21509 measured reflections

 $R_{\rm int} = 0.032$

5060 independent reflections

4749 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Conformation and absolute configuration of (15,25)-2-(phenylselanyl)cyclohexyl (R)-2-methoxy-2-(1-naphthyl)propionate

Satoshi Murakami,^a Akane Kato,^a Hiroshi Katagiri,^a Takatoshi Matsumoto^b and Tatsuro Kijima^a*

^aDepartment of Biochemical Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan, and ^bInstitute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-2-1 Katahira, Aoba, Sendai 980-8577, Japan Correspondence e-mail: kijima@yz.yamagata-u.ac.jp

Received 31 May 2010; accepted 10 June 2010

Key indicators: single-crystal X-ray study; T = 115 K; mean σ (C–C) = 0.003 Å; R factor = 0.024; wR factor = 0.055; data-to-parameter ratio = 18.5.

The relative and absolute configurations of the title compound, C₂₆H₂₈O₃Se, were assigned from the known configuration of (R)-(-)-2-methoxy-2-(1-naphthyl)propionic acid used as starting material, and by examination of the Bijvoet (Friedel) pairs, using the anomalous dispersion data collected with Mo $K\alpha$ radiation at low temperature. The geometry around the carbonyl group exists in the syn conformation, as reflected in torsion angles involving this group, and the stability of the structure is affected by weak bifurcated intramolecular $C-H \cdots O$ hydrogen bonds.

Related literature

For general background to the crystalline-state analysis of 2methoxy-2-(1-naphthyl)propionic acid ester, see: Kuwahara et al. (2007). For synthetic details, see: Detty (1980); Izumi et al. (1993); Harada et al. (2000). For Bijvoet pairs analysis, see: Hooft et al. (2008).

Experimental

Crystal data

C26H28O3Se $M_r = 467.44$ Orthorhombic, P212121 a = 7.5714 (3) Å b = 15.9740 (7) Å c = 18.2994 (8) Å

V = 2213.23 (16) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 1.72 \text{ mm}^{-1}$ T = 115 K $0.30 \times 0.10 \times 0.08 \text{ mm}$ Data collection

```
Rigaku R-AXIS RAPID
  diffractometer
Absorption correction: multi-scan
  (ABSCOR; Higashi, 1995)
  T_{\min} = 0.827, \ \tilde{T}_{\max} = 1.000
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.055$	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$
S = 1.06	Absolute structure: Flack (1983),
5060 reflections	2178 Friedel pairs
274 parameters	Flack parameter: -0.015 (6)
H-atom parameters constrained	-

Table 1 Selected torsion angles (°).

01-C1-C3-O2	-17.1(2)	C1-C3-O3-C14	174.70 (13)
O2-C3-O3-C14	-2.8(2)	H14-C14-O3-C3	-27

Table 2

Geometry of the weak bifurcated intramolecular C-H···O hydrogen bonds (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
C12—H12···O1	0.95	2.42	3.000 (1)	119
C12—H12···O2	0.95	2.65	3.405 (2)	137

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: Yadokari-XG (Wakita, 2001; Kabuto et al., 2009).

The authors thank Dr Masataka Watanabe and Emeritus Professor Taeko Izumi for professional support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2291).

References

- Detty, M. R. (1980). J. Org. Chem. 45, 274-279.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Harada, N., Watanabe, M., Kuwahara, S., Sugio, A., Kasai, Y. & Ichikawa, A. (2000). Tetrahedron Asymmetry, 11, 1249-1253.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Hooft, R. W. W., Straver, L. H. & Spek, A. L. (2008). J. Appl. Cryst. 41, 96-103.
- Izumi, T., Nakamura, T. & Eda, Y. (1993). J. Chem. Technol. Biotechnol. 57, 175-180.
- Kabuto, C., Akine, S., Nemoto, T. & Kwon, E. (2009). J. Cryst. Soc. Jpn, 51, 218-224
- Kuwahara, S., Naito, J., Yamamoto, Y., Kasai, Y., Fujita, T., Noro, K., Shimanuki, K., Akagi, M., Watanabe, M., Matsumoto, T., Watanabe, M., Ichikawa, A. & Harada, N. (2007). Eur. J. Org. Chem. 11, 1827-1840.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2003). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Wakita, K. (2001). Yadokari-XG. Department of Chemistry, Graduate School of Science, The University of Tokyo, Japan.

Acta Cryst. (2010). E66, o1677 [doi:10.1107/S1600536810022233]

Conformation and absolute configuration of (1*S*,2*S*)-2-(phenylselanyl)cyclohexyl (*R*)-2-methoxy-2-(1-naphthyl)propionate

S. Murakami, A. Kato, H. Katagiri, T. Matsumoto and T. Kijima

Comment

Previously, Izumi group presented a chemoenzymatic synthesis of optically pure (*R*)- and (*S*)-2-cyclohexen-1-ols (Izumi *et al.*, 1993). However, the preparation and determination of the absolute configurations of such kind of aliphatic alcohols still has been difficult and important topic. The *M* α NP [2-methoxy-2-(1-naphthyl)- propionic] acid method is an attractive approach for the preparation of enantiopure alcohols and the determination of their absolute configurations by ¹H NMR anisotropy or X-ray crystallography (Harada *et al.*, 2000). Recent systematic X-ray crystallographic analysis of *M* α NP acid esters with various alcohols has shown that most prefer the *syn/syn* conformation (the so-called "*syn*" conformation) (Kuwahara *et al.*, 2007). On the other hand, although selenium has a large *f*"-value (Δf "=2.223 for Mo *K* α radiation), which promises a large anomalous scattering effect, *M* α NP acid esters including a Se atom have not been investigated by X-ray analysis. The structural properties and determination of the absolute configuration of such compounds are important for the development of this methodology.

We report here the conformation and absolute configuration of (R)-2-methoxy-2-(1-naphthyl)-propionic acid (1*S*,2*S*)-2-(phenylseleno)-cyclohexyl ester. Hydrolysis of this compound gives (+)-*trans*-2-(phenylseleno)-cyclohexan-1-ol, in which an olefin-forming *syn* elimination of phenyl selenoxide forms 2-cyclohexen-1-ol, whose optically active forms are especially useful in the asymmetric synthesis of terpenes and other natural products.

The crystal structure of the title compound (Fig. 1) showed the following torsion angles: O1—C1—C3—O2, -17.1 (2)°; O2—C3—O3—C14, -2.8 (2)°; C1—C3—O3—O14, 174.70 (13)°; and H14—C14—O3—C3, -27°. These angles indicate that the geometry around the carbonyl group takes the *syn* conformation (Table 1, Fig. 2). Moreover, weak bifurcated intramolecular hydrogen bonds in O1…H12…O2 showed a triangular shape (Table 2, Fig. 3). These structural properties are similar to those of most $M\alpha$ NP acid esters (Kuwahara *et al.*, 2007). The absolute structure was determined from the known configuration of $M\alpha$ NP, as supported by the refined Flack χ parameter and the Bijvoet pairs analysis of Hooft *et al.* (2008) performed with the *PLATON* program (Spek, 2009). The *P*2 parameter was 1.000 and the Hooft *y* parameter was -0.013. The plot of 1927 Bijvoet pairs in Fig. 4 suggests that the absolute configuration could be determined with a high confidence.

Experimental

To a mixture of enantiopure (*R*)-(–)-*M* α NP acid (4.04 mmol), 4-dimethylaminopyridine (DMAP, 2.45 mmol), (±)-*trans*-2-(phenylseleno)-cyclohexan-1-ol (Detty, 1980) (2.96 mmol), and *N*,*N*-diisopropyl-carbodiimide guanidine (DIC, 8.23 mmol) in CH₂Cl₂ (6.4 ml) cooled at 273 K was added 10-camphorsulfonic acid (CSA, 0.49 mmol), and the mixture was stirred at room temperature overnight. After addition of water (0.5 ml), the mixture was stirred for 1 h, diluted with EtOAc, and filtered with Celite, which was washed with EtOAc. The organic layer was evaporated under reduced pressure, and the residue was subjected to short column chromatography on silica gel (EtOAc). The crude diastereomeric esters obtained were separated by HPLC on silica gel (hexane/EtOAc = 30:1) giving the title compound as a second-eluted ester in 48.5% yield

(colorless). $[\alpha]_D^{22}$ 67.746 (c 1.42, CHCl₃), mp = 405–406 K. Crystals suitable for X-ray diffraction were grown by slow solvent/solvent diffusion of hexane into ethyl acetate. IR (KBr): v[cm⁻¹] 2941, 1447 (alkane), 1739 (ester CO), 1136, 1055, 1022, 785 (mono substituted benzene) ¹H NMR (400 MHz, CDCl₃): δ [p.p.m.] 0.67–1.96 (m, 8H) 2.03 (s, 3H) 2.90(ddd, 1H, J = 10.07, 10.07 and 4.12 Hz) 3.07 (s, 3H) 4.78 (ddd, 1H, J = 9.62, 9.62 and 4.12 Hz) 7.22–7.30 (m, 1H) 7.44–7.49 (m, 5H) 7.57–7.59 (m, 3H) 7.83–7.87(m, 1H) 8.42–8.46 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ [p.p.m.] 21.5, 23.1, 25.4, 30.6, 32.5, 45.5, 50.8, 75.3, 81.4, 124.5, 125.4, 125.7, 125.9, 126.4, 127.5, 128.9, 129.4, 131.4, 134.0, 134.9, 135.0, 173.5 Anal. Calcd. for C₂₆H₂₈O₃Se: C 66.8, H 5.99%. Found: C 66.71, H 6.08%.

Refinement

In the refinement of the title compound, the H atoms were calculated geometrically and refined as riding, with C—H bond lengths of 0.95–1.00 Å, and with $U_{iso}(H)$ values of $1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids. H atoms are shown as spheres.

Fig. 2. The preferred conformation of (*R*)- $M\alpha$ NP acid ester, adopting *syn/syn* conformation (*i.e.*, the so-called *syn* conformation).

Fig. 3. The weak bifurcated intramolecular C—H···O hydrogen bonds, stabilizing the *syn* conformation.

Fig. 4. A scatter plot of Bijvoet differences, prepared using the program *PLATON* (Spek, 2009). Shown are 1927 pairs where $\Delta_{obs} > 0.25\sigma(\Delta_{obs})$. 1750 reflections confirming the absolute structure are shown in black. 177 reflections with the wrong sign are shown in red.

(15,25)-2-(phenylselanyl)cyclohexyl (R)-2-methoxy-2-(1-naphthyl)propionate

Crystal data

C ₂₆ H ₂₈ O ₃ Se	$D_{\rm x} = 1.403 {\rm ~Mg~m^{-3}}$
$M_r = 467.44$	Melting point: 405 K
Orthorhombic, $P2_12_12_1$	Mo <i>K</i> α radiation, $\lambda = 0.71075$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 19734 reflections
a = 7.5714(3) Å	$\theta = 3.2 - 27.5^{\circ}$
b = 15.9740 (7) Å	$\mu = 1.72 \text{ mm}^{-1}$
c = 18.2994 (8) Å	T = 115 K
$V = 2213.23 (16) \text{ Å}^3$	Plate, colourless
Z = 4	$0.30\times0.10\times0.08~mm$
F(000) = 968	

Data collection

Rigaku R-AXIS RAPID diffractometer	5060 independent reflections
Radiation source: rotating anode	4749 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.2^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -8 \rightarrow 9$
$T_{\min} = 0.827, T_{\max} = 1.000$	$k = -20 \rightarrow 20$
21509 measured reflections	<i>l</i> = −23→23

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.024$	$w = 1/[\sigma^2(F_o^2) + (0.0284P)^2 + 0.3422P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.055$	$(\Delta/\sigma)_{\text{max}} = 0.001$
<i>S</i> = 1.06	$\Delta \rho_{max} = 0.47 \text{ e} \text{ Å}^{-3}$
5060 reflections	$\Delta \rho_{min} = -0.31 \text{ e } \text{\AA}^{-3}$

274 parameters	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), Fc [*] =kFc[1+0.001xFc ² λ^3 /sin(20)] ^{-1/4}
0 restraints	Extinction coefficient: 0.0023 (4)
0 constraints	Absolute structure: Flack (1983), 2178 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.015 (6)

Secondary atom site location: difference Fourier map

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
C1	-0.1779 (2)	0.23902 (10)	0.24894 (9)	0.0192 (3)
01	-0.33156 (17)	0.20184 (7)	0.21696 (7)	0.0228 (3)
C2	-0.4470 (2)	0.25838 (13)	0.18042 (10)	0.0287 (4)
H2	-0.5034	0.2952	0.2163	0.043*
H2A	-0.5378	0.2267	0.1542	0.043*
H2B	-0.3792	0.2922	0.1456	0.043*
C3	-0.0844 (2)	0.16503 (11)	0.28614 (9)	0.0186 (4)
02	-0.15312 (17)	0.09919 (8)	0.29975 (7)	0.0268 (3)
03	0.08202 (16)	0.18555 (8)	0.30378 (7)	0.0188 (3)
C4	-0.0564 (2)	0.27792 (10)	0.19115 (9)	0.0174 (3)
C5	-0.0072 (2)	0.36005 (11)	0.19467 (10)	0.0216 (4)
Н5	-0.0532	0.3939	0.2329	0.026*
C6	0.1098 (3)	0.39644 (12)	0.14346 (11)	0.0243 (4)
Н6	0.1405	0.4539	0.1472	0.029*
C7	0.1782 (3)	0.34865 (11)	0.08873 (10)	0.0236 (4)
H7	0.2570	0.3730	0.0544	0.028*
C8	0.1328 (2)	0.26292 (12)	0.08248 (9)	0.0204 (4)
С9	0.2077 (2)	0.21244 (13)	0.02694 (10)	0.0264 (4)
Н9	0.2879	0.2367	-0.0069	0.032*
C10	0.1665 (3)	0.12967 (13)	0.02130 (10)	0.0308 (4)
H10	0.2197	0.0963	-0.0156	0.037*
C11	0.0448 (3)	0.09373 (12)	0.07026 (11)	0.0286 (4)
H11	0.0149	0.0362	0.0657	0.034*
C12	-0.0308 (3)	0.14082 (11)	0.12443 (10)	0.0227 (4)
H12	-0.1133	0.1155	0.1567	0.027*
C13	0.0117 (2)	0.22675 (10)	0.13327 (9)	0.0181 (4)
C14	0.1779 (3)	0.12243 (10)	0.34533 (9)	0.0174 (3)
H14	0.0914	0.0880	0.3736	0.021*
C15	0.2795 (3)	0.06561 (11)	0.29373 (10)	0.0241 (4)
H15	0.3670	0.0988	0.2659	0.029*
H15A	0.1972	0.0393	0.2585	0.029*
C16	0.3739 (3)	-0.00205 (12)	0.33817 (11)	0.0259 (4)
H16	0.2852	-0.0382	0.3624	0.031*
H16A	0.4451	-0.0375	0.3050	0.031*
C17	0.4935 (2)	0.03679 (11)	0.39562 (12)	0.0262 (4)
H17	0.5916	0.0667	0.3712	0.031*
H17A	0.5451	-0.0081	0.4262	0.031*
C18	0.3924 (2)	0.09780 (11)	0.44410 (10)	0.0225 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H18	0.4750	0.1244	0.4790	0.027*
H18A	0.3024	0.0668	0.4726	0.027*
C19	0.3018 (2)	0.16562 (10)	0.39842 (10)	0.0190 (4)
H19	0.3937	0.1966	0.3700	0.023*
Se1	0.17856 (2)	0.245122 (11)	0.462912 (9)	0.02078 (6)
C20	0.2786 (2)	0.34792 (11)	0.42811 (11)	0.0191 (4)
C21	0.2687 (3)	0.37120 (12)	0.35488 (11)	0.0246 (4)
H21	0.2171	0.3345	0.3201	0.030*
C22	0.3347 (3)	0.44831 (12)	0.33294 (11)	0.0305 (4)
H22	0.3282	0.4640	0.2829	0.037*
C23	0.4096 (3)	0.50226 (12)	0.38291 (14)	0.0335 (5)
H23	0.4554	0.5547	0.3674	0.040*
C24	0.4177 (3)	0.47954 (12)	0.45598 (13)	0.0324 (5)
H24	0.4683	0.5168	0.4906	0.039*
C25	0.3522 (2)	0.40256 (12)	0.47872 (11)	0.0251 (4)
H25	0.3577	0.3873	0.5288	0.030*
C26	-0.2293 (2)	0.29874 (12)	0.31135 (11)	0.0251 (4)
H26	-0.2946	0.3465	0.2914	0.038*
H26A	-0.1223	0.3188	0.3359	0.038*
H26B	-0.3038	0.2690	0.3466	0.038*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0175 (7)	0.0183 (8)	0.0218 (7)	0.0003 (8)	-0.0016 (7)	0.0013 (7)
O1	0.0186 (6)	0.0210 (6)	0.0289 (7)	-0.0014 (5)	-0.0043 (6)	0.0050 (5)
C2	0.0237 (8)	0.0292 (10)	0.0333 (10)	0.0021 (9)	-0.0057 (8)	0.0075 (9)
C3	0.0207 (9)	0.0206 (9)	0.0143 (8)	0.0009 (7)	0.0011 (7)	0.0005 (7)
O2	0.0241 (7)	0.0237 (6)	0.0325 (7)	-0.0049 (6)	-0.0031 (6)	0.0113 (6)
O3	0.0201 (6)	0.0158 (6)	0.0205 (6)	-0.0010 (5)	-0.0023 (5)	0.0041 (5)
C4	0.0175 (8)	0.0175 (8)	0.0172 (8)	0.0013 (6)	-0.0035 (7)	0.0027 (6)
C5	0.0244 (9)	0.0185 (8)	0.0220 (9)	0.0014 (7)	-0.0036 (7)	0.0006 (7)
C6	0.0274 (10)	0.0155 (8)	0.0301 (10)	-0.0036 (7)	-0.0042 (8)	0.0065 (8)
C7	0.0209 (8)	0.0261 (9)	0.0239 (9)	-0.0056 (8)	-0.0013 (8)	0.0068 (7)
C8	0.0187 (7)	0.0240 (9)	0.0184 (8)	0.0009 (7)	-0.0033 (6)	0.0032 (7)
C9	0.0225 (9)	0.0364 (10)	0.0202 (9)	-0.0006 (8)	0.0012 (8)	0.0004 (8)
C10	0.0321 (10)	0.0375 (11)	0.0227 (10)	0.0045 (9)	0.0012 (9)	-0.0100 (8)
C11	0.0377 (11)	0.0210 (9)	0.0271 (10)	0.0006 (9)	-0.0027 (9)	-0.0054 (8)
C12	0.0261 (9)	0.0201 (9)	0.0219 (9)	-0.0001 (7)	-0.0019 (8)	0.0012 (7)
C13	0.0184 (8)	0.0194 (9)	0.0164 (8)	0.0007 (6)	-0.0049 (6)	0.0017 (6)
C14	0.0208 (8)	0.0137 (7)	0.0176 (8)	0.0009 (8)	-0.0005 (8)	0.0029 (6)
C15	0.0333 (11)	0.0176 (8)	0.0214 (9)	0.0015 (7)	0.0042 (8)	-0.0011 (7)
C16	0.0321 (10)	0.0177 (9)	0.0278 (10)	0.0050 (8)	0.0063 (8)	0.0016 (8)
C17	0.0210 (9)	0.0188 (9)	0.0388 (11)	0.0035 (7)	0.0008 (8)	0.0032 (8)
C18	0.0216 (9)	0.0194 (9)	0.0266 (10)	0.0011 (7)	-0.0058 (8)	0.0002 (7)
C19	0.0180 (8)	0.0169 (8)	0.0220 (9)	0.0021 (7)	0.0002 (8)	-0.0001 (7)
Se1	0.02435 (9)	0.01706 (8)	0.02093 (8)	-0.00017 (8)	0.00258 (7)	-0.00066 (8)
C20	0.0170 (9)	0.0138 (8)	0.0266 (10)	0.0032 (6)	0.0016 (7)	-0.0002 (7)

C21	0.0245 (10)	0.0234 (9)	0.0259 (10)	0.0015 (7)	0.0009 (8)	-0.0025 (8)
C22	0.0319 (11)	0.0271 (9)	0.0326 (11)	0.0027 (9)	0.0080 (10)	0.0058 (8)
C23	0.0301 (10)	0.0173 (9)	0.0530 (14)	-0.0004 (8)	0.0083 (11)	0.0021 (9)
C24	0.0274 (10)	0.0197 (9)	0.0500 (14)	-0.0010(7)	-0.0004 (10)	-0.0113 (9)
C25	0.0232 (9)	0.0230 (9)	0.0289 (11)	0.0030 (7)	-0.0027 (8)	-0.0043 (7)
C26	0.0246 (9)	0.0261 (10)	0.0246 (10)	0.0028 (7)	0.0032 (8)	-0.0010 (8)
Geometric parat	meters (Å, °)					
C1-01		1.431 (2)	C14-	-H14	1.00	00
C1—C4		1.533 (2)	C15–	C16	1.53	0 (3)
C1—C3		1.537 (2)	C15–	-H15	0.99	00
C1—C26		1.538 (2)	C15-	-H15A	0.99	00
O1—C2		1.424 (2)	C16–	C17	1.52	0 (3)
С2—Н2		0.9800	C16–	-H16	0.99	00
C2—H2A		0.9800	C16–	-H16A	0.99	00
C2—H2B		0.9800	C17–	-C18	1.52	4 (3)
$C_{3}-0_{2}$		1 199 (2)	C17-	-H17	0.99	00
$C_{3} - C_{3}$		1 341 (2)	C17-	-H17A	0.99	00
03-C14		1 457 (2)	C18-	-C19	1.53	1 (2)
C4—C5		1 365 (2)	C18-	-H18	0.99	00
C4-C13		1434(2)	C18-	-H18A	0.99	00
C5—C6		1.137(2) 1.415(3)	C19-	-Sel	1.96	88 (17)
С5—Н5		0.9500	C19-	_H19	1.90	00
C6—C7		1 362 (3)	Sel—	-C20	1.00	72 (18)
С6—Н6		0.9500	C20-	-C25	1.31	9(3)
C7—C8		1 416 (2)	C20	-C21	1.30	3 (3)
С7—Н7		0.9500	C21-	-C22	1.39	9(3)
C^{8}		1 416 (3)	C21	-H21	0.95	00
C8-C13		1 428 (2)	C22	-C23	1 37	8 (3)
C9-C10		1.120(2) 1.362(3)	C22	-H22	0.95	00
С9—Н9		0.9500	C22	-C24	1 38	7 (3)
C10-C11		1407(3)	C23	_H23	0.95	, (<u>)</u>
C10_H10		0.9500	C24-	-C25	1 39	0.(3)
C11-C12		1 370 (3)	C24	_H24	0.95	00
C11_H11		0.9500	C25-	_H25	0.95	00
C12-C13		1.419(2)	C26	-H26	0.95	00
С12—Н12		0.9500	C26	-H26A	0.98	00
C12 III2		1 516 (2)	C26	_H26R	0.98	00
C14-C15		1.519 (2)	020	11200	0.90	00
01-C1-C4		111.94 (13)	C14–	-C15—H15	109.	8
01		103.67 (13)	C16–	-C15-H15	109.	8
C4—C1—C3		109.94 (13)	C14-	-C15-H15A	109	8
01—C1—C26		110.80 (13)	C16–	-C15—H15A	109	8
C4—C1—C26		114.38 (14)	H15-	-C15-H15A	108	3
C3—C1—C26		105.35 (14)	C17–	-C16-C15	110	95 (15)
C2-01-C1		115.32 (13)	C17–	-C16-H16	109	4
01-C2-H2		109 5	C15-	-C16-H16	109	4
01 - C2 - H2A		109.5	C17-	-C16-H16A	109.	4
			017		109.	•

H2—C2—H2A	109.5	C15—C16—H16A	109.4
O1—C2—H2B	109.5	H16—C16—H16A	108.0
H2—C2—H2B	109.5	C16—C17—C18	111.37 (15)
H2A—C2—H2B	109.5	С16—С17—Н17	109.4
O2—C3—O3	124.87 (16)	С18—С17—Н17	109.4
O2—C3—C1	124.52 (16)	С16—С17—Н17А	109.4
O3—C3—C1	110.56 (14)	C18—C17—H17A	109.4
C3—O3—C14	115.12 (13)	H17—C17—H17A	108.0
C5—C4—C13	118.98 (16)	C17—C18—C19	111.08 (16)
C5—C4—C1	121.36 (16)	C17—C18—H18	109.4
C13—C4—C1	119.63 (15)	C19—C18—H18	109.4
C4—C5—C6	122.31 (18)	C17—C18—H18A	109.4
С4—С5—Н5	118.8	C19—C18—H18A	109.4
С6—С5—Н5	118.8	H18—C18—H18A	108.0
C7—C6—C5	119.67 (17)	C14—C19—C18	107.76 (14)
С7—С6—Н6	120.2	C14—C19—Se1	112.61 (12)
С5—С6—Н6	120.2	C18—C19—Se1	109.97 (12)
C6—C7—C8	120.62 (17)	С14—С19—Н19	108.8
С6—С7—Н7	119.7	С18—С19—Н19	108.8
С8—С7—Н7	119.7	Se1-C19-H19	108.8
C9—C8—C7	120.77 (16)	C20—Se1—C19	99.56 (8)
C9—C8—C13	119.60 (17)	C25—C20—C21	119.68 (18)
C7—C8—C13	119.63 (17)	C25—C20—Se1	118.37 (15)
С10—С9—С8	121.02 (18)	C21—C20—Se1	121.81 (14)
С10—С9—Н9	119.5	C22—C21—C20	119.72 (19)
С8—С9—Н9	119.5	C22—C21—H21	120.1
C9—C10—C11	119.84 (18)	C20-C21-H21	120.1
C9—C10—H10	120.1	C23—C22—C21	120.7 (2)
С11—С10—Н10	120.1	C23—C22—H22	119.6
C12-C11-C10	120.69 (18)	C21—C22—H22	119.6
C12—C11—H11	119.7	C22—C23—C24	119.61 (19)
C10-C11-H11	119.7	С22—С23—Н23	120.2
C11—C12—C13	121.24 (18)	C24—C23—H23	120.2
C11—C12—H12	119.4	C23—C24—C25	120.29 (19)
C13—C12—H12	119.4	C23—C24—H24	119.9
C12—C13—C8	117.59 (16)	C25—C24—H24	119.9
C12—C13—C4	123.63 (16)	C20—C25—C24	119.97 (19)
C8—C13—C4	118.76 (16)	C20—C25—H25	120.0
O3—C14—C19	109.13 (13)	C24—C25—H25	120.0
O3—C14—C15	109.97 (14)	C1—C26—H26	109.5
C19—C14—C15	110.91 (16)	C1—C26—H26A	109.5
O3—C14—H14	108.9	H26—C26—H26A	109.5
C19—C14—H14	108.9	C1—C26—H26B	109.5
C15—C14—H14	108.9	H26—C26—H26B	109.5
C14—C15—C16	109.16 (15)	H26A—C26—H26B	109.5
C4—C1—O1—C2	-63.60 (18)	C9—C8—C13—C4	177.18 (15)
C3—C1—O1—C2	177.95 (14)	C7—C8—C13—C4	-2.1 (2)
C26—C1—O1—C2	65.38 (19)	C5—C4—C13—C12	-179.93 (17)
O1—C1—C3—O2	-17.1 (2)	C1—C4—C13—C12	1.9 (2)

-130.89 (18)	C_{3} — C_{4} — C_{13} — C_{8}	1.8 (2)
99.4 (2)	C1—C4—C13—C8	-176.35 (14)
165.38 (13)	C3—O3—C14—C19	-145.77 (15)
45.56 (18)	C3-03-C14-C15	92.36 (17)
-78.15 (17)	O3-C14-C15-C16	-178.00 (14)
-2.8 (2)	C19—C14—C15—C16	61.19 (19)
174.70 (13)	C14-C15-C16-C17	-56.3 (2)
124.21 (17)	C15-C16-C17-C18	54.3 (2)
-121.13 (18)	C16-C17-C18-C19	-55.9 (2)
-2.9 (2)	O3—C14—C19—C18	176.81 (14)
-57.72 (19)	C15-C14-C19-C18	-61.88 (19)
56.94 (19)	O3-C14-C19-Se1	55.36 (16)
175.21 (15)	C15-C14-C19-Se1	176.66 (11)
-0.4 (3)	C17-C18-C19-C14	58.60 (19)
177.64 (16)	C17-C18-C19-Se1	-178.31 (12)
-0.5 (3)	C14-C19-Se1-C20	-113.12 (12)
0.2 (3)	C18—C19—Se1—C20	126.70 (13)
-178.12 (17)	C19—Se1—C20—C25	-128.14 (14)
1.2 (3)	C19—Se1—C20—C21	56.15 (16)
179.07 (18)	C25—C20—C21—C22	0.9 (3)
-0.2 (3)	Se1—C20—C21—C22	176.54 (15)
1.4 (3)	C20-C21-C22-C23	-0.2 (3)
-1.0 (3)	C21—C22—C23—C24	-0.5 (3)
-0.5 (3)	C22—C23—C24—C25	0.5 (3)
1.6 (3)	C21—C20—C25—C24	-0.9 (3)
-176.73 (17)	Se1-C20-C25-C24	-176.69 (14)
-1.2 (2)	C23—C24—C25—C20	0.2 (3)
179.46 (16)	H14—C14—O3—C3	-27
	$\begin{array}{c} 99.4 (2) \\ 165.38 (13) \\ 45.56 (18) \\ -78.15 (17) \\ -2.8 (2) \\ 174.70 (13) \\ 124.21 (17) \\ -121.13 (18) \\ -2.9 (2) \\ -57.72 (19) \\ 56.94 (19) \\ 175.21 (15) \\ -0.4 (3) \\ 177.64 (16) \\ -0.5 (3) \\ 0.2 (3) \\ -178.12 (17) \\ 1.2 (3) \\ 179.07 (18) \\ -0.2 (3) \\ 1.4 (3) \\ -1.0 (3) \\ -0.5 (3) \\ 1.6 (3) \\ -176.73 (17) \\ -1.2 (2) \\ 179.46 (16) \end{array}$	99.4 (2) $C1-C4-C13-C8$ 165.38 (13) $C3-O3-C14-C19$ 45.56 (18) $C3-O3-C14-C15$ -78.15 (17) $O3-C14-C15-C16$ -2.8 (2) $C19-C14-C15-C16$ 174.70 (13) $C14-C15-C16-C17$ 124.21 (17) $C15-C16-C17-C18$ -121.13 (18) $C16-C17-C18-C19$ -2.9 (2) $O3-C14-C19-C18$ -57.72 (19) $C15-C14-C19-C18$ 56.94 (19) $O3-C14-C19-Se1$ -0.4 (3) $C17-C18-C19-Se1$ -0.4 (3) $C17-C18-C19-Se1$ -0.5 (3) $C14-C19-Se1-C20$ -178.12 (17) $C19-Se1-C20$ -178.12 (17) $C19-Se1-C20-C25$ 1.2 (3) $C19-Se1-C20-C21$ -179.07 (18) $C25-C20-C21-C22$ -0.2 (3) $Se1-C20-C21-C22$ -1.0 (3) $C21-C22-C23-C24$ -0.5 (3) $C21-C22-C23-C24$ -0.5 (3) $C21-C22-C23-C24$ -176.73 (17) $Se1-C20-C25-C24$ -1.2 (2) $C23-C24-C25-C20$ -179.46 (16)H14-C14-O3-C3

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
C6—H6···O2 ⁱ	0.95	2.52	3.417 (2)	158.
С12—Н12…О1	0.95	2.42	3.001 (2)	119.
C14—H14····O2	1.00	2.30	2.667 (3)	100.
C17—H17···O2 ⁱⁱ	0.99	2.39	3.351 (2)	163.
C18—H18…Se1 ⁱⁱⁱ	0.99	2.80	3.7264 (17)	156.

Symmetry codes: (i) -*x*, *y*+1/2, -*z*+1/2; (ii) *x*+1, *y*, *z*; (iii) *x*+1/2, -*y*+1/2, -*z*+1.

Table 2

Geometry of the weak bifurcated intramolecular C-	—H…O hydrogen bonds (Å,	, °)
---	-------------------------	------

D—H···A	D—H	Н…А	D…A	D—H…A
С12—Н12…О1	0.95	2.42	3.000 (1)	119
С12—Н12…О2	0.95	2.65	3.405 (2)	137

