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Abstract

Study Design: Narrative review.

Objectives: We aim to describe current progress in the application of artificial intelligence and machine learning technology
to provide automated analysis of imaging in patients with spinal disorders.

Methods: A literature search utilizing the PubMed database was performed. Relevant studies from all the evidence levels have
been included.

Results: Within spine surgery, artificial intelligence and machine learning technologies have achieved near-human performance in
narrow image classification tasks on specific datasets in spinal degenerative disease, spinal deformity, spine trauma, and spine
oncology.

Conclusion: Although substantial challenges remain to be overcome it is clear that artificial intelligence and machine learning
technology will influence the practice of spine surgery in the future.
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Introduction

Medical imaging plays a central role in the diagnosis and man-

agement of spinal disorders.1 The combination of a growing

burden of spinal disease associated with an aging population,

and the greater availability of magnetic resonance imaging

(MRI) and computed tomography (CT), has resulted in a dra-

matic increase in spine related imaging over the past few

decades. Recent years have also seen major advances in machine

learning (ML) and artificial intelligence (AI) technology, fuel-

ing a dramatic rise in research related to computer-aided inter-

pretation of spinal imaging (Figure 1). While primarily a topic of

research interest at present, it is possible that computer-aided

interpretation of medical imaging will come to play a greater

role in clinical medicine, particularly as it pertains to the diag-

nosis and management of spinal disorders, in the coming years.2

ML is a branch of AI that makes use of optimization algorithms

to allow computer programs to improve through experience and

exposure to data. Over the past decade, ML techniques have been

increasingly used to inform clinical decisions, for example, in

automated electrocardiography interpretation.3 The application

of ML to automated interpretation of medical imaging, however,

is a more complicated task, which is actively being developed.4

As the field of ML has progressed, specialized software has been

able to achieve human-level performance in narrow image clas-

sification tasks.5,6 It is predicted that in the future, this technology

will achieve generalized capabilities and be able to provide

rapid interpretation of volumetric imaging and streamline care

(Figure 2). Many such technologies are now being developed for

a variety of clinical indications such as interpretation of CT scans

of the brain and detection of pulmonary nodules.7-9
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There has been significant research into applying ML technol-

ogy to the clinical management of patients with spinal disorders,

but significant challenges remain. In this narrative literature

review, we aim to describe current progress in the application

of ML technology to imaging gathered in the care of patients with

spine trauma, degenerative spinal disorders, spinal deformity, and

spinal oncology. We have identified the trends and challenges that

exist within this body of work and have attempted to identify areas

that may see progress in future years.

Applications of Machine Learning in Spine
Surgery

Degenerative Disease

Lumbar degenerative disease is highly prevalent and computer-

aided interpretation of MRI scans could streamline care for

these patients. A system for segmentation and classification

of degenerated intervertebral discs on lumbar MRI T2-

weighted images was first published in 2009.10 This system

made use of classic imaging processing techniques and was

validated on a small homogenous dataset. Similarly, Alomari

et al11 published a system for binary classification of lumbar

discs as degenerated or normal making use of a probabilistic

computer vision model.

While early work tended to use probabilistic computer

vision methods, subsequent work tended to make use of ML

techniques. Hao et al12 made use of a support vector machine

(SVM), which relied on disc segmentation followed by auto-

mated extraction of shape, intensity, and texture information.

Building on this work, Ruiz-España et al,13 developed a clas-

sifier that classified lumbar discs into 1 of 5 classes as defined

by Pfirrman.14 This approach made use of a segmentation algo-

rithm that extracted features relating to the intensity, shape, and

texture of the disc, which were passed to a custom classifier

that made use of a classical image processing algorithm. The

first published report to make use of an artificial neural network

(ANN) was the study by Costro-Mateos et al,15 which used

automated segmentation to extract disc features from a mid-

sagittal T2-weighted image and trained an ANN based on these

features.

The reports discussed up to this point all made use of an

automated segmentation algorithm and relied on a relatively

small number of training images, which limited their external

validity. The use of a convolutional neural network (CNN)

negates the need for a separate segmentation step prior to clas-

sification. The study by Jamaludin et al16 was innovative for its

use of a relatively high number of MRIs when compared with

previous studies. This study made use of 12 018 discs from

2009 patients and also made use of a CNN, which negated the

need for a separate segmentation step, and allowed automatic

Figure 1. PubMed indexed publications with the MeSH (medical
subject heading) terms “Spine Surgery” AND “Medical Imaging” AND
(“Artificial Intelligence” OR “Machine Learning”) since 1990.

Figure 2. Overview of artificial intelligence (AI) and human performance at image classification tasks over time. Early AI research achieved sub-
human performance but allowed technologies to be developed. Currently, task-specific AI can achieve human performance on narrow image
classification tasks and specific datasets in medical imaging. In the future, more generalized AI will affect medicine by providing rapid inter-
pretation of volumetric medical imaging data.
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extraction of features. This report achieved near human perfor-

mance at grading lumbar disc degeneration, disc narrowing,

upper/lower endplate defects, upper/lower marrow changes,

spondylolisthesis, and central canal stenosis. Building on this

work, the DeepSPINE framework used a large dataset of 22 796

lumbar disc levels extracted from 4075 patients and trained a

CNN to perform classification of central canal stenosis and

foraminal stenosis.17 These researchers achieved accuracy of

84.5% at grading lumbar spinal stenosis and 89.0% at grading

lumbar foraminal stenosis, which exceeded that of any other

published studies. In addition, the DeepSPINE framework per-

formed similarly to human raters at detection and grading of

lumbar spinal stenosis and foraminal stenosis.

While most work on automated analysis of degenerative

spinal imaging has focused on lumbar degenerative disease,

some published reports have looked at cervical degenerative

disease (Figure 3). Jin et al18 made use of diffusion tensor

imaging (DTI) metrics in a population of patients undergoing

surgery for degenerative cervical myelopathy. They employed

ML methods to predict surgical outcome using these DTI

metrics, but their predictive performance was limited by a

small patient population. Weber et al19 made use of a CNN

to quantify fatty infiltration in paraspinal musculature and

showed clinical correlates of fat infiltration. These authors

hypothesized that their metric could be used in the workup of

patients with degenerative cervical myelopathy.

Due to the aging population, the prevalence of spinal degen-

erative disease is increasing.20,21 The studies summarized here

show the potential for ML technology to streamline patient care

by providing rapid automated analysis of MRI scans, thereby

reducing radiologist workloads. These studies also demonstrate

that ML models can rapidly generate quantitative parameters

from imaging data, which are time consuming for a radiologist

to produce. Future ML models may be able to combine quan-

titative parameters from a patient’s imaging data, with clinical

information such as patient demographics and neurologic exam

and provide decision-making support to clinicians. In the future

this type of decision-making tool making use of ML technology

may be able to identify patients who will benefit most from

surgery and may provide assistance with surgical planning.

Spinal Deformity

ML methods have also been applied to automated image anal-

ysis in spinal deformity. Initial work in the area focused on

applying ML methods to data gathered from non-invasive sur-

face topography scans to classify scoliotic curves. Ramirez

et al22 made use of surface topography data to classify scoliotic

patients into 3 categories: mild, moderate, and severe curves.

This analysis found that a SVM achieved 85% accuracy in

predicting scoliotic curve severity when using radiographs

interpreted by radiologists as a gold standard. Seoud et al23

used data gathered from trunk surface topography to predict

the Lenke class on 97 patients with scoliosis. These researchers

achieved an overall accuracy of 72.7% when compared to radi-

ologist classifications derived from radiographs.

More recently, research groups have attempted to automat-

ically extract spinal parameters from spinal radiographs in the

setting of scoliosis. Sun et al24 made use of coronal radiographs

and trained an SVM to predict Cobb angles. When compared

with human-derived measures, this classifier performed well

with a high accuracy of 92.76%. The model had a root mean

squared error of 21.6%, which indicates a good model fit to the

training data. In a similar vein, Zhang et al25 used coronal

radiographs to train an ANN to estimate Cobb angles. When

compared with human-derived measures they achieved abso-

lute errors of 3 degrees.

A comprehensive automated platform for assessment of

idiopathic scoliosis was developed by Wu et al.26 This system,

called MVC-Net, makes use of biplanar radiographs to identify

Figure 3. Depiction of an attention map generated by a convolutional neural network (CNN) that has been trained to detect spinal cord
compression on a cervical spine magnetic resonance imaging (MRI) scan. The CNN has identified the herniated intervertebral disc as being
important to its classification decision.
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each vertebral level and estimates Cobb angle on an anteropos-

terior and lateral view. This system used 526 images for train-

ing and validation and achieved high accuracy when compared

with radiographs that were manually annotated by radiologists

with a mean absolute error of 4� across the testing samples.

Similarly, Galbusera et al27 developed a system for automated

estimation of spinal parameters based on 2-planar radiographs.

Their system involved a CNN trained on 493 patients and was

able to extract the spatial locations of various landmarks such

as endplate centers, hip joint centers, and the S1 endplate angle.

From this they were able to derive spinal parameters such as

T4-T12 kyphosis, L1-L5 lordosis, Cobb angle of scoliosis,

pelvic incidence, sacral slope, and pelvic tilt. While the

model-generated parameters showed good correlation to

radiologist-derived values, the standard errors of the estimated

parameters ranged from 2.7� for pelvic tilt to 11.5� for L1-5

lordosis.

Research to date has focused on automatically generating

quantitative spinal parameters such as T4-T12 kyphosis, pelvic

incidence, and pelvic tilt from radiographs. Spinal parameters

are time consuming to manually annotate and interrater relia-

bility can vary. The above studies demonstrate that a ML learn-

ing model could potentially facilitate more rapid and consistent

interpretation of spinal radiographs. Future work may make use

of larger datasets to compare spinal parameters generated by an

ML model to those manually annotated by human raters. In

addition, future research may seek to automatically classify

adult spinal deformity according to the validated Scoliosis

Research Society (SRS)–Schwab system. Ultimately, this line

of research may lead to a model that makes use of automati-

cally generated spinal parameters to provide decision-making

support to clinicians by predicting patient response to surgery

and optimal surgical approach.

Spine Trauma

The clinical management of patients with spine trauma requires

rapid and accurate interpretation of volumetric imaging. For

this reason, automated image analysis has a special potential

to streamline the care of patient with spine trauma.

The majority of work in applying ML methods to automated

image analysis in spine trauma has focused on thoracolumbar

trauma. Yao et al28 first developed a fully automated system for

detection of thoracolumbar fractures. This system used a seg-

mentation method, followed by a transformation of the

3-dimensional (3D) vertebral body shape onto a 2D space.

These researchers trained a committee of SVMs to recognize

fracture patterns on the 2D representation. While they made use

of a sophisticated method this initial report was limited by a

low number of training samples. The same research group

expanded this work by applying the same model to a larger

dataset of 104 patients.29 In this dataset, they achieved a sensi-

tivity of 0.81 with a false positive rate of 2.7. This research

group later applied their model to detect and classify thoraco-

lumbar osteoporotic fractures based on the Genant classifica-

tion system.30 They assembled a cohort of 75 patients with

thoracolumbar fractures and 75 matched patients with normal

CT scans. They achieved a sensitivity for detection of compres-

sion fractures at the patient level of 98.7% and specificity of

77.3%. In addition, for each fracture within their imaging data

their model attempted to classify the fracture into 1 of 4 Genant

classes. They achieved an accuracy for classification by Genant

type of 68%.

Some researchers have attempted to apply a CNN to detect

thoracolumbar osteoporotic fractures. Nicolaes et al31 used a

training database of 90 CT scans, which were labeled with

localizing information by 2 raters. This group made use of a

3D CNN and achieved accuracy similar to previously pub-

lished reports. Similarly, Baum et al32 developed a system for

automatic detection of osteoporotic fractures in thoracolumbar

imaging, which made use of a 2D CNN. The report by Tomita

et al33 made use of the largest dataset, which included 1432 CT

scans with 713 positive and 719 negative images of osteoporo-

tic compression fractures. These researchers labeled mid sagit-

tal images in a location agnostic manner and trained a CNN on

their training dataset. This model achieved an accuracy of

89.2% and F1 score of 90.8% on the holdout dataset.

Studies to date have focused on specific fracture types, such

as osteoporotic compression fractures and have used smaller

datasets. This line of research is in its infancy and no published

studies have been able to achieve human-level performance.

However, a large volume of CT scans are gathered in an emer-

gency setting and future work could leverage this large volume

of data. The goal of this line of research is to produce a machine

learning model that is general enough to detect any type of

spinal fracture with better-than human-level performance.

Such a model, if developed, could reduce workload for radiol-

ogists and increase sensitivity for subtle findings.

Spine Oncology

Compared with other aspects of spine surgery, fewer research-

ers have applied machine learning technology to interpretation

of imaging in spinal oncology. Hammon et al34 made use of

images from 114 patients and developed an SVM model to

detect spinal metastases on CT scans. Similar work was under-

taken by O’Connor et al,35 but both of these studies were lim-

ited by small imaging datasets. A more recent study made use

of an innovate approach, which used a segmentation algorithm

that identified regions of the image with similar signal charac-

teristics.36 An SVM was then used to classify the segmented

regions to identify areas suspicious for tumor. Again, the algo-

rithm was limited by a small training sample of 49 patients and

had a relatively high false positive rate. Wang et al37 made use

of an CNN trained with MRI scans from 26 patients to detect

metastatic lesions. In this case, a separate testing sample of

images was not available to determine model performance.

Future research in spinal oncology may go beyond tumor

detection and focus on automatically generating clinically

meaningful parameters from MRI scans such as Bilsky grade

and an estimate of spinal instability. In addition, the parameters

generated by ML models may be combined with clinical
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information such as patient demographics, degree of impair-

ment, and oncologic information, to assist clinicians with iden-

tifying patients who would benefit from surgery.

Future Directions

The increasing usage of ML technology has the potential to

directly affect the care of patients with spinal disease by

streamlining the interpretation of medical imaging and support-

ing diagnoses and clinical decisions. Despite the progress made

in the research setting, there has thus far been limited usage of

these technologies in a clinical setting, which highlights the

challenges that remain to be overcome. The challenges that

need to be overcome prior to wider clinical usage of ML tech-

nology can be broadly grouped into technological challenges

and cultural challenges.

Improved accessibility of powerful workstations with gra-

phical processing units have been largely responsible for the

recent progress in computer vision and image processing. Med-

ical imaging data, however, pose unique technological chal-

lenges.38 While most medical imaging data used within spine

surgery is volumetric, many machine learning models are

developed to accept 2D inputs.39,40 The majority of researchers

have attempted to overcome this challenge by representing 3D

spinal imaging in a 2D form. More recently, some research

groups have attempted to use 3D convolutional neural net-

works to directly analyze 3D medical imaging data. While

3D CNNs can offer better performance, they are computation-

ally expensive and medical imaging data must often be down-

sampled to accommodate currently available hardware

limitations.41 Further advances in computer hardware and inno-

vative data processing solutions are likely required to develop

more robust ML models with human-level performance.

Perhaps as significant as the technological challenges are

cultural challenges, which refer to systemic barriers in assem-

bling large datasets due to data privacy concerns and the chal-

lenge of integrating computer-aided diagnostics into a

traditional clinical workflow. The development of robust diag-

nostic tools relying on ML technology requires the assembly of

large annotated datasets. The most successful CNNs, which

have achieved widespread usage outside of medical imaging,

such as Google’s Inception network, required millions of

images during the training phase.42 It is recognized that to train

an ML model for a specific clinical task would likely require

tens of thousands of training images.4 Such datasets may need

to be assembled from multiple institutions. Despite standard

practices of data anonymization, medical imaging data in all

jurisdictions are subject to strict regulations regarding storage,

transmission, and usage, which creates challenges in assem-

bling a large dataset.43 These challenges are more pronounced

in certain jurisdictions. In the European Union, for example,

the recent introduction of the General Data Protection Regula-

tion, adopted an explicit opt-in policy for the usage of patient data

for research purposes.44 Assemblage of sufficiently sized imaging

datasets within spine surgery will require collaborations between

institutions and a keen awareness of applicable data privacy

regulations.

Another broad cultural challenge is that of accountability for

medical decisions. Most ML models appear as a “black box” to

an external user and the process by which the model arrives at a

clinical diagnosis cannot be easily understood or interpreted by

a human observer. If a hypothetical ML model were to fail, for

example, to detect a cervical spinal fracture it is at this time

unclear if the responsibility would fall on the clinician using the

ML system or the manufacturer of the device. The high acuity

of spinal disorders and the ramifications of a misdiagnosis

within spinal surgery make this especially relevent.45,46 As

diagnostic ML tools achieve better performance within spine

surgery and clinicians come to more heavily rely on automated

diagnoses this ethical issue will need to be debated further.

Conclusion

In recent years, ML technology has reached a substantial level

of development. Within spine surgery, ML technologies have

achieved near human performance in narrow classification

tasks on specific datasets. Prior to more widespread clinical

usage, however, ML technologies will need to demonstrate

human-level performance on larger datasets and more general-

ized classification tasks. The goal of this field of research is to

produce a generalized solution capable of providing compre-

hensive automated analysis of volumetric imaging. In addition,

the coupling of clinical data with image analysis may one day

permit improved treatment decision making, with an overall

aim of improving surgical care and patient outcomes. Although

substantial challenges remain to be overcome, ML technology

has improved rapidly in the past few years and progress is

expected to continue.
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