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Abstract: Gadolinium deposition in the brain has been observed in areas rich in iron, such as the
dentate nucleus of the cerebellum. We investigated the role of Fe2+ in the effect of gadolinium-based
contrast agents (GBCA) on thyroid hormone-mediated Purkinje cell dendritogenesis in a cerebellar
primary culture. The study comprises the control group, Fe2+ group, GBCA groups (gadopentetate
group or gadobutrol group), and GBCA+Fe2+ groups. Immunocytochemistry was performed with
an anti-calbindin-28K (anti-CaBP28k) antibody, and the nucleus was stained with 4′,6-diamidino-2-
phenylindole (DAPI). The number of Purkinje cells and their arborization were evaluated with an
analysis of variance with a post-hoc test. The number of Purkinje cells was similar to the control
groups among all treated groups. There were no significant differences in dendrite arborization
between the Fe2+ group and the control groups. The dendrite arborization was augmented in the
gadopentetate and the gadobutrol groups when compared to the control group (p < 0.01, respectively).
Fe2+ significantly increased the effect of gadopentetate on dendrite arborization (p < 0.01) but did
not increase the effect of gadobutrol. These findings suggested that the chelate thermodynamic
stability and Fe2+ may play important roles in attenuating the effect of GBCAs on the thyroid
hormone-mediated dendritogenesis of Purkinje cells in in vitro settings.

Keywords: gadolinium (Gd); gadolinium-based contrast agent (GBCA); Gd toxicity; transmetallation;
Purkinje cells; neuron morphogenesis

1. Introduction

Chelated gadolinium (Gd)-based contrast agents (GBCA) have an excellent safety
profile for clinical magnetic resonance imaging (MRI) [1]. Given Gd’s toxic nature, chelation
is critical for its safety profile [2]. Although chelation greatly improves the safety profile
of GBCA [3], previous studies showed that Gd retention may occur in various organs,
including in the brain tissue of healthy humans [4–6]. Although Gd from GBCAs may be
deposited in various areas of the brain, the effect of Gd retention in the brain has yet to be
fully explained.

Gd retention in the brain may pose a threat to the neurons themselves. Previous studies
showed that Gd3+ may damage cortical neurons through the oxidative stress pathway [7,8].
The highest Gd retention was observed in areas of the brain rich in iron, such as the dentate
nucleus of the cerebellum [9]. The thermodynamic stability of chelated iron is higher
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than chelated gadolinium [10]. Therefore, it may be involved in the Gd transmetalation
phenomenon [11] and may explain why an area with a high iron concentration has a higher
Gd retention. In biological media, endogenous ions like iron and zinc may form very
stable complexes with chelate ligands, and even highly stable Gd-chelates will release a
small amount of free Gd [3]. Concurrently, Gd has a high affinity for phosphate, citrate,
and carbonate ions, and will bind to proteins like serum albumin [3,12]. Thus, excess iron
would favor the dissociation of Gd from its chelate.

Occasionally, radiologists may use Gd contrast-enhanced MRI (CE-MRI) in patients
with iron overload, including pediatric patients [13]. CE-MRI is also used during pregnancy,
during which iron supplementation is frequent [14]. Therefore, contrast-enhanced MRI
in patients with high iron concentrations may need careful consideration because of its
potential neurotoxicity.

Thyroid hormone (TH) plays a critical role in normal mammalian brain development
and functional maintenance [15]. A previous study showed that exposure to gadodiamide
or gadoterate meglumine altered TH receptor (TR) action and TH-induced cerebellar
Purkinje cell morphogenesis [16]. In addition, iron, as the strongest candidate for inducing
the transmetalation of GBCA, might affect TR action and TH-responsive genes [17–20].

The aim of this study was to investigate the thyroid hormone-mediated morphological
alteration of cerebellar Purkinje cells in vitro after their exposure to linear or macrocyclic
chelate GBCAs in the presence of Fe2+.

2. Materials and Methods
2.1. GBCAs and Ferrous Iron

Gadopentetate dimeglumine (Magnevist®, linear GBCA) and Gadobutrol (Gadovist®,
macrocyclic GBCA) were purchased from Bayer Yakuhin Ltd., Osaka, Japan. The GBCAs
were diluted in the culture medium to treatment doses of 1 nM, 10 nM, or 100 nM. Ferrous
sulfate (Fe2+; MW, 278.01) was purchased from Fujifilm Wako Pure Chemical Industries,
Ltd. (Osaka, Japan). We dissolved Fe2+ powder in the culture medium, filtered it with a
0.22 µm membrane to a stock concentration of 1 µM, and stored it at −20 ◦C until use. The
treatment dose of Fe2+ was 10 nM.

The experiments were replicated three times. Each experiment consisted of 6 major
groups; a control group, an Fe2+ group (10 nM), a gadopentetate group (1 nM, 10 nM, and
100 nM), a gadobutrol group (1 nM, 10 nM, and 100 nM), a gadopentetate-Fe2+ group, and
a gadobutrol-Fe2+ group. In the gadopentete-Fe2+ group, 10 nM Fe2+ was incubated with
1 nM, 10 nM, or 100 nM gadopentetate. In the gadobutrol-Fe2+ group, 10 nM Fe2+ was
incubated with 1 nM, 10 nM, or 100 nM gadobutrol.

2.2. Primary Cerebellar Culture

The study was conducted according to the guidelines of the Declaration of Helsinki
and approved by the Institutional Review Board of Gunma University (Experiment protocol
no. 20-037, 06/08/2020). Pairs of C57BL/6 mice (Japan SLC, Inc., Hamamatsu, Japan) were
bred in the local institution. The procedure minimized the number of animals used and
their suffering under the local animal care and experimentation committee guidelines. A
total of thirteen independently randomized litters were used in this study. The cerebellum
was isolated from decapitated pups on the first day of birth (P0) based on previously
established culture methods [21]. In brief, the cerebellum was collected under a dissecting
microscope in a culture hood. Freshly isolated cerebellum was digested with 0.2 U/mL of
papain (Worthington, Lakewood, NJ, USA) in phosphate-buffered saline (PBS) containing
0.2 mg/mL l-cysteine, 0.2 mg/mL, 5 mg/mL glucose (Sigma-Aldrich, St. Louis, MO,
USA) bovine serum albumin (Intergen Company, Purchase, NY, USA), and 0.02 mg/mL
DNase I (400–600 U/mg; Sigma-Aldrich). The procedure was done at 36.5 ◦C in a water
bath equipped with a shaker for 25 min. Following centrifugation, the dissociated cells
were suspended in Ham’s F12-Dulbecco’s modified essential medium (DMEM/F12, serum
free; (Sigma-Aldrich) and plated on poly-L-lysine coated chamber slides (Lab-Tek 8 mm
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diameter wells, Nalge Nunc International, Rochester, NY, USA) at a density of 3 × 105 cells
per well. Twenty-four hours later, the medium was changed with F12-DMEM medium
supplemented with 1% antibiotics, 10% fetal bovine serum (FBS), and 1 nM thyroxine T4
(Sigma-Aldrich). GBCAs and 10 nM Fe2+ were also added to the medium of the relevant
groups at this time. Part of the medium (200 µL) was replaced with fresh medium every
3 days, and the cells were cultured in an incubator (37 ◦C, 5% CO2) for 17 days.

2.3. Immunocytochemistry for Calbindin to Analyze Purkinje Cell Morphology

The immunocytochemistry of the cultured cells was performed as previously de-
scribed [21]. In brief, the cells were fixed by 4% paraformaldehyde, followed by cell per-
meation with 0.1% nonionic surfactant (Triton™ X-100; Sigma-Aldrich). Immunochemical
staining was performed with a 1:200 mouse monoclonal anti-calbindin-28K (anti-CaBP28k)
primary antibody and a donkey anti-mouse IgG (H + L) secondary antibody, Alexa Fluor®

488 conjugate (1:200; Thermo Fisher Scientific Inc., Waltham, MA, USA). Cell nuclei were
stained with 4′,6-diamidino-2-phenylindole (DAPI). Ten images of Purkinje cells were
randomly captured from each well (per experiment) with the laser confocal scanning
microscope ZEISS LSM 880 (Carl Zeiss Microscopy GmbH, Jena, Germany).

ImageJ software (NIH) was used to quantify the relative dendritic area (dendrite
arborization) in the area covered by the dendritic tree, which was determined by tracing
the outline of the cell and its dendritic branches. The numbers of Purkinje cells (CaBP28k-
positive cells) per well (1 cm2) were counted manually using a schematic grid from the top
right corner to the lower left corner of the well.

2.4. Statistical Analysis

All data were expressed as means ± standard deviation (SD). An analysis of variance
was performed to analyze the treatment effect of GBCAs and their interaction with Fe2+ (η2).
A post-hoc multiple comparison to determine which category was significantly different
was done by a Tukey honest significant difference (HSD) test. SPSS software (version 23;
IBM-SPSS, Inc., Chicago, IL, USA) was used for data analyses. All p values of less than
0.05 were considered statistically significant.

3. Results
3.1. Purkinje Cell Number

The Purkinje cell numbers per well were similar between the Fe2+ group and the con-
trol group. There were also no differences among the gadopentetate and gadopentetate-Fe2+

groups (Figure 1A), and among the gadobutrol and gadobutrol-Fe2+ groups (Figure 1B).
The representative images for cell numbers quantification was described in Figure 1C.

3.2. Dendrite Arborization of the Purkinje Cells

There were no significant differences in dendrite arborization between the Fe2+ and
control groups. The dendrite arborization of the Purkinje cells increased in both the
gadopentetate and gadobutrol groups (p < 0.01, respectively; Figures 2A and 3A), com-
pared to the control group. In the gadopentetate group, the greatest increase in dendrite
arborization was observed when incubated with 100 nM gadopentetate (p < 0.01), followed
by 10 nM (p < 0.01) and 1 nM (p < 0.01) (Figure 2A). Meanwhile, in the gadobutrol group,
the highest increase was observed at a concentration of 10 nM (p < 0.01), followed by 1 nM
(p < 0.01) and 100 nM (p < 0.01) (Figure 3A).
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Figure 2. Changes in the relative dendritic area of the Purkinje cells post incubation with gadopente-
tate with/without Fe2+. (A) Gadopentetate significantly increased Purkinje cells’ dendrite arboriza-
tion compared to the control group, particularly at 100 nM. (B) Fe2+ attenuated the effect of gadopente-
tate on the dendrite arborization. (C) The relative dendritic area of Fe2+ + gadopentetate-treated cells
was significantly higher than for gadopentetate-treated cells. (D) Representative photomicrograph
of gadopentetate-treated Purkinje cells. ** p < 0.01 and * p < 0.05 indicate a statistical significance
by Tukey’s HSD post-hoc test compared to the control, unless indicated with a significance bar.
ns: not significant.
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Tukey’s HSD post-hoc test compared to the control group, unless indicated with a significance bar.
ns: not significant.

In the gadopentetate+Fe2+ group (Figure 2B), the greatest increase in dendrite ar-
borization was observed when incubated with 1 nM gadopentetate (p < 0.01), followed
by 10 nM (p < 0.01) and 100 nM (p < 0.01). In the gadobutrol+Fe2+ group (Figure 3B),
an increase in dendrite arborization was observed at 10 nM (p < 0.01), followed by 1 nM
(p < 0.01) and 100 nM, similar to the gadobutrol group.

There was a significant interaction between gadopentetate and Fe2+ (p < 0.01, η2 = 12.18,
ANOVA). The incubation of 10 nM Fe with 1 nM gadopentetate significantly increased
dendrite arborization, but not with 10 nM gadopentetate (p = 0.06) or 100 nM gadopentetate
(p = 0.97; Figure 2C). In contrast, there was no interaction between gadobutrol and Fe2+

(p = 0.56, η2 = 1.21, ANOVA). The incubation of 10 nM Fe2+ did not increase dendrite
arborization at any gadobutrol concentration (Figure 3C).

4. Discussion

Although both gadopentetate and gadobutrol were found to accelerate the thyroid
hormone-induced dendrite arborization of the cerebellar Purkinje cells, only the effect of
gadopentetate was augmented by Fe2+.

Thyroid hormones (TH) T3 and T4 are essential in the morphogenesis of Purkinje cells.
Without TH, the growth and branching of Purkinje cells may be abnormal [22]. Molecular
mechanisms coordinate dendrite arborization and ensure a functional neural network
integrity [23]. One of the signaling molecules that takes part in the process of dendrite
arborization is calcium/calmodulin-dependent protein kinase II (CaMKs). CaMK II is
activated by intracellular calcium influx (Ca2+) and has autoinhibitory functions that inhibit
and restrict dendrite growth [24,25]. Considering that Gd (107.8 pm) has an ionic radius
similar to calcium (114 pm) [3,26], it can easily compete with Ca2+ in this site with a much
higher affinity. Gd from GBCAs may impede the auto-inhibitory function of CaMK II. This
may partially explain why Purkinje cell dendrite arborization by T4 was not coordinated
properly when the neurons were incubated with gadopentetate or gadobutrol.

Although gadobutrol increased the dendrite arborization of cerebellar Purkinje cells
compared to the control group, it was still noticeably lower when compared to gadopente-
tate. This suggested that chemical structure, especially thermodynamic stability, may be
important in preventing Gd toxicity to neurons. In line with the study by Ariyani et al. [16],
although gadodiamide and gadoterate were deposited in CV-1 cells, only gadodiamide



Diagnostics 2021, 11, 2310 6 of 10

altered the thyroid hormone receptor (TR)-mediated transcription, augmenting it at low
doses but hampering cellular function at high doses. Both studies were reported in vitro
and were performed using a mixed cell culture containing not only neurons but also astro-
cytes, oligodendrocytes, and microglia. Physiological iron levels are not uniform among
the different cell types [27,28]. These cells have different densities and may affect the
metabolism of ferrous iron and GBCAs in vitro.

One of the mechanisms for Gd retention in brain tissue is the transmetalation phe-
nomenon, in which Gd is released from its chelate [29] due to the higher thermodynamic
stability constant of Fe to DTPA (log Kcond: 23.4) when compared to Gd-DTPA (log
Kcond: 18.4) [30]. Telgmann and colleagues [31] described that when gadopentetate was
incubated with blood plasma in vitro for two hours, no compound of iron diethylenetri-
aminepentaacetic acid (Fe-DTPA) was detected, indicating the lack of transmetalation.
Given that Magnevist® solution contains an additional 0.2% (0.4 mg/mL; Table 1) of DTPA
ligand [32,33], Fe2+ may primarily bind with this excess ligand instead of competing with
chelated Gd, reducing transmetalation. We expected that the supplementation of Fe2+ in the
medium would alter the GBCAs’ effect on thyroid hormone-induced dendrite arborization.
Interestingly, our results suggested that the Fe2+-to-gadopentetate ratio may be important
in augmenting the morphogenesis by the thyroid hormone, which in turn would affect
the neuronal function. When the Fe2+ concentration was lower than the gadopentetate
concentration (1:10), this effect may have been minimized. We suspected that Fe2+ binded
with the excess ligand in the Magnevist® solution (Figure 4). When the Fe2+ concentration
was higher than gadopentetate (10:1), the 0.2% excess ligand might have been insufficient,
and the remaining Fe2+ may have competed with the chelated Gd, increasing the release of
Gd from the chelate. Under these conditions, transmetalation may occur more easily and
affect the neurons, as indicated by the significant increase in the dendrite arborization of
Purkinje cells.

Table 1. Characteristics of Magnevist® and Gadovist® [2,32,33].

Gadopentetate Dimeglumine
(Magnevist®)

Gadobutrol
(Gadovist®)

Chemical Structures
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Osmolality 1960 1603

Excess ligand 0.4 mg/mL -
log Ktherm 22.5 21.8
log Kcond 18.4 14.7

Kinetic stability Low High

The stability of gadobutrol, a macrocyclic contrast agent, supports this explanation.
The higher affinity of Gd to dihydroxy-hydroxymethylpropyl-tetraazacyclododecane-
triacetic acid (DO3A) would make it less likely for Fe2+ to trigger transmetalation. However,
gadobutrol still affected arborization and its intensity at lower doses, especially 10 nM and
1 nM. This raises the question of whether intact contrast agents affect neurons through
pathways similar to that of free Gd, despite being chelated. Gadopentetate is an ionic
(higher osmolality) contrast agent, whereas gadobutrol is a non-ionic (lower osmolality)
contrast agent. Ionic GBCAs have been shown to reduce calcium ions in vitro when com-
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pared with non-ionic GBCA [34], which may further explain why gadopentetate’s effect on
dendrite arborization is much greater than gadobutrol.
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Figure 4. Proposed mechanism of how the concentration ratio between Fe2+ and chelated gadolinium
(Gd[L]) contributes to transmetalation. When the Fe2+ concentration is lower than Gd[L] with excess
ligand [L]e, Fe2+ will bind primarily with the [L]e before competing with Gd[L]. However, when the
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When transmetalation occurs in vivo, Gd3+ may bind with endogenous molecules such as phosphate
or carbonate or may form a macromolecule complex.

Iron concentration needs to be balanced during brain development [17,35,36]. Iron
overload may cause Purkinje cell loss and cellular damage via Fenton and Haber–Weiss
reactions [37]. The Fe2+ concentration used in our study did not attenuate or suppress thy-
roid hormone-induced dendrite morphogenesis. However, the primary culture used in this
study contained mixed types of cells, including astrocytes or glial cells. The physiological
iron concentrations were different among the types of cells, being higher in glial cells than
in neurons [28]. It is assumed that the major function of oligodendrocytes [38] requires
high iron levels. Thus, we could not determine whether Fe2+ at a concentration of 10 nM
would have affected Purkinje cells had the cells been cultured exclusively.

In addition to in vitro studies of Gd’s effect on neurons [8,16,39], animal studies have
shown that Gd may affect the central nervous system and that Gd may be transferred to
mice fetuses through the placenta, causing impaired brain development [40]. An in vivo
study showed that residual Gd in the dentate nucleus and globus pallidus of the cerebellum
was observed after only a single injection of gadopentetate, whereas multiple injections of
gadobutrol were not associated with Gd retention in the cerebellum [41]. The phenomenon
of in vivo Gd retention in the central nervous system, especially in the dentate nucleus
of the cerebellum [42], sparks major concern about the risk of neurotoxicity, mainly in
patients injected with linear GBCAs [43]. A notable absence of histological changes and
neuropsychological deterioration related to GBCA injections was reported in a recent liter-
ature review [44]. Gd from GBCAs deposited in the brain tissue may not be toxic enough
to cause histo-morphological changes or to manifest noticeable symptoms. The disparity
among in vitro studies, animal studies, and the current clinical understanding must be
considered before concluding whether retained Gd from GBCAs is toxic to humans. The
choice of contrast agents in clinical practice should consider the GBCA’s safety profile for
the patient’s benefit. Another important note is that Ca2+ is fundamental in mediating
cellular excitability and is responsible for the biochemical regulation of the brain [45,46].
Ca2+ signaling involving voltage-gated calcium channels is also eminent in Purkinje cell
development and mediates the transcription of neuronal morphogenesis, including den-
drite arborization [47,48]. Because Gd is a strong Ca2+ antagonist [49], we expected that
incubation with GBCAs and Fe2+ would suppress dendrite arborization. However, our
study showed that both gadopentetate and gadobutrol increased dendrite arborization in
Purkinje cells and showed a biphasic effect. Although the alteration of thyroid hormone
receptors by GBCAs and the disruption of membrane receptor-mediated TH action have
been proposed as underlying mechanisms [16], further studies are required to confirm this.



Diagnostics 2021, 11, 2310 8 of 10

There were some limitations to this study. The Gd concentrations in the neurons were
not quantified, and we could not confirm transmetalation using this study design. Although
the addition of Fe2+ did not show a neurotoxicity effect, more detailed assays, such as a
caspase 3 or tetrazolium assay, may be necessary to further elucidate the neurotoxicity
of iron. Since the cell cultures contained mixed cells, there may have been interactions
amongst cells, iron, and GBCAs. Furthermore, an in vivo study is required in order
to extrapolate these results to clinical settings. In this in vitro study, the neurons were
exposed directly to intact GBCAs, but in animal studies or a clinical setting, there are
many variables before Gd from GBCAs can reach the brain (e.g., the blood–brain barrier,
blood–cerebrospinal fluid barrier, and lymphatic system). Our study was not designed to
determine whether GBCAs can enter the brain in an intact form or require binding with
endogenous molecules to enter the brain.

5. Conclusions

In conclusion, the effect of GBCA on the thyroid hormone-induced cerebellar Purk-
inje cell arborization was dose-dependent. A higher dose of GBCA may significantly
increase the dendrite arborization of Purkinje cells, and co-exposure with Fe2+ significantly
increased the effect, most noticeably when the Fe2+ concentration was higher than the
gadopentetate concentration. These findings suggested that the chelate thermodynamic sta-
bility and the concentration ratio between Fe2+ and GBCA may play important roles in trig-
gering transmetalation, affecting the dendritogenesis of Purkinje cells in in vitro settings.
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