29.4

Total cholesterol 4.5 ± 0.7 4.4 ± 1.0 4.4 ± 0.7 4.1 ± 0.7 4.3 ± 1.0 4.8 ± 0.8

BMI (kg/m2) 24.6 ± 4.8 24.0 ± 4.6 22.4 ± 4.0 22.6 ± 2.3 23.3 ± 2.7 23.4 ± 3.1

Body fat (%) 28.1 ± 9.2 29.5 ± 6.6 27.3 ± 8.0 25.6 ± 7.4 35.7 ± 4.3 26.6 ± 6.8
1 1146 KJ energy daily with 11% from protein, 89% from carbohydrate; 30mg vitamin C, 3 mg iron
2 As 1. but 100% of energy from carbohydrate
3 30mg vitamin C, 3 mg iron only
4 1810 KJ energy daily with 10% from protein, 90% from carbohydrate, Orovite 7 (vitamin A 0.75mg; thiamine 1.4mg; riboflavin 1.7mg; pyridoxine 2.0mg; nicotinamide18mg;
ascorbic acid 60mg; calciferol 2.5μg).
5 As 4. but 100% of energy from carbohydrate
6 Orovite 7 only
doi: 10.1371/journal.pone.0083371.t001
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glucose tolerance and insulin resistance [28]; blood lipids and
adiposity along with more novel markers of cardiovascular risk
based on steroid hormones and possible markers of cancer
risk based on insulin like growth factors. It has been suggested
that adult effects of fetal nutrition may vary according to adult
adiposity[29]. Adjustment for adult BMI and total body fat did
not change our results.

Comparison with other evidence
Three other trials of the effectiveness of nutritional

supplementation during pregnancy on perinatal and early
childhood outcomes have now been extended to include later
childhood or early adult follow up[11-14]. These trials have all
been undertaken in low or middle-income countries using
different protein-energy supplements amongst mothers
unselected in relation to nutritional status. Follow up of
offspring of participants in these trials has found no evidence of
effects on blood pressure or adiposity in adolescence or early
adulthood[11-14]. In one trial (which was non-randomised)
there was evidence of a favourable effect on fasting insulin and
insulin resistance as estimated using the HOMA model[14]. We
did not find evidence of this effect. In another study weak
evidence of a favourable effect on blood lipids (higher HDL
cholesterol and lower triglycerides) was found[13]. Again we
found no evidence of such an effect.

Many of the risk markers we assessed were not measured in
these follow up studies so direct comparison is not possible.
We chose measures that appeared to provide the most valid

index of the risk parameter of interest in relation to all the
elements and mechanisms of risk previously discussed in
relation to the fetal origins hypothesis. Thus in addition to
standard clinic assessments we used 24 hour ambulatory
blood pressure measurement and we assessed body
composition and adiposity through DEXA scanning in addition
to standard measures of height and weight. Fetal corticosteroid
exposure has been suggested as an alternative mechanism
whereby smaller birth size could be associated with higher risk
of later cardiovascular disease principally through an effect on
hypertension or adiposity[30]. Because of this in addition to
measures of blood pressure and adiposity we examined urinary
markers of the aspects of steroid metabolism mediating these
possible effects. Again we found no evidence of an association
with nutritional supplementation. Because of evidence that fetal
over-nutrition may increase later risk of breast cancer,
childhood leukaemias and some other malignancies we felt it
important to also consider risk markers of cancer in our
study[20]. We found no association between supplementation
and higher levels of insulin like growth factors. Other evidence
suggests that higher infant milk protein intake is associated
with lower levels of IGF1 in later life[31-33]. We found very
weak evidence of lower IGF1 in offspring of unselected
mothers receiving protein energy supplements and slightly
stronger evidence of lower IGFBP3 in offspring of
undernourished mothers who received these supplements.

Table 2. Trial Allocation and birthweight in the Sorrento studies of maternal nutritional supplementation (values are mean ±
SEM).

   

Trial I (unselective supplementation in all mothers
from week 18)  

Trial II (selective supplementation in nutritionally at risk
mothers from week 28)  

Trial
Group   

Protein,
Carbohydrate and
Vitamins1

Carbohydrate and
vitamins2 Vitamins only3p7

Protein,
Carbohydrate and
Vitamins4

Carbohydrate and
vitamins5 Vitamins only6 p7

 
Mean
Birthweight
kg

Original trial
(n)

3.01 ± 0.06 (47) 3.02 ± 0.07 (50)
3.06 ± 0.07
(45)

0.87 3.34 ± 0.14 (14) 2.95 ± 0.15 (17)
3.01 ± 0.07
(14)

0.09

  
Traced
participants
(n)

2.97 ± 0.07 (40) 2.96 ± 0.07 (41)
3.07 ± 0.08
(38)

0.53 3.34 ± 0.14 (14) 2.96 ± 0.17 (15)
3.01 ± 0.07
(13)

0.15

  
Assessed in
clinic (n)8

3.11 ± 0.09 (21) 2.95 ± 0.08 (23)
3.08 ± 0.12
(21)

0.48 3.23 ± 0.13 (8) 3.42 ± 0.15 (4)
3.03 ± 0.11
(8)

0.18

1 1146 KJ energy daily with 11% from protein, 89% from carbohydrate; 30mg vitamin C, 3 mg iron
2 As 1. but 100% of energy from carbohydrate
3 30mg vitamin C, 3 mg iron only
4 1810 KJ energy daily with 10% from protein, 90% from carbohydrate, Orovite 7 (vitamin A 0.75mg; thiamine 1.4mg; riboflavin 1.7mg; pyridoxine 2.0mg; nicotinamide18mg;
ascorbic acid 60mg; calciferol 2.5μg).
5 As 4. but 100% of energy from carbohydrate
6 Orovite 7 only
7 p-value for differences in mean birthweight between trial arms (from analysis of variance)
8 Analyses of variance to compare birth weights of those assessed in clinic and those in original trial but not assessed in clinic were not significant for either trial. Trial I:
F1,137=0.14, p=0.71, Trial II: F1,43=1.42, p=0.24
doi: 10.1371/journal.pone.0083371.t002
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Table 3. Adult disease risk markers amongst offspring of mothers participating in the Sorrento studies of maternal nutritional
supplementation who were assessed as adults before and after imputation of missing values - Trial I (supplementation in all
mothers after 18 weeks).

Risk marker Trial Group* Protein, Carbohydrate and Vitamins   Carbohydrate and vitamins   Vitamins only P1 P2

  Mean ± SEM** (n) Mean ± SEM (n) Mean ± SEM (n)   
Blood pressure Mean 24Hr Systolic BP (mmHg) 115.8 ± 2.1 (16) 115.8 ± 1.4 (22) 113.6 ± 1.6 (19) 0.57 0.57
 With imputation*** 115.3 ± 2.0 (21) 115.8 ± 1.4 (22) 113.8 ± 1.7 (21) 0.69 0.47
 Excluding non compliant mothers**** 115.5 ± 2.5 (13) 115.8 ± 1.5 (20) 113.4 ± 1.9 (15) 0.64 0.69
 Mean 24Hr Diastolic BP (mmHg) 66.5 ± 1.6 (16) 68.6 ± 1.0 (22) 67.8 ± 1.0 (19) 0.46 0.433

 With imputation 66.3 ± 1.4 (21) 68.6 ± 1.0 (22) 67.6 ± 1.0 (21) 0.353 0.313

 Excluding non compliant mothers 68.0 ± 1.8 (13) 68.6 ± 1.1 (20) 67.7 ± 1.2 (15) 0.86 0.88

Markers of glucose
tolerance and insulin
resistance

Fasting glucose (mmol/l)4 5.0 ± 0.1 (21) 4.7 ± 0.1 (22) 4.8 ± 0.1 (21) 0.053 0.62

 Excluding non compliant mothers 5.1 ± 0.1 (16) 4.7 ± 0.1 (20) 4.7 ± 0.1 (16) 0.0023 0.29
 30 mins post load glucose (mmol/l) 7.9 ± 0.3 (21) 7.6 ± 0.3 (21) 7.7 ± 0.3 (21) 0.83 0.71
 With imputation 7.9 ± 0.3 (21) 7.6 ± 0.3 (22) 7.7 ± 0.3 (21) 0.73 0.84
 Excluding non compliant mothers 7.8 ± 0.4 (16) 7.6 ± 0.3 (20) 7.7 ± 0.4 (16) 0.91 0.85
 120 mins post load glucose (mmol/l) 5.2 ± 0.3 (20) 5.3 ± 0.2 (21) 4.8 ± 0.2 (21) 0.34 0.69
 With imputation 5.2 ± 0.3 (21) 5.2 ± 0.2 (22) 4.8 ± 0.2 (21) 0.46 0.84
 Excluding non compliant mothers 5.4 ± 0.4 (16) 5.2 ± 0.2 (20) 4.8 ± 0.2 (16) 0,.41 0.46
 Fasting insulin (pmol/l) 45.2 ± 6.3 (18) 63.3 ± 12.0 (16) 52.2 ± 8.4 (13) 0.383 0.03
 With imputation 44.3 ± 7.1 (21) 57.1 ± 10.9 (22) 51.8 ± 8.6 (21) 0.693 0.223

 Excluding non compliant mothers 46.8 ± 7.9 (14) 62.3 ± 12.8 (15) 55.2 ± 9.5 (10) 0.583 0.24
 30 mins post load insulin (pmol/l) 429.1 ± 58.8 (16) 515.4 ± 62.0 (19) 488.2 ± 68.7 (17) 0.653 0.54
 With imputation 436.7 ± 68.9 (21) 510.0 ± 62,9 (22) 479.0 ± 77.5 (21) 0.823 0.743

 Excluding non compliant mothers 407.7 ± 67.5 (13) 513.1 ± 62.0 (17) 486.8 ± 80.5 (13) 0.583 0.72
 120 mins post load insulin (pmol/l) 400.7 ± 119.6 (14) 409.1 ± 85.3 (16) 317.9 ± 59.6 (12) 0.793 0.93
 With imputation 393.8 ± 101.2 (21) 365.5 ± 77.1 (22) 294.9 ± 53.8 (21) 0.723 0.983

 Excluding non compliant mothers 449.6 ± 148.6 (11) 412.5 ± 91.1 (15) 311.1 ± 74.6 (9) 0.743 0.85
 HbA1c (%) 5.02 ± 0.09 (20) 4.93 ± 0.08 (22) 5.03 ± 0.11 (20) 0.753 0.673

 With imputation 5.02 ± 0.09 (21) 4.93 ± 0.08 (22) 5.01 ± 0.11 (21) 0.78 0.783

 Excluding non compliant mothers 4.99 ± 0.10 (15) 5.00 ± 0.07 (20) 4.93 ± 0.14 (15) 0.883 0.493

 Cpeptide fasting (nmol/l) 0.56 ± 0.05 (18) 0.60 ± 0.07 (22) 0.58 ± 0.06 (19) 0.893 0.06
 With imputation 0.58 ± 0.07 (21) 0.60 ± 0.07 (22) 0.60 ± 0.06 (21) 0.953 0.503

 Excluding non compliant mothers 0.58 ± 0.07 (14) 0.60 ± 0.08 (20) 0.57 ± 0.07 (15) 0.933 0.22
 B cell function (%) 86.5 ± 8.4 (18) 109.7 ± 14.4 (16) 98.2 ± 10.1 (13) 0.323 0.05
 With imputation 83.7 ± 9.2 (21) 104.8 ± 13.0 (22) 97.8 ± 10.7 (21) 0.483 0.153

 Excluding non compliant mothers 85.9 ± 10.4 (14) 109.3 ± 15.4 (15) 106.1 ± 11.3 (10) 0.433 0.23
 Insulin sensitivity (%) 158.2 ± 18.2 (18) 173.3 ± 43.1 (16) 140.4 ± 21.1 (13) 0.753 0.493

 With imputation 166.3 ± 25.7 (21) 194.6 ± 40.8 (22) 159.3 ± 24.9 (21) 0.713 0.453

 Excluding non compliant mothers 159.8 ± 22.1 (14) 180.4 ± 45.5 (15) 126.8 ± 20.4 (10) 0.643 0.673

 Insulin resistance 0.84 ± 0.12 (18) 1.16 ± 0.22 (16) 0.97 ± 0.15 (13) 0.413 0.03
 With imputation 0.83 ± 0.13 (21) 1.04 ± 0.20 (22) 0.95 ± 0.16 (21) 0.723 0.243

 Excluding non compliant mothers 0.87 ± 0.15 (14) 1.14 ± 0.23 (15) 1.01 ± 0.17 (10) 0.603 0.26
Serum lipids Total cholesterol (mmol/l) 4.52 ± 0.16 (21) 4.43 ± 0.21 (21) 4.38 ± 0.16 (21) 0.843 0.97
 With imputation 4.52 ± 0.16 (21) 4.43 ± 0.21 (22) 4.38 ± 0.16 (21) 0.833 0.91
 Excluding non compliant mothers 4.59 ± 0.20 (16) 4.32 ± 0.21 (19) 4.48 ± 0.19 (16) 0.633 0.70
 HDL cholesterol (mmol/l) 1.37 ± 0.07 (20) 1.39 ± 0.08 (20) 1.33 ± 0.08 (20) 0.853 0.523

 With imputation 1.37 ± 0.07 (21) 1.36 ± 0.08 (22) 1.33 ± 0.09 (21) 0.943 0.763

 Excluding non compliant mothers 1.35 ± 0.07 (16) 1.40 ± 0.08 (18) 1.35 ± 0.10 (16) 0.873 0.703

 Triglycerides (mmol/l) 1.03 ± 0.08 (21) 0.86 ± 0.07 (21) 1.06 ± 0.15 (21) 0.413 0.333

 With imputation 1.03 ± 0.08 (21) 0.85 ± 0.07 (22) 1.06 ± 0.15 (21) 0.323 0.273

 Excluding non compliant mothers 0.98 ± 0.08 (16) 0.83 ± 0.07 (19) 1.15 ± 0.19 (16) 0.153 0.053

Insulin like growth
factors

IGF1 (ng/ml) 168.2 ± 17.7 (18) 171.0 ± 9.7 (22) 184.4 ± 13.1 (19) 0.673 0.61
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Strengths and limitations
The main strength of this study is its experimental design.

Also, our study was undertaken in a high income setting with
facilities for assessment of a wide range of risk markers using
relatively sophisticated technologies. We also provided
evidence in relation to the value of targeted supplementation
based on nutritional assessment compared to universal
supplementation. Finally this study provided evidence in
relation to a supplementation intervention feasibly delivered
within a health care system typical of high-income countries.
The main limitation of this study is its small size and
consequently limited power and precision. Sample size was set
by the original Sorrento study and was further reduced by
incomplete follow up. These considerations are particularly
relevant to the second Sorrento trial amongst mothers selected
on the basis of their evidence of under-nutrition. Considering
the age of the study population and the fact that assessments

involved a clinic visit, follow up rates of 50% amongst those
with valid contact details were relatively high. Amongst
individuals with incomplete assessment data we used multiple
imputation of missing values which increased power and did
not suggest any important bias in the complete case analysis.
Our participants were all of South Asian ethnicity however
observational evidence supporting the “fetal origins” hypothesis
has also been reported from South Asian populations[34].
Given the disproportionate experience of cardiovascular and
metabolic disease amongst South Asians and the apparent
failure of conventional risk factors to fully explain this increase,
it is arguably important to study novel risk factors in this
population[35]. Nutritional supplements were delivered to
unselected study mothers from the second pregnancy trimester
and to mothers selected because of evidence of under-nutrition
from the third pregnancy trimester. We were thus unable to
investigate the possible influence of nutrition earlier in

Table 3 (continued).

Risk marker Trial Group* Protein, Carbohydrate and Vitamins   Carbohydrate and vitamins   Vitamins only P1 P2

  Mean ± SEM** (n) Mean ± SEM (n) Mean ± SEM (n)   
 With imputation 172.2 ± 16.7 (21) 171.0 ± 9.7 (22) 185.7 ± 15.2 (21) 0.753 0.893

 Excluding non compliant mothers 174.7 ± 19.4 (14) 172.5 ± 10.6 (20) 192.2 ± 15.5 (15) 0.603 0.31
 IGFBP3 4327 ± 232 (18) 4363 ± 123 (22) 4211 ± 203 (19) 0.83 0.66
 With imputation 4327 ± 238 (21) 4363 ± 123 (22) 4221 ± 190 (21) 0.86 0.69
 Excluding non compliant mothers 4410 ± 273 (14) 4319 ± 132 (20) 4376 ± 216 (15) 0.95 0.98
Adiposity Body Mass Index4 24.6 ± 1.0 (21) 24.0 ± 1.0 (23) 22.4 ± 0.9 (21) 0.253 0.22
 Excluding non compliant mothers 24.0 ± 1.0 (16) 24.3 ± 1.0 (20) 22.1 ± 1.1 (16) 0.303 0.32
 Dexa_Total_Fat (%) 28.1 ± 2.4 (15) 29.6 ± 1.5 (19) 27.3 ± 2.0 (16) 0.69 0.49
 With imputation 28.1 ± 2.0 (21) 30.3 ± 1.4 (22) 27.0 ± 1.9 (21) 0.40 0.77
 Excluding non compliant mothers 26.3 ± 2.4 (12) 30.0 ± 1.7 (17) 27.3 ± 2.5 (12) 0.43 0.29
Urinary steroid ratios Urinary F/E ratio 0.79 ± 0.06 (18) 0.81 ± 0.04 (16) 0.70 ± 0.03 (14) 0.31 0.313

 With imputation 0.78 ± 0.06 (21) 0.79 ± 0.04 (22) 0.70 ± 0.04 (21) 0.24 0.383

 Excluding non compliant mothers 0.78 ± 0.07 (14) 0.81 ± 0.04 (15) 0.71 ± 0.04 (11) 0.45 0.363

 Urinary THF + 5aTHF/THE ratio 0.94 ± 0.06 (18) 0.83 ± 0.04 (16) 0.88 ± 0.06 (14) 0.453 0.57
 With imputation 0.93 ± 0.06 (21) 0.88 ± 0.05 (22) 0.88 ± 0.06 (21) 0.813 0.743

 Excluding non compliant mothers 0.90 ± 0.06 (14) 0.83 ± 0.04 (15) 0.92 ± 0.07 (11) 0.523 0.57
 Testosterone – Males (nmol/l) 18.2 ± 1.4 (12) 15.5 ± 2.2 (8) 16.9 ± 1.8 (10) 0.58 0.18
 With imputation 18.2 ± 1.4 (13) 15.4 ± 2.2 (9) 16.9 ± 1.8 (12) 0.56 0.51
 Excluding non compliant mothers 18.4 ± 1.9 (9) 16.2 ± 2.4 (7) 19.1 ± 2.0 (7) 0.61 0.47
 Testosterone – Females (nmol/l) 1.9 ± 0.4 (5) 1.4 ± 0.1 (13) 1.4 ± 0.2 (9) 0.24 0.36
 With imputation 2.0 ± 0.3 (8) 1.4 ± 0.1 (13) 1.4 ± 0.2 (9) 0.04 0.28
 Excluding non compliant mothers 1.9 ± 0.4 (5) 1.5 ± 0.1 (12) 1.5 ± 0.2 (8) 0.33 0.47
 SHBG – Males (nmol/l) 17.8 ± 1.4 (12) 15.6 ± 1.7 (9) 20.2 ± 3.5 (10) 0.453 0.37
 With imputation 18.2 ± 1.9 (13) 15.6 ± 1.7 (9) 19.9 ± 3.3 (12) 0.553 0.81
 Excluding non compliant mothers 17.1 ± 1.8 (9) 16.8 ± 1.3 (8) 18.8 ± 3.2 (7) 0.80 0.62
 SHBG – Females (nmol/l) 47.5 ± 18.4 (6) 56.8 ± 17.1 (13) 47.7 ± 9.4 (9) 0.903 0.863

 With imputation 45.5 ± 16.7 (8) 56.8 ± 17.1 (13) 47.7 ± 9.4 (9) 0.853 0.533

 Excluding non compliant mothers 52.7 ± 21.6 (5) 55.7 ± 18.6 (12) 53.0 ± 8.7 (8) 0.983 0.993

1 p value for difference between groups
2 p value for difference between groups adjusted for BMI, Dexa, age and gender (BMI or Dexa fat are omitted as covariates when they are the dependent)
3 p value has been derived by bootstrapping because residuals from ANOVA were not normally distributed (Shapiro-Wilk test found to be significant).
4 Imputation not required.
* Trial Group” refers to original experimental treatment allocation; **Standard error of the mean; ***Multiple imputation of missing values as described in text; ****Per protocol
analysis excluding mothers with evidence for non-compliance as described in text
doi: 10.1371/journal.pone.0083371.t003
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Table 4. Adult disease risk markers amongst offspring of mothers participating in the Sorrento studies of maternal nutritional
supplementation who were assessed as adults: between group differences1 - Trial I (supplementation in all mothers after 18
weeks).

Risk marker   Protein, Carbohydrate and Vitamins   Carbohydrate and vitamins

   Difference   (95% CI) Difference   (95% CI)

Blood pressure Mean 24hr Systolic BP (mmHg) Unadjusted 2.12 (-2.78 to 7.01) 2.19 (-2.33 to 6.71)

  Adjusted* 0.04 (-5.48 to 5.56) 2.28 (-2.64 to 7.20)

 Mean 24hr Diastolic BP (mmHg) Unadjusted -1.34 (-4.87 to 2.19) 0.79 (-2.47 to 4.05)

  Adjusted2 -2.04 (-5.97 to 1.89) 0.25 (-3.28 to 3.77)

Markers of glucose tolerance and
insulin resistance

Fasting glucose (mmol/l)
Unadjusted
2 0.19 (-0.09 to 0.47) -0.13 (-0.41 to 0.15)

  Adjusted 0.01 (-0.31 to 0.33) -0.12 (-0.42 to 0.17)

 30 mins post load glucose (mmol/l) Unadjusted 0.17 (-0.70 to 1.02) -0.09 (-0.95 to 0.77)

  Adjusted 0.40 (-0.62 to 1.43) 0.08 (-0.89 to 1.04)

 120 mins post load glucose (mmol/l) Unadjusted 0.44 (-0.29 to 1.18) 0.49 (-0.24 to 1.21)

  Adjusted 0.19 (-0.68 to 1.07) 0.35 (-0.47 to 1.17)

 Fasting insulin (pmol/l)
Unadjusted
2 -6.82 (-32.11 to 18.46) 10.47 (-15.56 to 36.51)

  Adjusted -12.17 (-33.88 to 9.55) 14.94 ( -6.82 to 36.70)

 30 mins post load insulin (pmol/l)
Unadjusted
2 -60.81 (-238.72 to 117.10) 30.30 (-139.75 to 200.34)

  Adjusted -91.19 (-286.73 to 104.36) 2.27 (-178.68 to 183.21)

 120 mins post load insulin (pmol/l)
Unadjusted
2 76.32 (-189.60 to 342.24) 93.14 (-164.68 to 350.96)

  Adjusted 47.35 (-221.98 to 316.68) 41.99 (-212.89 to 296.87)

 HbA1c (%)
Unadjusted
2 -0.01 (-0.26 to 0.25) -0.09 (-0.34 to 0.16)

  Adjusted2 -0.07 (-0.35 to 0.20) 0.03 (-0.22 to 0.28)

 Cpeptide fasting (nmol/l)
Unadjusted
2 -0.03 (-0.20 to 0.15) 0.02 (-0.15 to 0.19)

  Adjusted -0.12 (-0.26 to 0.02) 0.04 (-0.09 to 0.17)

 B cell function (%)
Unadjusted
2 -11.44 (-42.56 to 19.68) 10.78 (-21.28 to 42.84)

  Adjusted -14.12 (-43.55 to 15.31) 19.60 (-9.88 to 49.09)

 Insulin sensitivity (%)
Unadjusted
2 17.86 (-63.52 to 99.24) 33.79 (-49.88 to 117.46)

  Adjusted2 29,.98 (-39.25 to 99.18) 7.84 (-61.44 to 77.12)

 Insulin resistance
Unadjusted
2 -0.12 (-0.58 to 0.34) 0.18 (-0.29 to 0.66)

  Adjusted -0.22 (-0.62 to 0.17) 0.26 (-0.13 to 0.66)

Serum lipids Total cholesterol (mmol/l)
Unadjusted
2 0.16 (-0.33 to 0.65) 0.07 (-0.42 to 0.56)

  Adjusted -0.01 (-0.57 to 0.54) 0.05 (-0.47 to 0.57)

 HDL cholesterol (mmol/l)
Unadjusted
2 0.05 (-0.17 to 0.26) 0.05 (-0.16 to 0.26)

  Adjusted2 0.14 (-0.11 to 0.39) 0.07 (-0.17 to 0.31)

 Triglycerides (mmol/l)
Unadjusted
2 -0.03 (-0.32 to 0.26) -0.20 (-0.49 to 0.09)

  Adjusted2 -0.21 (-0.54 to 0.11) -0.25 (-0.56 to 0.06)

Insulin like growth factors IGF1 (ng/ml)
Unadjusted
2 -16.25 (-53.82 to 21.31) -14.07 (-49.78 to 21.64)

  Adjusted -15.28 (-51.34 to 20.78) 0.44 (-32.96 to 33.84)

 IGFBP3 Unadjusted 116.22 (-423.67 to 656.11) 152.41 (-361.66 to 666.48)

  Adjusted 90.27 (-452.30 to 632.83) 225.17 (-277.45 to 727.78)

Adiposity Body Mass index
Unadjusted
2 2.32 (-0.33 to 4.96) 1.68 (-0.94 to 4.31)

  Adjusted 1.60 (-0.32 to 3.51) 0.36 (-1.47 to 2.18)

 Dexa total fat (%) Unadjusted 0.84 (-4.85 to 6,53) 2.28 (-3.09 to 7.66)

  Adjusted -1.41 (-4.06 to 1.24) -0.06 (-2.55 to 2.42)

Urinary steroid ratios Urinary F/E ratio Unadjusted 0.08 (-0.05 to 0.22) 0.10 (-0.04 to 0.24)

  Adjusted2 0.02 (-0.12 to 0.15) 0.11 (-0.03 to 0.25)

 Urinary THF + 5aTHF/THE ratio
Unadjusted
2 0.06 (-0.09 to 0.21) -0.05 (-0.20 to 0.11)
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pregnancy on offspring disease risk. In two of the other follow
up studies discussed above supplements were delivered to
pregnant women identified on the basis of missed menstruation
thus supplementation typically started in the first
trimester[12-14]. In the other trial, supplementation
commenced in the second trimester[11]. It has been suggested
that it is the rapid postnatal “catch –up” growth of the growth
retarded fetus rather than fetal growth retardation per se that is
the important influence on adult disease risk[36]. As we had no
information on growth in the first year of life we could not
examine this hypothesis. Follow up amongst adult offspring
was only 50% and it is possible that individuals who were
assessed as adults were different from those who were not, in
terms of characteristics also associated with disease risk such
as social position. We had no individual level measures of adult
social position available on non-responders to allow us to
investigate this question. The fact that individuals who were
assessed as adults were relatively healthy (table 1) may have
reflected the fact that they were also relatively socially

advantaged however any selection bias associated with this is
unlikely to have distorted associations between trial allocation
and adult disease risk markers[37].

Conclusions and implications
We found no evidence that, irrespective of other benefits it

may have, improving the nutritional status of pregnant women
is likely to have substantial long term effects on offspring risk of
cardiovascular disease or diabetes. We also found no evidence
of any substantial adverse effects on increased cancer risk. It is
important to note that we lacked power to detect small effects
in relation to these outcomes. Within this caveat our study
suggests that rather than expanding public health policy around
cardiovascular prevention to include fetal nutrition preventive
policy should continue to be focused on the established adult
behavioural and physiological risk factors hypertension,
dyslipidaemia, diabetes, obesity, lack of exercise and smoking
alongside the social disadvantage that reinforces adverse risk
profiles in these.

Table 4 (continued).

Risk marker   Protein, Carbohydrate and Vitamins   Carbohydrate and vitamins

   Difference   (95% CI) Difference   (95% CI)

  Adjusted 0.04 (-0.15 to 0.23) -0.06 (-0.25 to 0.13)

 Testosterone – Males (nmol/l) Unadjusted 1.31 (-3.56 to 6.18) -1.37 (-6.76 to 4.03)

  Adjusted 3.73 (-0.94 to 8.42) -0.25 (-4.98 to 4.48)

 Testosterone – Females (nmol/l) Unadjusted 0.46 (-0.19 to 1.10) -0.04 (-0.54 to 0.46)

  Adjusted 0.25 (-0.43 to 0.92) -0.17 (-0.72 to 0.38)

 SHBG – Males (nmol/l) Unadjusted2 -2.38 (-8.48 to 3.72) -4.66 (-11.29 to 1.98)

  Adjusted -0.01 (-6.60 to 6.58) -4.07 (-10.73 to 2.60)

 SHBG – Females (nmol/l) Unadjusted2 -0.60 (-50.83 to 49.64) 9.14 (-31.01 to 49.30)

  Adjusted2 24.40 (-29.89 to 78.68) 14.22 (-29.41 to 57.84)
1 between group differences based on the complete case analysis and are shown with Vitamins only group as reference category
2 estimates have been bootstrapped as residuals were not normally distributed (Shapiro-Wilk test <0.05)
* adjusted for BMI, Dexa, age and gender (BMI or Dexa fat are omitted as covariates when they are the dependent)
doi: 10.1371/journal.pone.0083371.t004
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Table 5. Adult disease risk markers amongst offspring of mothers participating in the Sorrento studies of maternal nutritional
supplementation who were assessed as adults before and after imputation of missing values - Trial II (supplementation in
nutritionally at risk mothers after 28 weeks).

Risk marker Trial Group* Protein, Carbohydrate and Vitamins   Carbohydrate and vitamins   Vitamins only P1 P2

  Mean ± SEM** (n) Mean ± SEM (n) Mean ± SEM (n)   
Blood pressure Mean 24Hr Systolic BP (mmHg) 115.4 ± 2.6 (8) 111.3 ± 5.1 (4) 110.5 ± 3.1 (6) 0.50 0.79
 With imputation*** 115.4 ± 2.6 (8) 111.3 ± 5.1 (4) 111.2 ± 2.6 (8) 0.52 0.86

 Excluding non compliant mothers**** 116.4 ± 2.8 (7) 115.3 ± 4.4 (3) 110.5 ± 3.1 (6) 0.37 0.58
 Mean 24Hr Diastolic BP (mmHg) 67.3 ± 2.7 (8) 63.0 ± 1.5 (4) 66.5 ± 2.3 (6) 0.54 0.38
 With imputation 67.3 ± 2.7 (8) 63.0 ± 1.5 (4) 65.8 ± 2.3 (8) 0.53 0.34
 Excluding non compliant mothers 69.0 ± 2.3 (7) 64.0 ± 1.5 (3) 66.5 ± 2.3 (6) 0.43 0.48

Markers of glucose
tolerance and insulin
resistance

Fasting glucose (mmol/l)3 4.9 ± 0.1 (8) 4.4 ± 0.2 (4) 4.9 ± 0.1 (8) 0.014 0.19

 Excluding non compliant mothers 4.9 ± 0.1 (7) 4.5 ± 0.3 (3) 4.9 ± 0.1 (8) 0.134 0.34
 30 mins post load glucose (mmol/l)3 7.1 ± 0.5 (8) 6.8 ± 1.0 (4) 8.5 ± 0.6 (8) 0.14 0.21
 Excluding non compliant mothers 6.9 ± 0.5 (7) 7.0 ± 1.4 (3) 8.5 ± 0.6 (8) 0.18 0.24

 
120 mins post load glucose
(mmol/l)3

5.6 ± 0.4 (8) 5.1 ± 1.0 (4) 4.9 ± 0.4 (8) 0.53 0.30

 Excluding non compliant mothers 5.7 ± 0.5 (7) 5.5 ± 1.4 (3) 4.9 ± 0.4 (8) 0.51 0.46
 Fasting insulin (pmol/l) 25.8 ± 7.8 (5) 14.0 (1) 49.5 ± 12.0 (6) 0.24 0.21
 With imputation 30.3 ± 8.0 (8) 33.5 ± 21.7 (4) 44.0 ± 12.1 (8) 0.824 0.623

 Excluding non compliant mothers 22.0 ± 8.8 (4) 14.0 (1) 49.5 ± 12.0 (6) 0.23 0.21
 30 mins post load insulin (pmol/l) 392.8 ± 62.4 (6) 464.3 ± 293.5 (3) 523.0 ± 113.2 (6) 0.714 0.99
 With imputation 421.3 ± 84.9 (8) 457.6 ± 221.9 (4) 503.8 ± 103.6 (8) 0.854 0.96
 Excluding non compliant mothers 404.2 ± 75.2 (5) 620.0 ± 431.0 (2) 523.0 ± 113.2 (6) 0.65 0.99
 120 mins post load insulin (pmol/l) 410.3 ± 138.9 (6) 161.0 (1) 431.2 ± 177.2 (6) 0.854 0.22
 With imputation 371.5 ± 114.7 (8) 423.9 ± 231.8 (4) 375.0 ± 143.0 (8) 0.974 0.48
 Excluding non compliant mothers 468.8 ± 154.3 (5) 161.0 (1) 431.2 ± 177.2 (6) 0.78 0.22
 HbA1c (%)3 4.88 ± 0.08 (8) 4.85 ± 0.10 (4) 4.99 ± 0.14 (8) 0.69 0.68
 Excluding non compliant mothers 4.89 ± 0.10 (7) 4.90 ± 0.12 (3) 4.99 ± 0.14 (8) 0.82 0.80
 Cpeptide fasting (nmol/l)3 0.44 ± 0.05 (8) 0.42 ± 0.10 (4) 0.65 ± 0.12 (8) 0.20 0.06
 Excluding non compliant mothers 0.44 ± 0.06 (7) 0.47 ± 0.11 (3) 0.65 ± 0.12 (8) 0.31 0.07
 B cell function (%) 57.8 ± 14.5 (5) 50.4 (1) 90.9 ± 14.1 (6) 0.26 0.22
 With imputation 66.9 ± 13.5 (8) 81.9 ± 33.3 (4) 82.9 ± 16.0 (8) 0.80 0.893

 Excluding non compliant mothers 51.6 ± 16.9 (4) 50.4 (1) 90.9 ± 14.1 (6) 0.22 0.22
 Insulin sensitivity (%) 342.5 ± 136.1 (5) 391.0 (1) 140.0 ± 29.2 (6) 0.184 0.29
 With imputation 290.2 ± 94.0 (8) 280.1 ± 120.2 (4) 179.6 ± 62.2 (8) 0.604 0.463

 Excluding non compliant mothers 395.5 ± 161.8 (4) 391.0 (1) 140.0 ± 29.2 (6) 0.124 0.29
 Insulin resistance 0.48 ± 0.14 (5) 0.26 (1) 0.92 ± 0.22 (6) 0.23 0.20
 With imputation 0.56 ± 0.15 (8) 0.61 ± 0.39 (4) 0.82 ± 0.22 (8) 0.814 0.593

 Excluding non compliant mothers 0.41 ± 0.16 (4) 0.26 (1) 0.92 ± 0.22 (6) 0.22 0.20
Serum lipids Total cholesterol (mmol/l)3 4.11 ± 0.23 (8) 4.30 ± 0.49 (4) 4.84 ± 0.27 (8) 0.18 0.10
 Excluding non compliant mothers 4.09 ± 0.27 (7) 4.40 ± 0.68 (3) 4.84 ± 0.27 (8) 0.23 0.11
 HDL cholesterol (mmol/l) 1.40 ± 0.15 (7) 1.62 ± 0.10 (4) 1.45 ± 0.10 (8) 0.524 0.67
 With imputation 1.40 ± 0.14 (8) 1.62 ± 0.10 (4) 1.45 ± 0.10 (8) 0.484 0.75
 Excluding non compliant mothers 1.38 ± 0.17 (6) 1.69 ± 0.10 (3) 1.45 ± 0.10 (8) 0.374 0.52
 Triglycerides (mmol/l)3 0.95 ± 0.15 (8) 0.86 ± 0.13 (4) 1.13 ± 0.16 (8) 0.51 0.23
 Excluding non compliant mothers 0.96 ± 0.18 (7) 0.80 ± 0.17 (3) 1.13 ± 0.16 (8) 0.51 0.13
Insulin like growth
factors

IGF1 (ng/ml) 185.8 ± 12.4 (8) 195.8 ± 16.9 (4) 184.9 ± 12.8 (7) 0.87 0.33

 With imputation 185.8 ± 12.4 (8) 195.8 ± 16.9 (4) 185.7 ± 12.3 (8) 0.87 0.35
 Excluding non compliant mothers 178.1 ± 11.3 (7) 201.3 ± 22.6 (3) 184.9 ± 12.8 (7) 0.61 0.35
 IGFBP3 4119 ± 254 (8) 4268 ± 121 (4) 4798 ± 227 (7) 0.12 0.023

 With imputation 4119 ± 254 (8) 4268 ± 121 (4) 4722 ± 232 (8) 0.14 0.053

 Excluding non compliant mothers 4106 ± 293 (7) 4312 ± 160 (3) 4798 ± 227 (7) 0.17 0.063

Adiposity Body Mass Index3 22.6 ± 0.8 (8) 23.3 ± 1.3 (4) 23.4 ± 1.1 (8) 0.84 0.70
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Table 5 (continued).

Risk marker Trial Group* Protein, Carbohydrate and Vitamins   Carbohydrate and vitamins   Vitamins only P1 P2

  Mean ± SEM** (n) Mean ± SEM (n) Mean ± SEM (n)   
 Excluding non compliant mothers 22.5 ± 0.9 (7) 24.2 ± 1.4 (3) 23.4 ± 1.1 (8) 0.65 0.93
 Dexa_Total_Fat (%) 25.6 ± 2.8 (7) 35.7 ± 2.2 (4) 26.6 ± 2.4 (8) 0.06 0.12
 With imputation 25.3 ± 2.6 (8) 35.7 ± 2.2 (4) 26.6 ± 2.4 (8) 0.03 0.11
 Excluding non compliant mothers 25.6 ± 2.8 (7) 35.9 ± 3.0 (3) 26.6 ± 2.4 (8) 0.11 0.19
Urinary steroid ratios Urinary F/E ratio 0.77 ± 0.07 (8) 0.81 ± 0.02 (2) 0.88 ± 0.08 (6) 0.53 0.53
 With imputation 0.77 ± 0.07 (8) 0.87 ± 0.07 (4) 0.88 ± 0.06 (8) 0.41 0.26
 Excluding non compliant mothers 0.78 ± 0.08 (7) 0.83 (1) 0.88 ± 0.08 (6) 0.65 0.57
 Urinary THF + 5aTHF/THE ratio 0.97 ± 0.09 (8) 0.88 ± 0.09 (2) 0.95 ± 0.18 (6) 0.924 0.86
 With imputation 0.97 ± 0.09 (8) 0.82 ± 0.08 (4) 1.00 ± 0.15 (8) 0.654 0.99
 Excluding non compliant mothers 0.96 ± 0.11 (7) 0.80 (1) 0.95 ± 0.18 (6) 0.874 0.88
 Testosterone – Males (nmol/l)3 18.4 ± 1.5 (5) 15.8 (1) 21.2 ± 1.9 (5) 0.34 0.46
 Excluding non compliant mothers 19.3 ± 1.6 (4) 15.8 (1) 21.2 ± 1.9 (5) 0.42 0.46
 Testosterone – Females (nmol/l) 2.0 ± 0.2 (2) 2.1 ± 0.3 (3) 1.9 ± 0.3 (3) 0.85 0.57
 With imputation 1.9 ± 0.2 (3) 2.1 ± 0.3 (3) 1.9 ± 0.3 (3) 0.83 0.633

 Excluding non compliant mothers 2.0 ± 0.2 (2) 2.4 ± 0.3 (2) 1.9 ± 0.3 (3) 0.57 0.84
 SHBG – Males (nmol/l)3 19.9 ± 3.6 (5) 18.3 (1) 18.1 ± 2.3 (5) 0.91 0.77
 Excluding non compliant mothers 19.4 ± 4.6 (4) 18.3 (1) 18.1 ± 2.3 (5) 0.96 0.77
 SHBG – Females (nmol/l)3 39.6 ± 15.5 (3) 41.0 ± 10.6 (3) 29.7 ± 12.8 (3) 0.164 0.60
 Excluding non compliant mothers 39.6 ± 15.5 (3) 46.5 ± 15.9 (2) 29.7 ± 12.8 (3) 0.75 0.33
1 p value for difference between groups
2 p value for difference between groups adjusted for BMI, Dexa, age and gender (BMI or Dexa fat are omitted as covariates when they are the dependent)
3 Imputation not required.
4 p value has been derived by bootstrapping because residuals from ANOVA were not normally distributed (Shapiro-Wilk test found to be significant).
* Trial Group” refers to original experimental treatment allocation; **Standard error of the mean; ***Multiple imputation of missing values as described in text; ****Per protocol
analysis excluding mothers with evidence for non-compliance as described in text
doi: 10.1371/journal.pone.0083371.t005
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Table 6. Adult disease risk markers amongst offspring of mothers participating in the Sorrento studies of maternal nutritional
supplementation who were assessed as adults: between group differences1 - Trial II (supplementation in nutritionally at risk
mothers after 28 weeks).

Risk marker   Protein, Carbohydrate and Vitamins   Carbohydrate and vitamins

   Difference (95% CI) Difference (95% CI)

Blood pressure Mean 24hr Systolic BP (mmHg) Unadjusted 4.88 (-4.43 to 14.18) 0.75 (-10.37 to 11.87)

  Adjusted* 2.02 (-5.24 to 9.28) 1.97 (-7.10 to 11.03)

 Mean 24hr Diastolic BP (mmHg) Unadjusted 0.75 (-6.48 to 7.98) -3.50 (-12.14 to 5.14)

  Adjusted 1.10 (-6.32 to 8.52) -5.21 (-14.48 to 4.05)

Markers of glucose tolerance and
insulin resistance

Fasting glucose (mmol/l)
Unadjusted
2 -0.01 (-0.31 to 0.29) -0.52 (-0.89 to -0.15)

  Adjusted -0.11 (-0.51 to 0.28) -0.46 (-0.98 to 0.05)

 30 mins post load glucose (mmol/l) Unadjusted -1.41 (-3.08 to 0.25) -1.71 (-3.75 to 0.32)

  Adjusted -1.73 (-3.81 to 0.36) -1.48 (-4.20 to 1.25)

 120 mins post load glucose (mmol/l) Unadjusted 0.76 (-0.65 to 2.17) 0.25 (-1.48 to 1.98)

  Adjusted 0.77 (-0.92 to 2.47) -0.86 (-3.08 to 1.35)

 Fasting insulin (pmol/l) Unadjusted -23.70 (-57.69 to 10.29) -35.50 ( -96.12 to 25.12)

  Adjusted -18.35 (-59.92 to 23.22) -54.46 (-126.73 to 17.82)

 30 mins post load insulin (pmol/l)
Unadjusted
2 -132.58 (-431.82 to 166.67) -66.06 (-419.03 to 286.90)

  Adjusted 4.33 (-423.76 to 432.41) 27.12 (-402.81 to 457.05)

 120 mins post load insulin (pmol/l)
Unadjusted
2 -25.18 (-431.19 to 380.84) -173.99 (-585.93 to 237.95)

  Adjusted 50.75 (-480.03 to 581.53) -656.50 (-1584.18 to 271.19)

 HbA1c (%) Unadjusted -0.11 (-0.44 to 0.21) -0.14 (-0.54 to 0.26)

  Adjusted -0.07 (-0.35 to 0.21) 0.07 (-0.29 to 0.44)

 Cpeptide fasting (nmol/l) Unadjusted -0.21 (-0.48 to 0.06) -0.24 (-0.57 to 0.09)

  Adjusted -0.14 (-0.31 to 0.04) -0.27 (-0.50 to -0.04)

 B cell function (%) Unadjusted -33.04 (-79.16 to 13.07) -40.48 (-122.75 to 41.78)

  Adjusted -22.60 (-73.35 to 28.15) -63.98 (-152.21 to 24.26)

 Insulin sensitivity (%)
Unadjusted
2 204.16 (-3.75 to 412.08) 164.84 (-49.78 to 379.46)

  Adjusted 128.04 (-211.42 to 467.50) 379.62 (-210.61 to 969.85)

 Insulin resistance Unadjusted -0.44 (-1.06 to 0.18) -0.66 (-1.77 to 0.45)

  Adjusted -0.34 (-1.11 to 0.42) -1.02 (-2.35 to 0.31)

Serum lipids Total cholesterol (mmol/l) Unadjusted -0.73 (-1.53 to 0.08) -0.54 (-1.52 to 0.45)

  Adjusted -1.01 (-1.94 to -0.08) -0.67 (-1.89 to 0.54)

 HDL cholesterol (mmol/l)
Unadjusted
2 -0.06 (-0.36 to 0.25) 0.16 (-0.21 to 0.53)

  Adjusted -0.16 (-0.60 to 0.28) 0.03 (-0.55 to 0.60)

 Triglycerides (mmol/l) Unadjusted -0.19 (-0.63 to 0.25) -0.28 (-0.81 to 0.26)

  Adjusted -0.11 (-0.60 to 0.39) -0.54 (-1.18 to 0.11)

Insulin like growth factors IGF1 (ng/ml) Unadjusted 0.89 (-36.89 to 38.68) 10.89 (-34.87 to 56.65)

  Adjusted 16.75 (-24.06 to 57.57) 35.13 (-14.69 to 84.94)

 IGFBP3 Unadjusted -678.88 (-1347.79 to -9.96) -529.75 (-1339.85 to 280.35)

  Adjusted2 -521.78 (-1080.40 to 36.83) -994.69 (-1646.08 to -343.31)

Adiposity Body Mass index Unadjusted -0.76 (-3.60 to 2.08) -0.09 (-3.57 to 3.38)

  Adjusted -0.06 (-3.24 to 3.12) -1.52 (-5.56 to 2.53)

 Dexa total fat (%) Unadjusted -1.02 (-8.32 to 6.29) 9.06 ( 0.42 to 17.71)

  Adjusted -1.23 (-6.76 to 4.29) 5.21 (-1.37 to 11.79)

Urinary steroid ratios Urinary F/E ratio Unadjusted -0.11 (-0.32 to 0.10) -0.07 (-0.39 to 0.25)

  Adjusted -0.14 (-0.42 to 0.14) -0.04 (-0.53 to 0.45)

 Urinary THF + 5aTHF/THE ratio
Unadjusted
2 0.03 (-0.29 to 0.34) -0.05 (-0.47 to 0.37)

  Adjusted 0.02 (-0.41 to 0.45) 0.19 (-0.57 to 0.94)
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Table 6 (continued).

Risk marker   Protein, Carbohydrate and Vitamins   Carbohydrate and vitamins

   Difference (95% CI) Difference (95% CI)

 Testosterone – Males (nmol/l) Unadjusted -2.80 ( -8.26 to 2.66) -5.44 (-14.89 to 4.01)

  Adjusted -4.46 (-13.73 to 4.81) -2.26 (-13.08 to 8.55)

 Testosterone – Females (nmol/l) Unadjusted 0.13 (-1.04 to1.31) 0.23 (-0.81 to 1.28)

  Adjusted -0.77 (-4.43 to 2.89) 1.47 (-5.57 to 8.50)

 SHBG – Males (nmol/l) Unadjusted 1.82 ( -7.98 to 11.62) 0.20 (-16.77 to 17.17)

  Adjusted -4.57 (-25.39 to 16.25) -4.65 (-28.95 to 19.65)

 SHBG – Females (nmol/l) Unadjusted2 9.29 (-21.00 to 39.58) 10.39 (-19.48 to 40.27)

  Adjusted -0.62 (-113.65 to 112.41) 32.80 (-77.55 to 143.15)
1 between group differences are based on the complete case analysis and are shown with Vitamins only group as reference category
2 estimates have been bootstrapped as residuals were not normally distributed (Shapiro-Wilk test <0.05)
* adjusted for BMI, Dexa, age and gender (BMI or Dexa fat are omitted as covariates when they are the dependent)
doi: 10.1371/journal.pone.0083371.t006
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