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N6-methyladenosine (m6A) is one of the most widely studied epigenetic modifications,

which plays an important role in many biological processes, such as splicing, RNA

localization, and degradation. Studies have shown that m6A on lncRNA has important

functions, including regulating the expression and functions of lncRNA, regulating the

synthesis of pre-mRNA, promoting the proliferation of cancer cells, and affecting cell

differentiation and many others. Although a number of methods have been proposed

to predict m6A RNA methylation sites, most of these methods aimed at general m6A

sites prediction without noticing the uniqueness of the lncRNA methylation prediction

problem. Since many lncRNAs do not have a polyA tail and cannot be captured

in the polyA selection step of the most widely adopted RNA-seq library preparation

protocol, lncRNA methylation sites cannot be effectively captured and are thus likely to

be significantly underrepresented in existing experimental data affecting the accuracy

of existing predictors. In this paper, we propose a new computational framework,

LITHOPHONE, which stands for long noncoding RNA methylation sites prediction

from sequence characteristics and genomic information with an ensemble predictor. We

show that the methylation sites of lncRNA and mRNA have different patterns exhibited in

the extracted features and should be differently handled when making predictions. Due

to the used experiment protocols, the number of known lncRNA m6A sites is limited,

and insufficient to train a reliable predictor; thus, the performance can be improved by

combining both lncRNA and mRNA data using an ensemble predictor. We show that

the newly developed LITHOPHONE approach achieved a reasonably good performance

when tested on independent datasets (AUC: 0.966 and 0.835 under full transcript and

mature mRNA modes, respectively), marking a substantial improvement compared with

existing methods. Additionally, LITHOPHONE was applied to scan the entire human

lncRNAome for all possible lncRNA m6A sites, and the results are freely accessible

at: http://180.208.58.19/lith/.
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INTRODUCTION

RNA modifications include more than 150 different types,
among which N6-methyladenosine (m6A) has attracted the most
attention due to its universality and various biological functions
(Fu et al., 2014; Liu and Jia, 2014; Meyer and Jaffrey, 2014). The
m6A RNA methylation denotes that the amino group on the
sixth carbon atom of adenine is modified by a methyl group,
usually occurring in the conservative sequence RRACH (R = G,
A; H = A, C, or U) or GGAC (Dominissini et al., 2012). The
universality of m6A is reflected in the following two aspects. On
the one hand, it appears in almost all RNA transcripts, including
coding and non-coding ones (Dominissini et al., 2012; Alarcón
et al., 2015b). On the other hand, it is enriched near the stop
codon, 3′ untranslated regions, and the last exon region of mRNA
(Liu et al., 2014, 2015). Recent studies (Alarcón et al., 2015a;
Roost et al., 2015) showed that as a common molecular tag, m6A
modification is involved in many important biological processes,
including RNA localization and degradation (Wang et al., 2014),
RNA structural dynamics (Roost et al., 2015; Song et al., 2020),
variable splicing (Wang et al., 2014), primary microRNA process
(Chen et al., 2015a; Geula et al., 2015), cell differentiation and
adaptation, and circadian clock regulation (Fustin et al., 2013).
It is also associated with protein translation, obesity, abnormal
brain development, and a few other diseases (Peng et al., 2016).

Long non-coding RNA (lncRNA) refers to a class of RNAs that
have no coding potentials and are of a length >200 nucleotides
(nt). Studies have shown that lncRNA plays an important
role in many life activities, such as dosage compensation
effect, epigenetic regulation, cell cycle regulation, and cell
differentiation regulation (Qureshi et al., 2010; Peng et al., 2016).
Recent epitranscriptome analysis has shown that thousands of
lncRNAs contain a large number of methylation sites (Shafik
et al., 2016). For example, m6A methylation is important for the
silencing or inactivation of the X chromosome gene mediated by
lncRNA XIST (Patil et al., 2016). The m6A methylation of XIST
is completed by recruiting the complex composed of RBM15
(RNA-binding motif protein 15)/RBM15B-WTAP-METTL3 to
the specific region of XIST, the methylation recognition protein
(reader) YTHDC1 then binds to this region and recruits silencing
proteins to complete the whole gene suppression process.
Moreover, the m6A methylation of MALAT1 regulates pre-
RNA synthesis. It was found that MALAT1 could carry this
methylation in the stem ring structure. After m6A methylation,
the binding ability of the gene to the hnRNP C protein was
enhanced (Nian et al., 2015). In addition, m6A methylation can
regulate lncRNA FOXM1-AS to promote the proliferation of
cancer cells (Zhang et al., 2017; Song et al., 2020), and regulate
lncRNA1281 to affect the differentiation of mouse embryonic
stem cells (Yang et al., 2018).

With the development of high-throughput sequencing (HTS)
technology, a new field of epitranscriptome analysis has emerged.
The invention of MeRIP-Seq in 2012 (Meyer et al., 2012)
presented the first technique to detect the m6A spectrum in
the whole transcriptome, during which RNA was randomly
fragmented into short pieces of around 100 nt long; the
fragments containing methylation modification were captured

using the specific antibodies, and then subjected to sequencing to
generate the IP samples; meanwhile, an input control sample was
generated in parallel to serve as the background. Tools likeMACS
(Zhang et al., 2008), exomePeak (Meng et al., 2013), or other
peak calling methods are usually used to detect m6A peaks with a
length of about 100 nt (Chen et al., 2017). It is possible to further
narrow down the precise location of m6A sites by searching
for the m6A conforming DRACH motif in the detected peaks.
However, since these methods cannot distinguish the random
DRACH motifs from the real m6A-containing motifs nearby, a
large number of false-positive m6A methylation sites is reported
by MeT-DB (Liu et al., 2018) and RMBase (Xuan et al., 2018), as
previously reported (Zhang et al., 2019). In addition to MeRIP-
Seq, technologies with a single base resolution such as miCLIP
(Bastian et al., 2015) and m6A-CLIP (Shengdong et al., 2015)
have been developed. However, due to the high difficulty and cost
of base-resolution experiments, these technologies have not been
widely used compared with MeRIP-Seq.

In silico methods to predict methylation sites based on
machine learning (ML) approaches have been increasingly
popular in recent years. For example, Chen et al. proposed the
first ML method to predict RNA methylation sites in 2015,
called “iRNA-Methyl” (Chen et al., 2015b). This method used
dinucleotide composition and physicochemical characteristics to
construct the PseDNC in order to represent RNA sequences and
used these as an input to support vector machines (SVMs) to
predict the m6A methylation sites of Saccharomyces cerevisiae.
Later, Zhou et al. (2016) used a variety of features to represent
the sequence information, including the features of sequence
coding, K-nearest base pair similarity and base pair frequency,
to train the predictive model with the random forest (RF)
method for them6Amethylation sites prediction inmammalians.
MethyRNA (Chen et al., 2016) encoded RNA sequences using
the nucleotides’ chemical properties and their accumulated
frequency information, and used SVM classifier to predict the
methylationmodification sites of S. cerevisiae. M6AMRFS (Qiang
et al., 2018) represented the sequence features with dinucleotide
binary encoding (DBE) and local position-specific dinucleotide
frequency (LPDF), and predicted the methylation modification
sites of S. cerevisiaem6A based on an eXtreme Gradient Boosting
(XGBoost) classifier. Besides, a number of methods used deep
learning (DL) approaches to predict m6A methylation sites.
BERMP (Yu Huang et al., 2018) used the base coding and the
frequency of each base in a sliding window of a certain length
as the characteristics of the sequence information. Using trained
Gated Recurrent Unit (GRU) classifier and RF classifier, the
final prediction results are obtained by logical regression. In
DeepM6ASeq (Zhang and Hamada, 2018), the sequence was
encoded using a one-hot encoding scheme, and the methylation
modification sites were then predicted using a deep learning
model consisting of a convolutional neural network (CNN) layer
and one bidirectional long short-term memory (BLSTM) layer.
Gene2vec (Quan Zou et al., 2018) took the methylation status
near the methylation site, a one-hot encoding, the RNA word
embedding feature, and the context word embedding feature
as sequence features, used them respectively as an input to
a CNN, and used a devoting method to predict the location.
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Deep-m6A (Zhang Sy et al., 2019) took the product of a one-
hot encoding of the sequence characteristics and the sites’ reads
count in the IP samples as an input to predict m6A sites using
a CNN. In addition, PRNAm-PC (Liu et al., 2016), RAM-ESVM
(Wei et al., 2017a), AthMethPre (Xiang et al., 2016), and other
methods (Chen et al., 2015c; Li et al., 2016; Zhao et al., 2018;
Liu et al., 2020) can also be used to predict m6A methylation
sites. Although all these methods can predict RNA methylation
sites, they are entirely based on the sequence context information.
Even when secondary structures or other advanced features
are used, the information is still directly extracted from the
sequence without considering other potential and useful genomic
features, referring to genome-related features that are not directly
derived from sequences, including the secondary structure,
gene annotation, transcription type, conservation, and many
more. Recently, the method of WHISTLE (Zhang et al., 2019)
combined sequence and genomic features to predict m6A sites
and constructed the entire m6A epitranscriptome, showing that
genomic features can also be very effective in the prediction of
these sites and should be considered in the prediction framework.

Although the aforementioned methods can all perform
general RNA methylation sites prediction, none of them was
specifically considered or optimized for lncRNA methylation
sites detection. Most of the currently existing experimental data
use polyA selection when constructing the RNA-seq library; thus,
lncRNAs will not be effectively captured since many of them
are non-polyadenylated, and many lncRNA methylation sites are
likely to be missed in the data generated from such protocol
that would mainly contain the methylation sites information of
mRNAs. As a result, the performance of site predictors trained
with such data is likely to be limited when they are applied
for the lncRNA methylation sites prediction task. The interplay
between lncRNA and RNA methylation is now of an increasing
interest to the science community and it is needed to develop a
lncRNA-specific methylation sites prediction tool.

In this paper, we propose a new computational framework,
LITHOPHONE, which stands for long noncoding RNA
methylation sites prediction from sequence characteristics
and genomic information with an ensemble predictor.
LITHOPHONE uses a RF classifier to predict m6A methylation
sites by extracting the physicochemical and frequency
accumulation characteristics of the bases based on sequence
information and multiple genomic features, and identify lncRNA
methylation sites by combining the information from mRNA
and lncRNA sites using an ensemble predictor.

MATERIALS AND METHODS

Dataset Construction
For predicting the m6A methylation sites in lncRNA, we
employed the ground truth data that was used in the WHISTLE
project (Zhang et al., 2019), including six single-base resolution
m6A experiments from six datasets obtained from five cell types
(see Table 1): HEK293T, MOLM13, A549, CD8T, and HeLa,
respectively, where HEK293T has two samples. The annotation
information of lncRNA was obtained through Bioconductor via
the TxDb.Hsapiens.UCSC.hg19.lincRNAsTranscripts R package.

TABLE 1 | Single-base resolution m6A datasets in lncRNA m6A prediction.

Cell Note References

HEK293T Abacm antibody Bastian et al., 2015

HEK293T Sysy antibody Bastian et al., 2015

MOLM13 Vu et al., 2017

A549 Shengdong et al., 2015

CD8T Shengdong et al., 2015

HeLa Ke et al., 2017

The positive m6A sites were defined as under the DRACH
consensus motifs in at least two of the six datasets. The
negative m6A sites were randomly selected from the non-
positive DRACH adenosines on the full transcripts containing
the positive sites. There were equal numbers of negative
and positive sites for each set of the training data, and the
underlying motifs were restricted on DRACH. In addition, no
sites were reported from the regions that can be mapped to
multiple genes.

Finally, 2,582 full transcript m6A sites in lncRNA were
collected, including 1,291 positive sites and 1,291 negative
ones, while 2,214 m6A sites were obtained in mature lncRNA
mode with 1,107 positive sites and 1,107 negative ones. Four-
fifths of the sites were randomly selected for training, and
the rest was retained for testing under both full transcript
and mature RNA modes, respectively. For comparison
purposes, we also generated the matched data for mRNAs,
including 57,105 positive sites and the same number of
negative ones for the full transcript mode, and 54,476 positive
sites and 54,476 negative ones for the mature RNA mode,
respectively. There were many more mRNA methylation
sites compared with the lncRNA sites, suggesting that the
mRNA methylation sites usually dominate the epitranscriptome
profiling results.

Feature Representation
In this work, the sequence and genomic features were
simultaneously used to represent a m6A site.

Sequence Features
A nucleotide in a 21-nt sequence around the DRACH motif was
represented by a four-dimensional vector following the method
of MethyRNA (Chen et al., 2016). Firstly, each kind of nucleotide
in RNA, including adenine (A), guanine (G), cytosine (C), and
uracil (U), was represented by three characteristics according
to its different chemical characteristics. For example, there is
only one ring structure in cytosine and uracil, while adenine
and guanine have two rings; adenine and cytosine both contain
an amino group, while guanine and uracil both contain a keto
group; hydrogen bonds are strong in guanine and cytosine
when forming the secondary structure, while they are weak in
adenine and uracil. According to these three features, a three-
dimensional vector S = (xi, yi, zi) could be used to represent
a nucleotide:

x =
{

1 if s ∈ {A,G}
0 if s ∈ {C,U} , y =

{

1 if s ∈ {A,C}
0 if s ∈ {G,U}, z =

{

1 if s ∈ {A,U}
0 if s ∈ {C,G}(1)
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Therefore, based on the above-defined rules, the vectors (1,1,1),
(0,1,0), (1,0,0), and (0,0,1) can be used to encode A, C, G,
and U, respectively. Next, the base accumulation frequency was
also considered to describe the distribution of each base in
the sequence. This frequency was defined as the frequency of
the ith base in the previous i bases. The density fi of the ith
base is calculated by fi = di/i, where fi is the frequency of the
occurrence of the ith base before i position density, and di is
defined as the sum of the occurrences of the ith base in the
previous i bases. For a sequence like “ACCUGAAUUG,” A occurs
three times at the 1st, 5th, and 6th positions, so the cumulative
frequencies are 1/1, 2/5, and 3/6, respectively. However, the
cumulative frequencies of C are 1/2 and 2/3; those of U are
1/4, 2/8, and 3/9; and those of G are 1/5 and 2/10. According
to the above-described chemical characteristics and frequency
cumulative distribution characteristics, each base can be encoded
using a four-dimensional vector.

Genomic Features

Sequence features can only reflect the characteristics of each
base in the sequence, but they cannot represent the topological
information of the RNA methylation sites; thus, 60 additional
genomic features were generated to reflect this information for
the RNA methylation prediction in lncRNA. These features
are detailed as follows: genomic features 1–10 are the dummy
variable features, which indicate whether the site is overlapped
with the topological region on the major RNA transcript. In
order to extract genomic features, the longest transcripts were
selected to prevent the influence of transcription isoforms. All
features were extracted using the transcriptional annotations
of the hg19 TxDb package (Xuan et al., 2018). Genomic
features 11–12 stand for the distances toward the splicing
junctions. Features 13–14 represent the length of the transcript
region containing the methylation site. Features 15–32 indicate
the consistence motif to which the RNA methylation site
belongs. Features 33–36 represent clustering indicators or motif
clustering, which reflect the clustering effect of the RNA
methylation sites. Features 37–40 are the scores related to the
evolutionary conservation, including two Phast-Cons scores and
two fitness consequences scores. Features 41–42 obtain the
secondary structure information of the RNA using RNAfold
(Gruber et al., 2015). RNA annotations related to m6A biology
are features 43–55. Feature 56 is a dummy variable indicating
whether the lncRNA is a miRNA target. Finally, features 57–
60 include two z-scores of the isoform and exon number,
and two z-scores of the GC content. Table S1 contains the
detailed information of the genomic features considered in
the prediction.

Evaluation Metrics
In order to measure the prediction effect of the model, we used
the measurements of sensitivity (Sn), specificity (Sp), accuracy
(ACC), and Matthews correlation coefficient (MCC) to show the
results of the model. The four indicators are respectively defined

as follows:

Sn =
TP

TP + FN
(2)

Sp =
TN

TN + FP
(3)

ACC =
TP + TN

TN + FP + TP + FN
(4)

MCC =
TP × TN − FP × FN

√
(TP + FP)(TN + FN)(TP + FN)(TN + FP)

(5)

where TP, TN, FP, and FN are the true positive, true negative, false
positive, and false negative values, respectively. The sensitivity
reflects the success rate of the positive sample prediction, and
the specificity reflects the success rate of the negative sample
prediction. A good prediction system should have both a high
sensitivity and a high specificity at the same time. If the sensitivity
is very high and the specificity is low, the false positive will be
very high, while if the specificity is very high and the sensitivity is
low, the false negative will be very high. Therefore, the forecasting
system needs to comprehensively consider these two indicators.
Matthews correlation coefficient is a comprehensive performance
evaluation index considering unbalanced datasets. In addition,
we plotted the receiver operating characteristic (ROC) curves
and calculated the areas under the curves (as called “AUC”) to
evaluate the prediction performance.

RESULTS AND DISCUSSION

Comparing RF and Other Algorithm
Performance Through Cross-Validation
In order to compare the prediction results of different algorithms,
five different classifiers were used: RF (Liu, 2017; Wei et al.,
2017b), SVM (Song et al., 2018), K-nearest neighbor (KNN)
(Jia et al., 2016), logistic regression (LR) (Cha et al., 2015)
and XGBoost (Chen and Guestrin, 2016). RF is a popular ML
algorithm used to predict m6A RNA methylation, which was
applied in SRAMP (Zhou et al., 2016) to predict mammalianm6A
sites. SVM is another ML algorithm applied in computational

TABLE 2 | Performance under 10-fold cross-validation.

Mode Method Evaluation metrics

Sn Sp ACC MCC AUC

Full transcript RF 0.923 0.938 0.930 0.861 0.971

SVM 0.884 0.942 0.913 0.828 0.964

KNN 0.5 0.501 0.500 0.001 0.945

LR 0.881 0.944 0.912 0.827 0.962

XGBoost 0.907 0.940 0.924 0.848 0.955

Mature lncRNA RF 0.784 0.724 0.754 0.511 0.827

SVM 0.738 0.713 0.725 0.451 0.796

KNN 0.499 0.501 0.500 0.001 0.727

LR 0.602 0.807 0.704 0.418 0.789

XGBoost 0.645 0.697 0.671 0.345 0.722
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biology, based on which the methods of MethyRNA (Chen
et al., 2016) and RAM-ESVM (Wei et al., 2017a) were developed
to predict RNA methylation sites. KNN is one of the most
powerful methods in the data mining classification technology,
and LR is an ML method with a simple algorithm and a
high performance. XGBoost is frequently used in competitions
and industry, and can be effectively applied to the tasks of
classification, regression, and ranking; it was used in M6AMRFS
(Qiang et al., 2018) to predict m6A sites in multiple species

based on the sequence features. All methods were implemented
using the corresponding R packages (see Table S2). In order
to compare their performance, a 10-fold cross-validation was
employed on the training datasets under the full transcript
and mature lncRNA modes. The performance of the different
classifiers is summarized in Table 2, which shows that RF
achieved the best performance both under the full transcript
mode and mature lncRNA mode with an AUC of 0.971 and
0.827, respectively.

TABLE 3 | Performance under independent test.

Mode Training data Testing data Method Evaluation metrics

Sn Sp ACC MCC AUC

Full transcript lncRNA lncRNA RF 0.922 0.930 0.926 0.853 0.966

SVM 0.903 0.934 0.919 0.838 0.963

KNN 0.500 0.500 0.500 0.000 0.942

LR 0.895 0.926 0.911 0.822 0.959

XGBoost 0.922 0.903 0.913 0.826 0.947

lncRNA mRNA RF 0.981 0.046 0.514 0.077 0.759

SVM 0.984 0.051 0.518 0.098 0.678

KNN 0.499 0.501 0.500 0.000 0.572

LR 0.954 0.171 0.562 0.200 0.716

XGBoost 0.908 0.250 0.579 0.209 0.697

mRNA lncRNA RF 0.752 0.934 0.843 0.698 0.936

SVM 0.744 0.899 0.822 0.651 0.905

KNN 0.492 0.508 0.500 0.000 0.703

LR 0.539 0.953 0.746 0.541 0.872

XGBoost 0.721 0.891 0.806 0.622 0.869

mRNA mRNA RF 0.846 0.833 0.839 0.679 0.913

SVM 0.829 0.839 0.834 0.669 0.908

KNN 0.499 0.501 0.500 0.001 0.798

LR 0.717 0.896 0.806 0.623 0.898

XGBoost 0.831 0.832 0.832 0.664 0.907

Mature RNA lncRNA lncRNA RF 0.766 0.694 0.730 0.461 0.821

SVM 0.712 0.689 0.700 0.401 0.789

KNN 0.500 0.500 0.500 0.000 0.734

LR 0.590 0.802 0.696 0.401 0.797

XGBoost 0.757 0.703 0.730 0.460 0.784

lncRNA mRNA RF 0.757 0.522 0.639 0.287 0.705

SVM 0.814 0.424 0.619 0.258 0.717

KNN 0.493 0.508 0.501 0.002 0.520

LR 0.804 0.472 0.638 0.292 0.660

XGBoost 0.652 0.527 0.590 0.181 0.615

mRNA lncRNA RF 0.788 0.608 0.698 0.403 0.807

SVM 0.761 0.631 0.696 0.395 0.774

KNN 0.500 0.500 0.500 0.000 0.542

LR 0.419 0.838 0.628 0.283 0.653

XGBoost 0.694 0.694 0.694 0.387 0.749

mRNA mRNA RF 0.858 0.825 0.841 0.683 0.916

SVM 0.840 0.842 0.841 0.682 0.915

KNN 0.499 0.501 0.500 0.001 0.800

LR 0.742 0.895 0.819 0.645 0.908

XGBoost 0.831 0.832 0.832 0.664 0.907
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Independent Tests Suggest That lncRNA
and mRNA Methylation Sites Possess
Different Characteristics
Next, we independently tested the m6A sites on lncRNA in
the full transcript and mature lncRNA modes. It is worth
mentioning that none of the existing sites prediction methods
differentiated between lncRNA and mRNA sites. Since mRNA
sites are significantly over-represented in the data, it should
dominate the performance assessment results. In the following
tests, the mRNA and lncRNA sites were explicitly separated in
both training and testing phases. Specifically, we used m6A sites
from both mRNA and lncRNA for the training, and then as
testing sites from the two categories as well. We used the training
data in lncRNA to train in the full transcript mode, tested with
the testing data of lncRNA and mRNA separately, then trained
with the training data in mRNA and finally tested with the testing
data of lncRNA and mRNA separately. The same method was
used in the mature lncRNA mode. As shown in Table 3, the best
performance was achieved when the training and testing data
were matched, suggesting that lncRNA and mRNA methylation
sites exhibited different characteristics. When using lncRNA
data as training samples to predict m6A sites in lncRNA, the
prediction performance (AUC = 0.966 and AUC = 0.821, under
full transcript and mature RNA modes, respectively) was better
than when we used mRNA data as training samples to predict
the sites of lncRNA (AUC = 0.936 and AUC = 0.807, under
full transcript and mature RNA modes, respectively). Similarly,
this situation also occurs in predicting the sites of mRNA. When
mRNA sites were used for training, the results achieved for
testing the sites of mRNA were better than those of lncRNA. In
addition, it can be seen that the method of RF can achieve the
best prediction results in both cross-validation and independent
testing among the five different prediction methods. Therefore,
RF is chosen as a classifier to predict the methylation sites
in lncRNA.

Construction of an Ensemble Predictor
Since mRNA methylation sites can also be used for lncRNA site
prediction and have achieved a reasonably good performance
(Table 3), and considering that we only have a limited number
of lncRNA methylation sites, which may not be sufficient for
training, an ensemble model using mixed predictive results of
mRNA and lncRNA was proposed in order to further improve
the lncRNA sites prediction accuracy. The probability of lncRNA
sites prediction in this model is defined as follows:

Pen = αPm + (1− α)Plnc (6)

where Pen denotes the final prediction probability of the sites
in the mature lncRNA mode, Pm represents the prediction
probability of the sites when mRNA sites data were used
for training, and Plnc denotes the prediction probability of
the sites when the lncRNA data were used for training.
In order to optimize the value of α, which gives the
models different weights, a grid search was performed α ∈
[0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]. The best performance

FIGURE 1 | Search for optimal parameter of the ensemble predictor. The

optimal result was achieved when α=0.3. When α = 0, only lncRNA sites were

used for training; while when α = 1, only mRNA sites were considered.

TABLE 4 | Comparison of ensemble model and lncRNA trained model.

Predictor Evaluation metrics

Sn Sp ACC MCC AUC

mRNA trained 0.788 0.608 0.698 0.403 0.807

lncRNA trained 0.766 0.694 0.730 0.461 0.821

Ensemble (α = 0.3) 0.797 0.689 0.743 0.489 0.835

was achieved when α = 0.3 (AUC= 0.835) (see Figure 1), which
indicates that the relatively small number (1,107) of lncRNA sites
plays a major role in the ensemble predictor (weight= 0.7), while
the very large number (54,476) of mRNA methylation sites plays
a minor role (weight = 0.3). The results comparing the mRNA
and lncRNA models are shown in Table 4.

Feature Selection
To further optimize the prediction results, we used feature
selection to obtain the most effective feature set to predict
the methylation sites on lncRNA, and a greedy search was
implemented. Firstly, we ranked the features according to their
importance through the results of AUC with 10-fold cross
validation. Then, one feature was added to the training set
each time from the sorted feature set, and the prediction
results were obtained using 10-fold cross-validation. The optimal
feature set was obtained through the highest AUC. As shown in
Figures 2C,D, the first 134 features composed the optimal feature
set in the m6A sites prediction in the full transcript mode, while
the top 41 features can get the highest AUC when predicting
m6A sites in the mature RNA mode. In addition, it can be seen
from Figures 2A,B that the top five features when predicting
lncRNA m6A sites under the full transcript mode are whether
the site is overlapped with the intron (intron), the distance to
the downstream (3′ end) splicing junction (dist_sj_3_p2000), the
z-score of the isoform num (isoform_num), whether the site is
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FIGURE 2 | Feature selection results. (A) The ranking of the features for full transcript m6A site prediction. (B) The ranking of the features for mature lncRNA m6A site

prediction. (C) Top 134 features were selected for full transcript m6A site prediction. (D) Top 41 features were selected for mature lncRNA m6A site prediction.

overlapped with the internal exon (internal_exon), and the z-
score of the gene length exons (length_gene_ex). On the other
hand, the five most importance features in the prediction sites
under the mature RNA mode are the distance to the upstream
(5′ end) splicing junction (dist_sj_5_p2000), the distance to
the downstream (3′ end) splicing junction (dist_sj_3_p2000),
the z-score of the gene length exons (length_gene_ex), whether
the site is overlapped with the intron (intron), and the z-
score of the exon num (exon_num). Although some of the first
five features are identical in predicting RNA methylation sites
in both full transcript and mature lncRNA modes, different
characteristics reflect the inherent differences between the
two modes.

Comparison With Existing Methods
In order to further verify the validity of the proposed algorithm,
we compared it with the methods of SRAMP that uses RF
to predict mRNA m6A sites, MethyRNA that uses the same
sequence features as we do, but uses SVM for prediction,
and the deep learning method of Gene2vec. These methods
have available prediction tools. The results are summarized in
Table 5 and the ROC curves of the four methods are shown
in Figure 3. The results show that the proposed method is

TABLE 5 | Performance comparison for lncRNA m6A site prediction.

Mode Method Evaluation metrics

Sn Sp ACC MCC AUC

Full transcript SRAMP 0.705 0.791 0.748 0.498 0.827

MethyRNA 0.717 0.752 0.734 0.469 0.801

Gene2vec 0.798 0.813 0.805 0.611 0.865

LITHOPHONE 0.922 0.930 0.926 0.853 0.966

Mature RNA SRAMP 0.604 0.748 0.676 0.355 0.749

MethyRNA 0.622 0.644 0.633 0.266 0.679

Gene2vec 0.778 0.689 0.734 0.469 0.806

LITHOPHONE 0.797 0.689 0.743 0.489 0.835

superior to the current popular methods in predicting lncRNA
methylation sites.

LncRNAome-Wide m6A Site Prediction
In order to obtain a complete map of all the human lncRNA
methylation sites, we searched the entire lncRNAome for all the
DRACH motifs, which represent candidate lncRNA methylation
sites, under both full transcript and mature RNA modes, and
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FIGURE 3 | ROC for lncRNA methylation site prediction. The proposed approach substantially outperformed competing approaches. (A) The ROC curve for the full

transcript mode. (B) The ROC curve for the mature RNA mode.

used the proposed method to predict the probability of lncRNA
methylation sites. Finally, 330,564 out of the total 4,046,330
DRACHmotifs were predicted to contain m6ARNAmethylation
sites under the full transcript mode with a probability greater
than 0.5, and 114,093 out of the total 313,458 DRACH motifs
from 29,687 lncRNAs were predicted as putative lncRNA
methylation sites under the mature RNA mode. The prediction
results can be freely accessed at: http://180.208.58.19/lith/. In
addition, the data and code used in this article can be obtained
from https://github.com/lianliu09/lncRNA-m6a.git.

CONCLUSION

With the rapid development of high-throughput sequencing
and RNA methylation profiling technologies, people can
now study RNA modifications with a high accuracy in
the full transcriptome range. In recent years, a number
of RNA methylation sites prediction methods have been
developed. However, to the best of our knowledge, none
of them considered the experimental bias induced in the
current epitranscriptome data, which can significantly affect the
performance of these predictors.

In this paper, we presented LITHOPHONE, an ensemble
framework to predict m6A epitranscriptome in lncRNA.
Unlike other methods that rely only on sequence information,
LITHOPHONE extracts the physicochemical and frequency
accumulation characteristics of the bases, combining 60 genomic
characteristics to predict the m6A methylation modification
sites under both full transcript and mature RNA modes on
lncRNA using the RF algorithm. To the best of our knowledge,
LITHOPHONE is the first m6A sites predictor that is optimized
for lncRNA. We showed that lncRNA and mRNA exhibit
different predictive characteristics, and how LITHOPHONE
outperforms competing approaches in lncRNA methylation site
prediction. Additionally, we searched the entire lncRNAome
in human for all possible m6A sites located on lncRNAs and

predicted 330,564 m6A sites on pre-lncRNA and 114,093 sites
on mature lncRNA. We built a website to query the prediction
results of lncRNA methylation sites and it is freely accessible at:
http://180.208.58.19/lith/. The LITHOPHONE framework can be
easily extended to other RNAmodifications, such as m1A, as well
as other species, such as the mouse.
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