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Abstract: Candida albicans and Candida glabrata are the two most prevalent etiologic agents of
candidiasis worldwide. Although both are recognized as pathogenic, their choice of virulence traits
is highly divergent. Indeed, it appears that these different approaches to fungal virulence may be
equally successful in causing human candidiasis. In this review, the virulence mechanisms employed
by C. albicans and C. glabrata are analyzed, with emphasis on the differences between the two systems.
Pathogenesis features considered in this paper include dimorphic growth, secreted enzymes and
signaling molecules, and stress resistance mechanisms. The consequences of these traits in tissue
invasion, biofilm formation, immune system evasion, and macrophage escape, in a species dependent
manner, are discussed. This review highlights the observation that C. albicans and C. glabrata follow
different paths leading to a similar outcome. It also highlights the lack of knowledge on some of the
specific mechanisms underlying C. glabrata pathogenesis, which deserve future scrutiny.

Keywords: Candida; host-pathogen interaction; virulence; biofilm formation; morphology;
immune evasion

1. Introduction

Infections caused by fungi affect millions of people worldwide, with the overall mortality
rate estimated to be roughly 1,350,000 deaths per year [1]. Among pathogenic fungi, Candida
species are responsible for the most common invasive fungal disease in developed countries—the
candidiasis [2]. Candida species live as commensals on mucosal surfaces where they are constituents of
the normal microbiota of the oral cavity and gastrointestinal and vaginal tracts. However, they can
opportunistically become pathogenic under suitable conditions, such as host-disrupted microbiota
or immunocompromised hosts, being responsible for clinical manifestations from mucocutaneous
overgrowth to bloodstream infections [3–5]. Of the various Candida species, Candida albicans and
Candida glabrata not only account for 60% of Candida species present in the human body, but also
constitute the most prevalent of the pathogenic Candida species, being responsible for more than 400,000
life-threatening infections worldwide every year [3,6].

C. albicans and C. glabrata are the two most common pathogenic yeasts of humans, yet they are
phylogenetically, genetically, and phenotypically very different. On one hand, C. albicans diploid
genome carries several gene families that are associated with virulence [7]. These include the
ALS (agglutinin-like sequence) adhesins, required for host adhesion, secreted aspartyl proteases
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(SAPs) and phospholipases, which allow for the degradation of host barriers and the invasion of
surrounding tissue, and proteins involved in oligopeptide and iron transfer [8–10]. On the other
hand, C. glabrata mechanisms of tissue invasion are mostly unknown, although it is hypothesized to
possibly occur by endocytosis induction of host cells [11]. Its haploid genome encodes a large group of
glycosylphosphatidylinositol (GPI)-anchored cell wall proteins, such as the adhesins from the EPA
gene family, implicated in fungus–host interactions or biofilm formation, and a family of aspartic
proteases (yapsins) which are mainly associated with cell wall remodeling and possible immune
evasion [12,13]. Moreover, key virulence attributes of C. albicans, which are known to be the basis of its
pathogenicity, are absent in C. glabrata [14]. Switching from yeast to hyphal growth not only allows
consistent biofilm production but also enables C. albicans to be highly invasive and escape macrophage
engulfment [15–19]. Nevertheless, both species are known to use biofilms to colonize the surface of
several medical devices based on different materials [20]. Unlike C. albicans, it has been demonstrated
that C. glabrata lets itself be taken up by macrophages, where it persists and divides for long periods
of time eventually leading to cell lysis due to fungal load [21,22]. It has the ability of detoxifying
oxidative radical species and disrupting normal phagosomal maturation, leading to the inhibition of
phagolysosome formation and phagosome acidification [21,23].

The interaction between Candida and its host cells is characterized by a complex interplay between
the expression of fungal virulence factors and the host immune system, and the presence of other
microorganisms affects this interplay. This review aims to explore and compare the remarkably distinct
paths toward virulence trailed by the two most common causative agents of candidiasis worldwide.
On one hand, C. albicans is known for its ability to evade host defenses and form bulk biofilms due
to its ability to undergo filamentous growth, while on the other hand, C. glabrata is an unusually
stress-tolerant organism able to survive and replicate inside the immune system cells. Despite having
such distinct virulence features, C. glabrata and C. albicans are frequently co-isolated [11].

2. Host Damage and Invasion

There is a variety of defense mechanisms through which the human host is able to prevent invasion
by pathogenic microorganisms, such as C. albicans and C. glabrata. These mechanisms consist not only
of physical but also of chemical barriers. For instance, epithelial cells, which in most cases are the first
line of contact between host and pathogen, function as the prime physical barrier restraining Candida
from invasion of the underlying tissue. On one hand, these cells are interconnected through “tight
junctions” preventing the entry of microorganisms into interepithelial space and eventually into the
bloodstream [24,25]. On the other hand, some types of epithelial cells, such as those in the intestinal or
vaginal epithelium, are able to produce a mucus layer by secreting mucins [24,26]. This layer impairs
Candida invasion by preventing contact with the epithelium surface. Likewise, in the oral cavity the
flow of saliva plays an important role as both a physical and a chemical barrier as it not only prevents
the adhesion to mucosa and dental surfaces but also contains several antimicrobial agents that impair
the contact of Candida with the oral epithelium [27,28]. Another chemical barrier against Candida
establishment is the presence of gastric acid and bile in the digestive system which creates a harsh
environment for fungal growth. Nevertheless, these human pathogens are known to have a remarkable
ability to adapt to these adverse conditions and proliferate.

C. albicans relies on two distinct invasion mechanisms to gain entry into host cells: (i) induced
endocytosis and (ii) active penetration of hyphal forms through physical forces of hyphae production
associated with lytic enzyme secretion [29] (Figure 1). Nonetheless, depending on the host cell,
these invasion mechanisms are thought to be exploited to a different extent. For instance, it was
demonstrated that while invasion into oral epithelial cells occurs via both routes, invasion into intestinal
epithelial cells occurs only via active penetration under normal conditions [29,30].
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Figure 1. Schematic representation of C. albicans and C. glabrata host damage and invasion. C. 
albicans enter host cells through induced endocytosis or by active penetration (inter- and intra-
cellular) of hyphal forms associated with the release of hydrolytic enzymes, resulting in the damage 
of cells and loss of epithelial integrity. Induced endocytosis of host cells is thought to be the 
mechanism behind C. glabrata tissue invasion. 

Living within host cells is a profitable strategy since it enables cells to deal with the host immune 
system and antimicrobial treatment, and there are plenty of nutrients available and an absence of 
competition with other commensal microorganisms. Additionally, dissemination into deeper tissues 
and ultimately into the bloodstream is easier from within the cell. Fungal invasion via induced 
endocytosis is dependent on dynamic microfilaments of the host. In C. albicans, the GPI-anchored 
hypha-associated protein Als3 interacts with mammalian cadherins, mimicking the establishment of 
adherence junctions. This process leads to rearrangements in the actin cytoskeleton that ultimately 
lead to fungal cell internalization [31]. Similarly, Ssa1, a member of the HPS70 heat shock protein 
family, was reported to play the same role as Als3, being essential for maximal host cell damage and 
subsequently fungal cell endocytosis [32]. However, EED1 was the first fungal gene reported as being 
required for epithelial escape and interepithelial dissemination and not for initial invasion into 
epithelial cells [33]. Moreover, it is thought that the contact with the epithelium, among several other 
stimuli, is a highly potent inducer of C. albicans filamentation. In turn, the contact between hyphal 
cells and epithelial cells induces host defense mechanisms such as the formation of epithelial cell 
protrusions surrounding the hyphae, and membrane ruffling, which is characteristic for induced 
endocytosis [34].  

The ability to switch between yeast and hyphal growth forms is one of the most discussed and 
best-investigated virulence attributes of C. albicans. This morphology switch is activated by well-
established kinase-based signal transduction pathways and is triggered by diverse host 
environmental cues, including temperature, pH, serum, and CO2 and is linked to several steps during 
host invasion [35,36]. The extracellular signals are transmitted via Ras to both protein kinase A and 
the MAP kinase cascade [37–39], inducing hyphal differentiation through the activation of a number 
of transcription factors such as Efg1 [40] and Ume6 [41]. The transcriptional repressor Nrg1 is 
inactivated and removed from the hyphal-specific gene promoters, thereby allowing the induction of 
hyphal morphogenesis [42,43].  

Invasion into epithelial cells via active penetration relies on a combination of physical pressure 
employed by the growing hyphae and the secretion of hydrolytic enzymes. Moreover, hyphal cells 
are capable of directional growth in response to contact with a solid surface (thigmotropism) which 
enables C. albicans to specifically identify and invade intercellular junctions, thereby damaging the 
epithelium compact structure [44]. Interestingly, it was very recently discovered that C. albicans 
release hydroxyphenylacetic acid (HPA) during hyphal growth [45]. Its production seems to occur 
through the same pathway and the same precursors as tyrosol, which is able to stimulate hypha 
induction in C. albicans [46], therefore their biological functions are likely to be the same. 
Additionally, along with the active penetration by hyphal cells, there is also the secretion of 
hydrolytic enzymes, such as SAPs and phospholipases, which can digest epithelial cell surface 
components enabling the entrance into or between host cells [47]. SAPs are the best-characterized 
members of the C. albicans hydrolytic enzymes, as is well reviewed by Hube and Naglik [48]. 

Figure 1. Schematic representation of C. albicans and C. glabrata host damage and invasion. C. albicans
enter host cells through induced endocytosis or by active penetration (inter- and intra-cellular) of
hyphal forms associated with the release of hydrolytic enzymes, resulting in the damage of cells and
loss of epithelial integrity. Induced endocytosis of host cells is thought to be the mechanism behind
C. glabrata tissue invasion.

Living within host cells is a profitable strategy since it enables cells to deal with the host immune
system and antimicrobial treatment, and there are plenty of nutrients available and an absence of
competition with other commensal microorganisms. Additionally, dissemination into deeper tissues
and ultimately into the bloodstream is easier from within the cell. Fungal invasion via induced
endocytosis is dependent on dynamic microfilaments of the host. In C. albicans, the GPI-anchored
hypha-associated protein Als3 interacts with mammalian cadherins, mimicking the establishment of
adherence junctions. This process leads to rearrangements in the actin cytoskeleton that ultimately
lead to fungal cell internalization [31]. Similarly, Ssa1, a member of the HPS70 heat shock protein
family, was reported to play the same role as Als3, being essential for maximal host cell damage
and subsequently fungal cell endocytosis [32]. However, EED1 was the first fungal gene reported
as being required for epithelial escape and interepithelial dissemination and not for initial invasion
into epithelial cells [33]. Moreover, it is thought that the contact with the epithelium, among several
other stimuli, is a highly potent inducer of C. albicans filamentation. In turn, the contact between
hyphal cells and epithelial cells induces host defense mechanisms such as the formation of epithelial
cell protrusions surrounding the hyphae, and membrane ruffling, which is characteristic for induced
endocytosis [34].

The ability to switch between yeast and hyphal growth forms is one of the most discussed
and best-investigated virulence attributes of C. albicans. This morphology switch is activated
by well-established kinase-based signal transduction pathways and is triggered by diverse host
environmental cues, including temperature, pH, serum, and CO2 and is linked to several steps during
host invasion [35,36]. The extracellular signals are transmitted via Ras to both protein kinase A and the
MAP kinase cascade [37–39], inducing hyphal differentiation through the activation of a number of
transcription factors such as Efg1 [40] and Ume6 [41]. The transcriptional repressor Nrg1 is inactivated
and removed from the hyphal-specific gene promoters, thereby allowing the induction of hyphal
morphogenesis [42,43].

Invasion into epithelial cells via active penetration relies on a combination of physical pressure
employed by the growing hyphae and the secretion of hydrolytic enzymes. Moreover, hyphal cells
are capable of directional growth in response to contact with a solid surface (thigmotropism) which
enables C. albicans to specifically identify and invade intercellular junctions, thereby damaging the
epithelium compact structure [44]. Interestingly, it was very recently discovered that C. albicans
release hydroxyphenylacetic acid (HPA) during hyphal growth [45]. Its production seems to occur
through the same pathway and the same precursors as tyrosol, which is able to stimulate hypha
induction in C. albicans [46], therefore their biological functions are likely to be the same. Additionally,
along with the active penetration by hyphal cells, there is also the secretion of hydrolytic enzymes,
such as SAPs and phospholipases, which can digest epithelial cell surface components enabling the
entrance into or between host cells [47]. SAPs are the best-characterized members of the C. albicans
hydrolytic enzymes, as is well reviewed by Hube and Naglik [48]. Interestingly, these tissue damaging
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enzymes not only have distinct optimal pH requirements but also are growth stage and infection
site related [47]. For instance, SAP1–SAP3 are yeast growth-associated and have optimum activity
at lower pH values, while SAP4–SAP6 are hyphal growth-associated and have optimum activity at
higher pH values [49]. Similarly, it was demonstrated that SAP1, SAP3, and SAP8 are preferentially
expressed in vaginal, rather than oral, C. albicans infections [47]. One possible explanation for the
existence of a significant number of different SAP genes may be the necessity for specific and optimized
proteinases during the different stages of an infection [48]. Additionally, the cytolytic peptide toxin
of C. albicans candidalysin, encoded by the hypha-associated gene ECE1, was recently found to be
essential for damage of enterocytes and is a key factor in subsequent fungal translocation, suggesting
that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin [25].
Moreover, phytase activity in C. albicans was demonstrated to be important for virulence. Phytate is a
major storage form of phosphorus in plants and is abundant in the human diet and intestinal tract [50].
Recently, it was reported that decreased phytase activity leads to a reduced ability to form hyphae,
attenuated in vitro adhesion, and reduced ability to penetrate human epithelium [51].

While the transition from yeast to hyphae has been extensively studied in C. albicans, the switch
from hyphae to yeast still remains poorly understood [35]. Nevertheless, both yeast and hyphae
forms are found in infection sites, which suggests that both forms are implicit in the infection process.
Interestingly, it was demonstrated that depending on the infected organ, one or the other morphology
predominates [52]. It is thought that the yeast form is important for dissemination upon infection,
whereas hyphae forms are more relevant to attachment, host invasion, and tissue damage [53].

Unlike C. albicans, and despite the existence of some reports demonstrating that C. glabrata
forms pseudohyphae [54,55], the pathogenicity of C. glabrata seems to be independent of morphology.
The most common route for this pathogen to reach the bloodstream is through the iatrogenic breach of
natural barriers, such as the use of catheters, trauma, or surgery.

In 2000, Csank and Haynes [54] reported for the first time that C. glabrata can undergo morphological
change and grow as a pseudohyphae on solid nitrogen starvation media. This invasive growth mode
could be a possible mechanism of host invasion, however, this phenomenon has not yet been reported
in vivo. Despite lacking this prime virulence feature, this opportunistic pathogen is still able to reach
the human bloodstream and cause infection. In some cases, C. glabrata can involuntarily reach the
bloodstream through nosocomial conditions, namely surgery, catheter, parenteral nutrition, and burn
injury [56]. However, even when these external factors are abrogated, C. glabrata is able to invade the
host and colonize different tissues, as shown in an intragastrointestinal mouse model of infection [57]
and in a chorioallantoic membrane chicken embryo model of infection [58]. Thus, C. glabrata must
have other invasion mechanisms.

Co-infection with other microorganisms may be a possible explanation to the invasive capacity
of C. glabrata since this yeast is often co-isolated in infections with C. albicans [59–61] or even other
pathogens such as Clostridium difficile [62]. In the co-infected environment, C. glabrata cells may
exploit the tissue invasion and destruction caused by C. albicans to access nutrients and reach the
bloodstream. In fact, Tati et al. (2016) [63] demonstrated that when mice are infected with C. glabrata
alone, oropharyngeal candidiasis is negligible, however, when co-infected with C. albicans, an increased
colonization by C. glabrata was observed. This effect was attributed to the binding of C. glabrata to
C. albicans hyphae [63] and similar results were reported by Alves et al. (2014) [64] using a reconstituted
human vaginal epithelium. Nonetheless, the intracytoplasmic presence of C. glabrata was detected in
oral epithelial cells [65] and vaginal epithelial cells [66] and it has been shown that when endocytosis is
inhibited, the internalization of C. glabrata is prevented [65]. This suggests that induced endocytosis by
host cells could be the most likely mechanism of C. glabrata internalization (Figure 1).

As referred to before, the tissue/cell damaging ability of C. glabrata is lower compared to C. albicans.
In C. albicans, secreted hydrolytic enzymes are considered to be important destructive factors that
damage host tissues, providing nutrients for its propagation. However, the production of these
hydrolytic enzymes is very low or even null in C. glabrata, wherefore its importance for virulence does
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not seem to be as relevant as it is in C. albicans [67–73]. The proteinase enzyme is responsible for protein
degradation resulting in tissue invasion. Among the proteases, SAPs are considered crucial for the
pathogenicity of C. albicans [74]. Although C. glabrata does not express SAPs [75], its genome contains 11
non-secreted GPI-linked aspartyl proteases (YPS genes), which are surface-exposed aspartic proteases
required for virulence, known as yapsins [13]. These yapsins are important for cell wall maintenance,
remodeling, cell to cell interactions, and resistance to cell wall stress, however, their direct link with
virulence is not very well characterized yet. Otherwise, phospholipases promote the destruction of cell
membrane phospholipids, causing cell damage and lysis which allows a greater invasive capacity [76].
Some of the C. glabrata strains are able to produce these enzymes [67,68,70,71,77], which appear to
play a role in C. glabrata-associated persistent candidemia [9]. However, phospholipase production in
C. glabrata is lower than in C. albicans, and in some cases inexistent [69,72,73], therefore its relation to
C. glabrata virulence is not clear and needs further analysis.

3. Adhesion and Biofilm Formation

The ability to infect and prevail in the human host is related to different pathogenesis factors, of
which biofilm formation excels [19,78–80]. Candida species ability to form biofilms on medical devices
increases mortality rates associated with infections, while often forcing the treatment to include the
removal of the medical device [81]. A lot of efforts have been put into understanding the molecular
basis of Candida species biofilm formation [20].

Adhesion is one of the most relevant and advantageous capacities of the yeast cell wall. It allows
cells to colonize mucosal surfaces and prevail in a nutritional environment, being the first critical
step for biofilm formation, which serves as a shield against adverse conditions, as well as a highly
drug-resistant reservoir of infective cells [82,83]. C. albicans and C. glabrata pathogenesis has been
strongly related to adhesion, which is considered a crucial virulence factor in these yeasts [84–86].
In this regard, both Candida species are able to not only attach to mammalian host cells (epithelial,
endothelial, and immune cells) but also to other microbes (bacteria and other Candida species) and
abiotic surfaces, such as medical devices [85,87]. Several studies have tried to understand the nature of
adherence to plastic surfaces. For instance, cell surface hydrophobicity (CSH) seems to have a positive
correlation with adhesion in both C. albicans and C. glabrata species, thus, adhesion is mediated by van
der Waals forces. Moreover, compared to C. albicans, the relative CSH of C. glabrata has been shown to
be significantly higher [88–90].

Both Candida species have a set of proteins that enable attachment, known as adhesins. The most
important C. albicans adhesins are agglutinin-like sequence (Als) proteins (Als1–7 and Als9) [91]
and hypha-associated GPI-linked protein (Hwp1), known to be required for adhesion and virulence
in vivo, and also being associated to biofilm formation through interaction with Als1 and Als3
adhesins [92–94]. Other adhesins required for adhesion and biofilm formation include Hwp2 [95]
and Eap1 [96–98]. C. glabrata expresses a large group of adhesins, belonging to the epithelial adhesin
(Epa) family, which is encoded by 17 to 23 genes, depending on the strain [78]. Among these, Epa1 is
a major virulence player in C. glabrata, and mediates 95% of in vitro adhesion to epithelial cells [99].
This adhesin is highly heterogeneous among C. glabrata clinical isolates, being an important virulence
factor [100]. Epa6 and Epa7 are involved in kidney and bladder colonization in vivo and boost biofilm
formation [101–104]. Transcriptomic and proteomic studies have revealed that besides EPA genes,
C. glabrata holds other biofilm-related adhesin families, such as Pwp (encoded by seven members
PWP1–7), Aed (AED1 and AED2), and Awp (encoded by 12 members AWP1–6 and AWP8–13), which are
usually found in significantly higher numbers in clinical isolates, consistently with an important role
in pathogenesis [12,105–107].

The successful pathogenicity of these yeasts relies on its flexibility, which allows for adaptation and
proliferation under both nutrient-rich and nutrient-poor conditions. Several studies have reported the
importance of host and antifungal selective pressure on virulence traits as adhesion [108,109]. A recent
study conducted by Vale-Silva et al. (2017) [110] used the PacBio technology to compare the genomes
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of two sequential C. glabrata clinical isolates and observed a significant increase in the number of
adhesin-encoding genes (101 and 107) when compared to the CBS138 genome (63), despite the limited
variation between the two studied isolates. The same authors, along with Ni et al. (2018) [111], further
linked the increased expression of the adhesin gene EPA1 with gain-of-function (GOF) mutations in
the PDR1 gene in drug-resistant clinical isolates [112]. EPA1 has been strongly related to adhesion
of C. glabrata cells to mammalian epithelial cells both in vitro [99] and in vivo [113]. Furthermore,
Salazar et al. (2018) [114] also observed a GOF mutation in the PDR1 gene, which led to changes in the
transcriptome when compared to the CBS138 strain. Among the genes identified as having the highest
number of non-synonymous SNPs, there were several genes encoding adhesins and, agreeing with
Vale-Silva et al. (2013) [115], the number of adhesin-expressed genes varied when compared to other
GOF PDR1 mutations [114]. This reinforces the idea that antifungal treatment deploys a tight selective
pressure which results in changes at the genomic and transcriptional levels, particularly affecting
adhesin-encoding genes [116]. The transcription factor Cst6 was found to also play a role in C. glabrata
adhesion and biofilm formation, negatively regulating the expression of EPA6 [103]. In C. albicans, a
transcriptional regulatory network comprising nine regulators (Bcr1, Brg1, Efg1, Flo8, Gal4, Ndt80,
Rob1, Rfx2, and Tec1) was identified in in vitro and in vivo studies as underlying the biofilm formation
phenomenon in this pathogenic yeast [117–121].

Hyphae formation, which is exclusive to C. albicans, when compared to C. glabrata is also an
important trait in biofilm development. Various studies have described hyphae as exhibiting improved
adhesion to the human epithelium, with these cells displaying increased expression of Als1, Als3, and
Hwp1 [122–125]. Interestingly, Tati et al. (2016) [63] characterized the co-colonization of C. glabrata
and C. albicans in a murine model of oropharyngeal candidiasis (OPC) and demonstrated that this is
driven by specific adhesins in both species. Namely, the C. albicans Als3 and Als1 adhesins are crucial
for in vitro binding of C. glabrata cells to C. albicans hyphae and for further in vivo establishment of
infection. Considering C. glabrata cells, incubation with C. albicans hyphae led to the overexpression of
the adhesins EPA8, EPA19, AWP2, AWP7, and CAGL0F00181 [63].

After adhesion, Candida species are known to be able to form a 3D-structure of cells embedded in
a gel-like matrix [20,126,127]. In order to achieve this, surface-adhered cells begin to adhere to other
Candida cells, initiating the formation of discrete colonies, which correspond to an early phase of biofilm
formation. At this point, the intermediate phase begins with the cellular production and secretion
of important molecules, known as extracellular polymeric substances (EPS), that will constitute the
extracellular matrix of the biofilm, protecting the cells and ensuring a more developed 3D-structure.
The final structure is reached after the maturation phase, where more cells and the matrix are originated.
Mature biofilms might also suffer the detachment of some cells that can spread to form new biofilms
on other niches of the host, a process called the dispersal phase [20,126,128,129]. Although this process
is true for every Candida species, there are differences between C. albicans and C. glabrata biofilms,
regarding their dimensions and structure, cell morphology, EPS produced and secreted, response to
environmental cues, and resistance to antifungal drugs (Figure 2).

A very clear difference between C. albicans and C. glabrata mature biofilms is the dimension and
total biomass of each biofilm. C. glabrata in vivo biofilm formation leads to a thickness of 75–90 ± 5 µm,
which is half of the normal thickness of C. albicans biofilms [130], with much less biomass in the end of
biofilm formation compared to C. albicans [131]. The organization of the biofilm structure also differs
between these two species. C. albicans biofilms are arranged in a three-dimensional structure with
different morphologies and empty spaces between cells [132], where microchannels are formed [133].
On the other hand, C. glabrata biofilms are thinner, but display a higher density of cells, tightly packed
together [132]. Although C. glabrata’s biofilms are composed by yeast cells only [131,132], the same is
not true for C. albicans biofilms, where different morphologies arise. C. albicans mature biofilms are
composed by a dense network of pseudohyphae, hyphae, and yeast cells [134]. This filamentation
process in biofilm formation is controlled by the transcription factor Efg1, without which C. albicans only
forms scarce monolayers of elongated yeast cells on polyurethane catheters and polystyrene [135,136].
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Figure 2. Schematic representation of C. albicans and C. glabrata biofilm formation. C. albicans
forms thicker biofilms, with much more biomass in the end of biofilm formation and produces more
extracellular matrix than C. glabrata. C. albicans mature biofilms are composed by a dense network of
pseudohyphae, hyphae, and yeast cells, whereas C. glabrata biofilms are composed by compact yeast
cells only, forming a thin but dense biofilm.

Although C. albicans produces more extracellular matrix than C. glabrata [137], the main components
of the matrix, proteins, and carbohydrates, are the same in both biofilms [131,138–140]. Interestingly,
C. glabrata has a very high content of proteins and carbohydrates, which is five times higher than
that found on the biofilms of other non-albicans Candida species [131]. C. albicans’ matrix is also
composed by other lipids (mainly neutral glycerolipids, polar glycerolipids, and a small percentage of
sphingolipids) [139], phosphorus, and uronic acid [140]. Biofilms of both species also have a small
content of extracellular DNA [131,138–140].

Interestingly, C. albicans and C. glabrata also behave differently on different surfaces when it comes
to initiating biofilm formation. Cleary, each species has a different propensity to form biofilm on
a given surface. For instance, C. albicans is known to adhere better to latex and silicone elastomer
while showing less biofilm formation on polyvinyl chloride, polyurethane, or 100% silicone [134].
C. albicans also adheres and forms biofilm on different surfaces of denture base materials, having higher
biofilm formation on the surface of alloy and lower biofilm formation on methacrylate-based denture
material [141]. Moreover, polyetherurethane treated with 6% of polyethylene oxide was found to
reduce the metabolic activity of cells and the total biomass of C. albicans biofilms [142]. On the other
hand, while all other pathogenic Candida species have greater biofilm formation on Teflon, C. glabrata
prefers polyvinyl chloride to form biofilm [143]. Interestingly, other components of the environment
might alter the ability of Candida species to adhere to a given surface. For instance, the presence of
saliva has been shown to decrease the ability of C. albicans to form biofilm in vitro [144,145].

Depending on the antifungal drug, C. albicans and C. glabrata biofilms might be able to resist the
therapeutic action of the drug. For instance, Choi and colleagues (2007) [146] measured the in vitro
susceptibilities of biofilms of C. glabrata and C. albicans bloodstream isolates, showing that both biofilms
were resistant to fluconazole and only moderately resistant to amphotericin B, while exposure to
0.25 to 1 µg/mL of caspofungin and micafungin lead to an 80% reduction of the biofilms. Moreover,
voriconazole is also able to reduce C. albicans and C. glabrata biofilms, being present at 0.25 mg/L or
being used as a surface coating at different concentrations [147]. Nevertheless, when growing on an
RPMI 1640 medium, C. glabrata mature biofilms have shown to be less susceptible to caspofungin
and anidulafungin than C. albicans mature biofilms on a polystyrene surface [148], showing that each
species biofilms might resist differently to the same antifungal drug. Although reacting differently
to antifungal drug exposure, the strategy to achieve resistance seems to be very similar between the
two species. The mechanisms known to underlie resistance to antifungal drugs in Candida biofilms
are believed to be related to alterations in the metabolic activity, the role of the extracellular matrix as
a barrier for diffusion, the role of its EPS components, and the presence of persister cells within the
biofilm [20,149]. Both species suffer the upregulation of drug efflux pump-encoding genes [138,150],
as well as seem to rely on the β-1,3-glucans present on the extracellular matrix [151,152].
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Biofilms also allow for the survival of Candida species by protecting them against the host immune
system. The extracellular matrix is essential for the protection against the action of neutrophils by
inhibiting the release of neutrophil extracellular traps (NETs) [153]. Moreover, the β-glucans present
on the matrix avoid the activation of neutrophils, actually inhibiting the reactive oxygen response,
thereby being an important distracting mechanism to evade the innate immune system [154]. Biofilms
are also believed to resist well the action of the innate immune system due to its heterogenicity, given
the different types of cells and different metabolic activity the cells might present on biofilms [155].

The combination of C. albicans and C. glabrata to form biofilm has been well described and the two
species are usually found together in niches of candidiasis patients [60]. A recent study has shown that
a ratio of C. albicans to C. glabrata of 1:3, significantly increases the total biofilm biomass comparatively
to a C. albicans monoculture or ratio of C. albicans to C. glabrata of 1:1. This co-culture biofilm exhibited
a high heterogenicity with C. albicans hyphae and C. glabrata cells clustered together in a 3D-structure.
Interestingly, an upregulation of HWP1 and ALS3 genes is observed in this mixed-species biofilm,
as well as an increased resistance to caspofungin [3]. C. albicans and C. glabrata are also known to form
biofilms with bacteria from different host niches, usually relying on quorum-sensing mechanisms for
the establishment of an interaction [20,155]. All the possible interactions between species increase the
complexity of this vast field, pointing out the big clinical challenge of biofilm formation.

4. Host Immune System Evasion

Throughout infection, when the first line of defense has been breached by invasion into deeper
tissues, Candida pathogens have to cope with cells of the host innate immune system. Interaction
with the host immune system, and the ability to overcome it, is one of the main virulence features for
fungal pathogens.

At early stages of infection, upon an interaction between Candida pathogens and epithelial cells,
the former are recognized as invasive microorganisms by Pattern Recognition Receptors (PRRs) localized
at host epithelial cell surfaces. PRRs interact with Pathogen Associated Molecular Patterns (PAMPs),
such as β-1,3-glucan or chitin, present on microbial cells, thereby inducing a host response [156,157].
Epithelial cells, that are part of the innate immunity, not only secrete antimicrobial peptides, such as
β-defensins and LL-37 [158–160], to try to control fungal infection, but also release proinflammatory
mediators, such as chemokines and cytokines, triggering the recruitment of phagocytic cells, such as
neutrophils, macrophages, and dendritic cells. These innate immune system cells also have PRRs in
their surfaces, such as the C-type lectin receptor Dectin-1 [161], allowing the recognition of the invading
pathogens and thereby inducing phagocytosis [162]. After phagocytosis, dendritic cells are responsible
for the link between innate and adaptative antifungal immunity, presenting the Candida-specific
antigens to naïve T-helper cells [163]. Therefore, in an immunocompetent host, this host–Candida
interaction ultimately leads to the elimination of the pathogen. Otherwise, in immunocompromised
individuals, a persistent infection, such as chronic mucocutaneous candidiasis, candidemia and/or
persistent visceral candidiasis might be established.

Immune interaction can be translated in distinct spectrums, from avoidance of recognition by
host immune cells to escaping or surviving immune attack. Masking PAMPs on the cell wall to avoid
recognition, macrophage activation, and consequent phagocytosis is a common strategy of fungal
pathogens during interaction with immune cells [164]. Generally, yeasts’ cell wall is composed of a
carbohydrate-rich inner layer and a protein-rich outer layer of heavily mannosylated proteins and
phospholipomannan [165]. The outer layer acts as a shield of immunostimulatory components of
the inner layer, such as β-1,3-glucan or chitin, playing a key role in protection and evasion from
immune recognition [166]. β-1,3-glucan is the main polysaccharide present in the cell wall of C. albicans,
C. glabrata, and other pathogenic Candida species, and is a key PAMP recognized by the host immune
system [167]. Recognition of β-1,3-glucan by Dectin-1 receptor prompts phagocytosis by macrophages
and neutrophils [161].
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In order to avoid immune recognition, C. albicans resorts to cell wall remodeling, effectively
masking β-glucan from the cell surface. The first reported case of active PAMP masking by Candida
species was reported by Ballou et al. (2016) [167]. C. albicans was shown to mask β-glucan in
response to lactate [167], which is a relevant physiological metabolite present in Candida niches,
such as the vaginal tract and blood, or produced by the host microbiota [168], with which Candida
interact. Lactate-mediated β-glucan masking is modulated by a signaling pathway associated with
the G-protein coupled receptor Gpr1 and the transcription factor Crz1 [167]. This pathway reduces
C. albicans uptake by macrophages and decreases the inflammatory response (TNFα and MIP1α)
and neutrophil recruitment [167]. The participation of lactate was also observed later in low oxygen
environments [169]. C. albicans was found to mask β-glucan upon oxygen deprivation, hindering
recognition by Dectin-1 of polymorphonuclear leukocytes (PMNs). This was seen to modulate PMN
responses, crippling phagocytosis, action of extracellular DNA traps, and reactive oxygen species (ROS)
production [169]. Interestingly, β-glucan masking was prolonged by the build-up of lactate levels
produced by PMNs [169]. Later, another study reported that hypoxia promotes β-glucan masking in
C. albicans [170]. Hypoxia-induced masking is dependent on mitochondrial function and cAMP-protein
kinase A (PKA) signaling, leading to reduced macrophage phagocytosis and cytokine (IL-10, RANTES,
and TNF-α) production [170].

Changes in carbon source result in cell wall modifications with correspondent changes in virulence
and immune properties [108,171]. As mentioned before, the cell wall is a complex structure with
not only glucan, but also mannans, phosphomannans, and chitin [157], although distinct Candida
species display different glucan exposure and mannan complexity [166]. β-glucans and chitin are
located in the inner-most layer, while mannans are present in the outer layer [172–174]. Because of
such structure, mannan plays an important role in reducing immunogenic exposure of β-glucan [175],
but coordinated chitin and glucan exposure has also been reported to occur in C. albicans [176–178].
Moreover, cell wall structure and mannans affect virulence in different ways in C. albicans and
C. glabrata [179–181]. Recently, mannan structure was found to affect glucan exposure in both C. albicans
and C. glabrata, albeit in distinct ways. Deletion of mannosyltransferase family genes was associated
with loss of negatively-charged acid-labile mannan and less efficient glucan masking in C. albicans
(e.g., ∆cgmnn2), while in C. glabrata increased glucan exposure density was associated with mutants
displaying shorter backbones (e.g., ∆cgmnn1 and ∆cganp1) [166]. Previously, another study had
shown that the β-1,6-mannosyltransferase encoded by C. albicans MNN10 is required for backbone
synthesis and influences immune recognition [182]. Absence of Mnn10 results in reduced C. albicans
virulence, enhanced antifungal immunity by T helper cells, and increased recruitment of monocytes
and neutrophils. Reinforcing the notion of a complex interplay among cell wall polysaccharydes,
mannosyltransferase activity was also associated with β-1,3-glucan masking from Dectin-1 recognition
and modulatory action of cytokine production by macrophages [182]. Another study showed how
C. albicans cell wall responds to immune attacks by NETs [176]. β-glucan exposure and enhanced
Dectin-1 recognition is dependent on fungal-pathogen crosstalk, as this response is dependent on
neutrophil NET-mediated damage and fungal signaling cascades based on the MAP kinase Hog1.
Cell wall structure in response to a neutrophil attack was found to affect more than one component,
as Hog1 signaling leads to chitin deposition via the chitin synthase Chs3 and posterior cell wall
remodeling via Sur7 and Phr1. Accordingly, with the enhanced immune recognition by Dectin-1 after
a NET-mediated attack, macrophage cytokine response was also increased [176].

Much like C. albicans, C. glabrata resorts to cell wall remodeling in order to avoid the host’s
immune system, although the underlying mechanisms are mostly unknown. As indicated by increased
TNFα secretion and increased efficacy of pathogen killing by macrophages, deletion mutants with
disturbed cell wall integrity and altered accessibility of PAMPs caused a stronger inflammatory response.
C. glabrata deletion mutants lacking cell surface-associated proteases (yapsins) or mutants with defective
protein glycosylation were related with a stronger inflammatory response by macrophages [13,181].
Nevertheless, mutations affecting mannan, but not those affecting glucan or chitin, were found to
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reduce the uptake of C. glabrata cells by murine macrophages, suggesting that mannose side chains or
mannosylated proteins are ligands recognized by macrophages [183].

Knowledge regarding the PRRs responsible for C. glabrata recognition by macrophages is limited.
Notwithstanding, as in C. albicans infections, C-type lectin receptors are thought to be involved in
C. glabrata recognition by the host immune system. Specifically, dectin-1 and dectin-2, which recognize
cell wall β-glucan, and mannan and β-glucan respectively, have been reported to be involved in the
recognition of this pathogen [184,185].

Unlike C. albicans that put effort in escaping the immune system, it is hypothesized that
inducing the recruitment of macrophages to the site of infection in vivo is part of the C. glabrata
immune system evasion strategy [21]. C. glabrata infection did not substantially activate any MAPK
pathway, including Erk1/2 (Extracellular signal-regulated kinases), SAPK/JNK (Stress-activated protein
kinases/Jun amino-terminal kinases), and NF-κB signaling. Accordingly, it was found that upon
infection of macrophages, the only cytokine significantly induced is GM-CSF, whereas the induction of
other proinflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, and IFN-γ) is low [21,65,186]. GM-CSF is a
potent activator of macrophages and induces differentiation of precursor cells as well as the recruitment
of macrophages to sites of infection. This may explain the enhanced tissue infiltration of mononuclear
cells, but not neutrophils, observed in vivo [186]. Considering the ability of C. glabrata to survive
and replicate within macrophages, it is therefore speculated that persistence within macrophages is a
possible strategy of immune evasion in this pathogen [21].

Immune evasion by pathogens also entails escaping from the complement system, another
pathway of the innate immune system that facilitates phagocytosis. To evade immune response, several
pathogens were shown to sequester or bind complement regulators, such as factor H (FH) [187–190].
C. albicans expresses the glucose transporter Hgt1 that binds FH, therefore reducing complement
regulatory activity and limiting phagocytosis and killing by neutrophils [191]. SAP proteases produced
by C. albicans not only cause tissue damage [192], but also contribute to immune evasion, as Sap2 is
able to cleave antimicrobial peptides and complement proteins [193,194]. C. albicans Sap2 also cleaves
FH and its receptors (CR3 and CR4) on macrophages, thus limiting their activation [195]. Additionally,
C. albicans was also seen to bind yet another complement regulator (vitronectin) to modulate the
hosts innate response [196]. The C. albicans pH-regulated protein Pra1 was recently implicated in
the modulation of immune response [197,198]. It was seen to cleave the complement component C3,
blocking the complement effector function and interfering with killing by neutrophils [197]. Pra1 is
also implicated in adaptive immune response, as it binds to mouse CD4+ T cells and reduces cytokine
(IFN and TNF) secretion and antigen stimulation [198].

Ultimately, many yeast cells are engulfed by macrophages, hence survival and replication or
subsequent escape remain important features. Upon phagocytosis, the phagosome carrying the ingested
microorganism, fusion with a lysosome is one central antimicrobial mechanism of macrophages [164].
In the phagolysosome, fungal pathogens have to survive the harsh environment, typically characterized
by carbon source limitation, production of reactive oxygen and nitrogen species, and acidification of
the phagosomal compartment [199–201]. Mature phagolysosomes are normally strongly acidified,
inducing antimicrobial effector mechanisms such as the activity of hydrolytic enzymes. Nonetheless,
both C. albicans and C. glabrata are able to actively limit phagosome maturation in macrophages to
prevent acidification and limit hydrolytic attack [21,202]. Environmental alkalinization by amino acid
use as carbon sources, which results in ammonia extrusion, has been acknowledged as a strategy of these
pathogens to actively raise phagosome pH [199,203,204]. Moreover, extracellular pH-raising triggers
the yeast–hyphal switch in C. albicans [199,204]. Regarding carbon source availability, macrophages
actively deprive pathogens of glucose, and therefore alternative carbon sources must support fungal
growth. Accordingly, genes coding for enzymes of glyoxylate cycle, gluconeogenesis, and β-oxidation
of fatty acids were found to be upregulated in both C. glabrata and C. albicans cells ingested by
macrophages [13,18,205]. Very recently, the glyoxylate cycle gene ICL1 was demonstrated to be crucial
for the survival of C. glabrata in response to macrophage engulfment [206]. Disruption of ICL1 rendered
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C. glabrata cells unable to utilize acetate, ethanol, or oleic acid and conferred a severe attenuation
of virulence in the mouse model of invasive candidiasis [206]. Further, genes of the methylcitrate
cycle, which is important for the degradation of fatty acid chains and which allows the use of lipids as
alternative carbon sources, were also found to be upregulated in C. glabrata [13]. Downregulation of
protein synthesis as well as upregulation of amino acid biosynthetic pathways and amino acid and
ammonium transport genes are features of the nitrogen deprivation faced by fungal cells inside the
macrophages [13].

Although being mainly known by macrophage escape, strategies to counteract oxidative and
nitrosative stress have been described in C. albicans. For instance, flavodoxin-like proteins are part of the
antioxidant response of this species by reducing ubiquinone, which acts as a membrane antioxidant [207].
Expression of four flavodoxin genes (PST1, PST2, PST3, YCP4) is required for C. albicans virulence and
resist neutrophil attack [207]. Other than oxidative burst modulation, C. albicans was also reported to
modulate the nitrosative stress exerted by macrophages [208]. Nitric oxide production is dependent
on the enzyme nitric oxide synthase, which utilizes arginine as a substrate. By increasing chitin
exposure, C. albicans induces the host arginase-1 enzyme, which competes with the nitric oxide synthase
enzyme and prevents the conversion of L-arginine to nitric oxide [208]. Interestingly, the use of
amino acids as carbon source is much more prominent in C. albicans than other fungi [199] and amino
acid metabolism has been associated with more than one mechanism of phagocyte escape/survival.
Arginine was also found to play a role in hyphal development upon phagocytosis by macrophages,
thus contributing to escaping the phagosome [209]. Additionally, in poor glucose conditions, C. albicans
excretes amino acid-derived ammonia that increases external pH and interferes with the acidification
of the phagosome [204,210], as mentioned before. Moreover, the transcription factor Stp2 involved
in amino acid acquisition, is required to prevent phagosome acidification [204,209] based on the SPS
amino acid sensing system [211]. Regarding the contribution of nitrosative stress to macrophage
defense against C. glabrata, it is known that this pathogen induces only low NO production by murine
macrophages [13].

C. glabrata shows increased tolerance to oxidative stress when compared to other yeasts, including
Saccharomyces cerevisiae and C. albicans [212], mostly associated with the activity of the catalase Cta1,
the superoxide dismutases Sod1/Sod2 and the glutathione and thioredoxin pathways [212–214]. Despite
this, it is speculated that ROS play a minor role in killing C. glabrata cells, since experimental inhibition
of ROS production in macrophages did not result in increased fungal survival [215]. In contrast to
C. albicans, mobilization of intracellular resources via autophagy is an important virulence factor
that supports the viability of C. glabrata in the phagosomal compartment of innate immune cells [23].
Phagocytosis induces peroxisome production in C. glabrata cells, which are then degraded via pexophagy,
a specialized form of autophagy [23].

Moreover, besides carbon and nitrogen, trace elements such as iron are important for yeast growth.
Macrophage-engulfed C. albicans upregulate a set of genes involved in iron homeostasis, for example,
the ferric reductase genes FRE3 and FRE7, as well as uptake systems for other trace metals, such as
copper (CTR1) and zinc (ZRT2) [18]. C. glabrata is also able to sense and respond to iron limitation,
although it has not been shown to use host iron-binding proteins as iron sources and is unable to use
heme or hemoglobin. Instead, C. glabrata uses the siderophore-iron transporter Sit1, which is essential
for utilization of ferrichrome as an iron source under iron-deficient conditions, and for iron-dependent
survival in macrophages [216,217]. This iron acquisition system improves the fitness of C. glabrata
when it is subsequently exposed to macrophages [216]. Recently, PI3K-kinase (encoded by VPS34)
signaling was revealed to play a central role in C. glabrata iron metabolism and host colonization.
However, the strategies by which C. glabrata gains iron within macrophages remain unknown [218].

While C. glabrata is most known for a persistence strategy and survival inside macrophages, due
to its high-intrinsic stress tolerance, C. albicans is best known for active escape via hyphal growth and
phagocyte piercing. In 2014, the model of macrophage piercing due to polarized growth of hyphae was
challenged by two studies [17,219]. The study by Wellington et al. (2014) [219] showed that C. albicans



Int. J. Mol. Sci. 2019, 20, 2345 12 of 25

escape is not exclusively due to disruption by hyphae. The pyroptosis pathway, a proinflammatory
programmed cell-death process that is dependent on caspase-1, leads to interleukin production and
macrophage lysis [220] and occurs concurrently with hyphae-mediated damage. Pyroptosis has been
described to occur in response to intracellular bacteria, and thus is hypothesized to achieve the goal
of destroying macrophages themselves in order to eradicate phagocyted pathogens [221]. C. albicans
yeast-to-hyphae transition induces macrophage pyroptosis, therefore indicating that phagocyte
damage caused by this pathogen is a more complex mechanism than originally postulated [17,219].
Accordingly, the study by Uwamahoro et al. (2014) [17] added more evidence of this escape mechanism.
The triggering of pyroptosis is necessary for full macrophage damage upon hyphal formation and is
activated in early phagocytosis, followed by a more robust hyphal formation that is indeed the main
mechanism of macrophage killing in a later phase [17].

Candida thrives on multiple carbon sources to survive inside macrophages, but these depend
on glucose for viability. Recently, Tucey et al. (2018) [222] demonstrated that C. albicans exploits
this limitation by depleting glucose, and triggering rapid macrophage death, in vitro. Additionally,
they showed that C. albicans infection promotes the disruption of host glucose homeostasis in vivo and
verified that glucose supplementation improves host outcomes under systemic fungal infection [222].
Thus, depriving host immune cells for glucose seems to be one mechanism of C. albicans to induce
phagocyte cell death and actively escape from those. Moreover, it was recently discovered that
candidalysin is both a central trigger for Nlrp3 inflammasome-dependent caspase-1 activation via
potassium efflux, and a key driver of inflammasome-independent cytolysis of macrophages and
dendritic cells upon infection with C. albicans [223]. This study suggests that candidalysin-induced
cell damage is a third mechanism by which C. albicans induces phagocyte cell death in addition to
damage caused by pyroptosis and the growth of glucose-consuming hyphae [223]. C. albicans-induced
activation of the Nlrp3 inflammasome, leading to secretion of IL-1β cytokine, is a crucial myeloid cell
immune response needed for antifungal host defense [224]. Very recently, Rogiers and co-workers
(2019) [225] identified candidalysin as the fungal trigger for Nlrp3 inflammasome-mediated maturation
and secretion of IL-1β from primary macrophages. Therefore, the expression of candidalysin is
speculated to be one of the molecular mechanisms by which hyphal transformation equips C. albicans
with its proinflammatory capacity to prompt the release of bioactive IL-1β from macrophages [225].

A more controversial evasion mechanism, based on quorum-sensing stimulation of immune
recognition, has been reported in both C. albicans and C. glabrata. In the case of C. albicans, white cells
specifically (not opaque cells) secrete E,E-Farnesol, a stimulator of macrophage chemokinesis [226].
Farnesol secretion was found to increase macrophage migration and tissue infiltration [226].
This strategy has been associated with immune evasion by the concealing of the pathogens inside
immune cells themselves, an environment where Candida species can survive.

Conversely to C. albicans, C. glabrata is incapable of hyphal differentiation, failing at this virulence
trait. Although never observed for clinical isolates, interestingly, work by Brunke et al. (2014) [227]
has shown that C. glabrata cells co-incubated during six months with macrophages, were able to
produce pseudohyphae structures and evolve into a hypervirulent phenotype characterized by higher
macrophage damage and faster escape.

Overall, the two more prevalent pathogenic yeasts, C. albicans and C. glabrata, follow two main
different strategies to achieve the same ultimate goal: survive host immune response. On one hand,
C. albicans hyphal forms actively pierce the membrane of macrophages as a mechanism of killing and
escape. On the other hand, C. glabrata, that lacks morphological plasticity, survives and replicates
within macrophages due to its remarkable ability to surpass its harsh environment, ultimately leading
to macrophage lysis after several days due to fungal cells overload [21] (Figure 3).
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Figure 3. Schematic representation of C. albicans and C. glabrata host immune system evasion. C. albicans
actively escape from host immune system cells through hyphal growth and phagocyte piercing.
C. glabrata is most known for a persistence strategy, surviving and thriving inside macrophages,
ultimately leading to immune cells lysis due to fungal load.

5. Conclusion and Perspectives

The pathogenic yeasts C. albicans and C. glabrata are the two most prevalent Candida species isolated
from candidiasis patients worldwide, yet they are phylogenetically, genetically, and phenotypically very
different. Indeed, each species displays divergent virulence traits, indicating differential adaptation to
the human host.

A greater number of virulence mechanisms has been described in C. albicans, most of which are
not known to occur in C. glabrata. Yeast-to-hyphae dimorphism is one of the most striking divergent
features. Hyphal morphology is associated with several key C. albicans traits (tissue invasion, biofilm
formation, immune evasion), but is absent in C. glabrata. The result is that C. glabrata must have
acquired other molecular mechanisms to reach the same goals. While tissue invasion in C. albicans
occurs by proteolytic enzyme secretion and hyphal penetration of host tissues, C. glabrata-induced
tissue damage is quite negligent in comparison and is thought to occur via endocytosis induction by
host cells.

A similar observation can be made regarding biofilm formation, where C. albicans expresses
hyphal-specific adhesins and regulators required for adhesion, while C. glabrata biofilms are much
less “bulky”. Morphological dimorphism also supports noticeable differences in immune evasion, as
hyphal development and phagosome piercing is the main phagocyte escape mechanism employed
by C. albicans, while such a strategy is absent in C. glabrata, which rather survives (and thrives) in
the phagosome.

Dissimilar traits between C. albicans and C. glabrata have been identified, and such attributes have
been extensively studied in C. albicans. However, the molecular mechanisms specific to C. glabrata that
allow such a disparate species to cause human candidiasis demand further scrutiny. Indeed, the up
rise of C. glabrata as a key fungal pathogen can only be prevented with specific therapeutic options that
match its specific virulence traits.
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