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ABSTRACT
The effects of isoflurane on the determinants of blood flow during Coronary Artery

Bypass Graft (CABG) surgery are not completely understood. This study

characterized the influence of isoflurane on the diastolic Pressure-Flow (P-F)

relationship and Critical Occlusion Pressure (COP) during CABG surgery. Twenty

patients undergoing CABG surgery were studied. Patients were assigned to an

isoflurane or control group. Hemodynamic and flow measurements during CABG

surgery were performed twice (15 minutes after the discontinuation of

extracorporeal circulation (T15) and again 15 minutes later (T30)). The zero flow

pressure intercept (a measure of COP) was extrapolated from a linear regression

analysis of the instantaneous diastolic P-F relationship. In the isoflurane group, the

application of isoflurane significantly increased the slope of the diastolic P-F

relationship by 215% indicating a mean reduction of Coronary Vascular Resistance

(CVR) by 46%. Simultaneously, the Mean Diastolic Aortic Pressure (MDAP)

decreased by 19% mainly due to a decrease in the systemic vascular resistance index

by 21%. The COP, cardiac index, heart rate, Left Ventricular End-Diastolic Pressure

(LVEDP) and Coronary Sinus Pressure (CSP) did not change significantly. In the

control group, the parameters remained unchanged. In both groups, COP

significantly exceeded the CSP and LVEDP at both time points. We conclude that

short-term application of isoflurane at a sedative concentration markedly increases

the slope of the instantaneous diastolic P-F relationship during CABG surgery

implying a distinct decrease with CVR in patients undergoing CABG surgery.
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INTRODUCTION
In a theoretical approach to the Pressure-Flow (P-F) relationship in arterioles, these

calculations are a simplification of the actual variable tissue characteristics in the vascular

bed of an organ (Hoffman & Spaan, 1990). We demonstrated in an earlier study on the

diastolic coronary P-F relationship that the effective downstream pressure is not

determined by Coronary Sinus Pressure (CSP) or Left Ventricular End-Diastolic Pressure

(LVEDP) but by the Critical Occlusion Pressure (COP) of the coronary vasculature, which

was considerably higher than both parameters (Kazmaier et al., 2006). The zero flow

pressure intercept as a measure of COP was extrapolated from the linear regression

analysis of the instantaneous diastolic P-F relationship. However, the effects of isoflurane

on the determinants of blood flow during Coronary Artery Bypass Graft (CABG) surgery

are not completely understood. Earlier investigations yielded discrepant findings on the

risk of myocardial ischemia due to the vasoactive potency of isoflurane. Some

investigations found that the risk of myocardial ischemic events due to coronary

flow misdistribution is increased when anesthesia is maintained with isoflurane

(Buffington et al., 1987; Diana et al., 1993; Inoue et al., 1990; Khambatta et al., 1988;

Priebe & Foex, 1987). In contrast, results from other investigators demonstrated that the

risk of perioperative myocardial ischemia was not increased during isoflurane anesthesia

compared with other volatile anesthetics or total intravenous anesthetic regimens

(Leung et al., 1991; Pulley et al., 1991). Furthermore, in some studies the vasoactive

potency of isoflurane positively affected the regional distribution of coronary blood flow

(Hartman et al., 1990; Kim et al., 1994). However, regarding volatile anesthetics, maximal

increases in global coronary blood flow were obtained during isoflurane anesthesia

(Crystal et al., 2000). According to the fact that volatile anesthetics (Landoni et al., 2013)

and in particular isoflurane are beneficial for myocardial ischemia and has been shown to

improve survival in cardiac surgery (Bignami et al., 2013; Chiari et al., 2005; Ge et al., 2010;

Lang et al., 2013), this study aimed at investigating the impact of isoflurane on the

diastolic P-F relationship and COP during CABG surgery.

PATIENTS AND METHODS
Patients
This study was approved by the University of Goettingen ethics committee in Goettingen,

Germany (12/4/04) and conformed to the ethical principles of the Declaration of Helsinki.

Written informed consent was obtained from all patients. Twenty patients (17 males and

3 females) with angiographically verified Coronary Artery Disease (CAD) were studied

following elective CABG surgery. Biometric and intraoperative data are presented in

Table 1. Patients with concomitant valvular heart disease or a lack of sinus rhythm at the

start of the measurement period were excluded from this study. Antiarrhythmic and
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antihypertensive medications (except Angiotensin-Converting Enzyme (ACE) inhibitors)

were continued until the day of surgery. The pre-anesthetic medication consisted of

1.0 mg of flunitrazepam per os on the evening prior to surgery and 60 minutes before the

induction of general anesthesia. Patients were pre-operatively randomly assigned to

receive either total intravenous anesthesia during the complete study period (control

group) or an additional 0.4% volume of isoflurane (1.0 Minimum Anesthetic

Concentration (MAC)sedative, isoflurane group) immediately after the baseline

measurements.

Methods
Before the induction of anesthesia, electrocardiogram leads were placed, and a 15-gauge

catheter (PV2015L20; Pulsion GmbH, Munich, Germany) was placed in the femoral

artery to measure the Mean Arterial Pressure (MAP). Cardiac output measurements were

performed with a transpulmonal thermodilution technique, pulse contour analysis

(PiCCO, Pulsion GmbH, Munich, Germany) and blood sampling. Intravenous induction

of anesthesia was performed with 2.0 mg kg−1 sufentanil and 0.1 mg kg−1 pancuronium

bromide to facilitate endotracheal intubation. Subsequently, a central venous catheter

(8.5 Fr., 4-lumen; ARROW GmbH, Erding, Germany) was inserted via the right internal

jugular vein to measure Central Venous Pressure (CVP) and for drug and fluid

administration.

Maintenance of total intravenous anesthesia was performed by continuous infusion of

sufentanil (3.0 mg kg−1 h−1) and additive boluses of midazolam if necessary. The patients’

lungs were ventilated by intermittent positive pressure ventilation (Cicero; Draeger

GmbH, Lübeck, Germany). The respiratory rate and minute volume were adjusted to

achieve normocapnia. During the measurement period, the fraction of inspired oxygen

(FiO2) was 0.5 to avoid hypoxemic events.

Extracorporeal circulation with standard techniques included two-stage venous

cannulation (Medtronic MC2TM, 91246C; 34/46Fr.; Medtronic Inc., Minneapolis, MN,

USA), central aortic cannulation (Aortic Arch Cannula-Straight/Wire Inlay, 6.5 mm,

Table 1 Biometric and intraoperative data. Results are presented as medians and ranges, if required.

Control (n = 10) Isoflurane (n = 10) p-value

Age (years) 70 (58–79) 71 (51–81) 0.44

Weight (kg) 80 (60–92) 75 (60–103) 0.68

Height (cm) 168 (153–82) 168 (156–180) 0.68

Gender (male/female) 8/2 9/1 0.53

Body surface area (m2) 1.89 (1.57–2.12) 1.89 (1.59–2.09) 0.97

Coronary artery disease 3 vessel disease, n = 7

2 vessel disease, n = 3

3 vessel disease, n = 6

2 vessel disease, n = 3

1 vessel disease, n = 1

Grafts (n) 4 (3–5) 4 (2–5)

Aortic clamping time (minutes) 78 (61–92) 85 (45–112) 0.68

Reperfusion time (minutes) 44 (32–65) 40 (26–66) 0.48
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A232–65; Stöckert Instrumente GmbH, Munich, Germany) and membrane oxygenation

(Hilite� 7000; Medizintechnik AG, Stolberg, Germany). Surgery was performed during

aortic cross-clamping and cardioplegic arrest with combined anterograde and retrograde

cold blood cardioplegia (Dr. Franz Köhler Chemie GmbH, Alsbach-Hähnlein, Germany).

Measurements
The Coronary Vascular Resistance (CVR) was calculated as the ratio of Coronary

Perfusion Pressure (CPP) and coronary blood flow. CPP was calculated as the difference

between the upstream pressure and downstream pressure. The coronary upstream

pressure was expressed as the mean diastolic aortic pressure. CSP and LVEDP are generally

used as equivalents of coronary downstream pressure (reflecting the specific

characteristics of the coronary anatomy).

Baseline measurements were performed 15 minutes (T15) after the discontinuation of

extracorporeal circulation under steady state conditions. Fifteen minutes after the end of

the first measurement period (T30), a second measurement period was performed in

which patients in the isoflurane group received 0.4% volume of isoflurane for 15 minutes.

In the control group, the anesthetic regimen did not change between the two

measurement periods. All of the measurements were performed prior to the reversal of

heparin. At the beginning of each measurement period, cardiac output was assessed by the

transpulmonal thermodilution method as the mean of three injections of 15 ml of ice-

cooled isotonic saline solution randomly distributed over the respiratory cycle. During the

short period (5 to 10 seconds) of coronary blood flow measurements, the patient was

disconnected from the ventilator to avoid intrapleural pressure changes and volume shifts

that might influence the P-F relationships. In this study, to avoid capacitance effects of the

arterial vessel by opening phenomena, the analysis of the P-F relationship only included

data from the highest diastolic flow rate in the arterial bypass graft until the end of

diastole.

Flow measurements were performed using ultrasound and calculations based on the

transit time principle (Cardiomed 4008, Quick-Fit probes (size 2.0–3.0 mm); Medistim,

Oslo, Norway). The flow in the left internal mammary artery and pressure measurements

were recorded simultaneously over a period of 5 seconds using analogue-digital

converting devices with a sampling frequency of 500 Hz.

The measurements of aortic pressure and CSP were recorded via the cannulae for the

extracorporeal circuit and retrograde blood cardioplegia, respectively (coronary sinus

cannula: retrograde cardioplegia cannula RSH-M014S, 14 Fr; Chase Medical, Richardson,

Texas, USA). LVEDP values were obtained using a left atrial catheter (Jostra KLAP1751

pressure monitoring catheter, 5.0 Fr; Jostra AG, Hirrlingen, Germany) introduced via the

upper right pulmonary vein and positioned trans-mitrally into the left ventricle during

the study period.

Arterial and coronary sinus blood samples were obtained immediately after each period

of coronary blood flow measurement for the determination of pH (pHart, pHcs), acid base

status, arterial and coronary sinus blood gas tensions (PaO2, PcsO2, PaCO2, PcsCO2),

oxygen saturation (SaO2, ScsO2), hemoglobin (Hb) and lactate concentrations
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(ABL 700; Radiometer Medical A/S, Denmark). In the isoflurane group, additional

coronary sinus blood samples were obtained after the second measurement period for the

determination of isoflurane plasma concentrations.

Calculations
The Cardiac Index (CI), Stroke Volume Index (SVI) and Systemic Vascular Resistance

Index (SVRI) were calculated according to standard formulae. The critical occlusion

pressure was calculated by extrapolation of the linear regression analysis of the diastolic

part of the aortic P-F loop to the zero flow pressure intercept (2). The mean LVEDP was

assessed by analysis of the left ventricular pressure curve for every beat during the study

period. The CSPwas calculated as themeanCSPof the entire period of flowmeasurements.

Statistics
Statistical procedures were performed using the Statistical Package for the Social Sciences

(SPSS) (SPSS 17.0 for MAC; SPSS Inc., Chicago, Illinois, USA). Results are expressed as

medians and ranges. Two continuous variables were compared using Mann-Whitney test.

Linear regression analysis was performed using flow as the dependent variable and

diastolic aortic pressure as the independent variable. A p-value less than 0.05 was

considered to be significant.

RESULTS
The biometric and perioperative data of the studied patients were not different between

both groups (Table 1). The data from five consecutive heart beats were analyzed for each

patient; none of the patients had to be excluded due to missing data or artifacts in

hemodynamics and flow measurements.

Systemic hemodynamics
In both groups, GEDI and SVV (parameters of volume status), as well as LVEDP, CFI, and

EVLWI, did not change during the entire measurement period and were not different

between groups. In the control group, MAP, CI, HR and SVRI did not change during the

entire study period. In contrast to measurements in the control group, the application of

1.0 MACsedative isoflurane decreased MAP from 69 to 57 mmHg (17%) and SVRI from

1730 to 1364 dyn sec cm−5 m2 (21%) but had no effect on HR and CI. The systemic

hemodynamic data are summarized in Tables 2 and 3.

The diastolic flow and COP during CABG surgery did not differ between measurement

periods or groups. In the control group, COP exceeded LVEDP by 244% and 280%,

respectively. In the control group, COP exceeded CSP by 279% and 323%, respectively.

In the isoflurane group, similar results were found with 318%, 262%, 350% and 340%,

respectively.

The application of isoflurane decreased the MDAP from 62 mmHg to 50 mmHg,

whereas MDAP did not change in the control group.

Consequently, CVR changes were only observed in the isoflurane group (if calculated

using COP and LVEDP but not CSP). Considerable differences in CVR were observed

depending on the downstream pressure (COP, LVEDP or CSP) used in the formula.
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With CSP as a measure of downstream pressure, CVR did not change significantly in

either group. In the control group, the CVR values were 1.73 and 1.83 mmHg ml−1

minute, while those in the isoflurane group were 1.8 and 1.35 mmHgml−1 minute. Similar

findings were observed for CVR calculated with LVEDP in both groups.

In contrast to these findings, usingCOP in the formula indicated thatCVRwasdecreased

after the application of isoflurane from 1.06 to 0.51 mmHg ml−1 minute. In the control

group, CVR was calculated using COP, and no differences were observed (0.74 and 0.78

mmHg ml−1 minute). As expected, using COP for the calculation of CVR resulted in

significantly lower values for CVR than using LVEDPorCSP. TheCVRvalueswere identical

when calculated according to the slope of the instantaneous diastolic P-F relationship. The

diastolic flow, COP and CVR calculations are summarized in Tables 2 and 3.

Arterial blood gas analyses and acid base status also did not differ between groups and

remained unchanged during the measurement period. For the coronary sinus blood gas

samples, ScsO2 pcsO2, pcsCO2, pHcs, BEcs and SBICcs and lactate did not differ between the

measurement periods in the control group. In contrast to these findings, the application of

isoflurane led to a significant increase in ScsO2 and pcsO2 by 22% and 22%, respectively,

indicating a reduced myocardial oxygen extraction. This decrease in myocardial oxygen

Table 2 Hemodynamic data. Results are presented as medians and ranges.

Control Isoflurane

T15 T30 Control T15 vs

T30 (p-value)

T15 T30 Isoflurane T15 vs

T30 (p-value)

CI (l min−1 m−2) 2.9 (2.3–3.6) 2.7 (2.1–3.2) 0.11 2.7 (1.6–5.7) 2.6 (1.9–5.8) 0.28

HR (min−1) 89 (53–106) 90 (56–106) 0.65 99 (76–112) 88 (74–100) 0.15

MAP (mmHg) 65 (47–80) 66 (56–84) 0.06 69 (59–85) 57 (48–59) 0.005

MDAP (mmHg) 57 (45–64) 60 (43–71) 0.06 62 (53–79) 50 (45–57) 0.005

DDT (ms) 447 (257–1215) 489 (366–1070) 0.60 721 (240–919) 567 (339–937) 0.33

CVP (mmHg) 9 (7–16) 9 (7–16) 1.0 10 (7–12) 10 (7–13) 0.82

CSP (mmHg) 14 (8–18) 13 (7–18) 0.39 10 (5–20) 10 (6–19) 0.44

SVRI (dyn sec cm−5 m2) 1555 (809–2454) 1716 (1355–2193) 0.31 1730 (850–2969) 1364 (699–1965) 0.04

GEDI (ml m−2) 642 (541–895) 652 (594–883) 0.78 642 (457–834) 617 (479–802) 0.92

EVLWI (ml m−2) 6.8 (5.7–10.0) 6.3 (5.0–8.7) 0.62 7.4 (4.0–10.7) 7.0 (4.3–10.0) 0.16

LVEDP (mmHg) 16 (8–33) 15 (8–30) 0.09 11 (8–37) 13 (9–22) 0.80

SVV (%) 11 (6–17) 12 (5–18) 0.64 12 (5–19) 14 (8–16) 0.43

dp/dtmax (mmHg s−1) 766 (507–1063) 763 (500–887) 0.65 748 (510–1350) 651 (340–1143) 0.02

CFI (min−1) 4.2 (3.5–5.0) 3.7 (2.8–5.0) 0.05 4.6 (2.5–8.1) 3.9 (3.1–7.4) 0.16

COP (mmHg) 39 (23–48) 42 (28–44) 0.25 35 (26–59) 34 (27–42) 0.11

FLOW (ml/min) 26 (10–38) 22 (9–53) 0.72 29 (7–68) 23 (11–50) 0.24

Slope (B1) 1.36 (0.48–2.71) 1.29 (0.46–2.10) 0.49 0.94 (0.50–4.82) 2.03 (0.56–4.41) 0.02

CVR from Slope 1/B1 0.74 (0.37–2.10) 0.78 (0.48–2.17) 0.49 1.06 (0.21–2.02) 0.51 (0.23–1.79) 0.007

CVR from CSP 1.73 (1.21–3.92) 1.83 (0.94–5.51) 0.69 1.80 (0.78–8.83) 1.35 (0.81–3.35) 0.30

CVR from LVEDP 1.66 (0.81–4.05) 1.86 (0.61–5.64) 0.49 1.68 (0.79–5.38) 1.77 (0.73–3.13) 0.06

CVR from COP 0.74 (0.37–2.07) 0.78 (0.46–2.13) 0.44 1.06 (0.21–2.02) 0.51 (0.23–1.79) 0.006
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extraction was not associated with a significant change in MLE. The arterial and coronary

sinus blood gas analysis results are presented in Tables 4 and 5.

DISCUSSION
This study investigated the influence of short-term isoflurane administration on the

instantaneous diastolic P-F relationship for the calculation of CVR and COP in patients

undergoing elective CABG surgery. CVR was calculated with different techniques. First,

CVR was calculated with conventional formulas using MDAP as the upstream pressure

and LVEDP or CSP as the downstream pressures. Second, CVR was calculated from the

instantaneous diastolic P-F relationship using either the slope of the linear diastolic

portion or the linear extrapolation of this slope to zero flow (with COP for the calculation

of downstream pressure). COP was about two to three times higher than the generally

used downstream pressures (CSP or LVEDP) and was not influenced by isoflurane.

This result may be explained by a waterfall phenomenon in the coronary circulation

(Kazmaier et al., 2006; Maas et al., 2012). In addition, CVR decreased following the

application of isoflurane only when the instantaneous P-F relationship was used in the

calculation. The CVR decreases derived from the P-F relationship showed excellent

concordance. The finding of reduced CVR was supported by decreased myocardial oxygen

extraction in the isoflurane group.

Table 3 Hemodynamic data. Isoflurane vs control.

Control vs Isoflurane

T15 (p-value)

Control vs Isoflurane

T30 (p-value)

CI (l min−1 m−2) 0.96 0.90

HR (min−1) 0.90 0.85

MAP (mmHg) 0.06 0.009

MDAP (mmHg) 0.06 0.01

DDT (ms) 0.56 0.90

CVP (mmHg) 0.96 0.83

CSP (mmHg) 0.16 0.11

SVRI (dyn sec cm−5 m2) 0.51 0.05

GEDI (ml m−2) 0.69 0.27

EVLWI (ml m−2) 0.31 0.41

LVEDP (mmHg) 0.34 0.47

SVV (%) 0.96 0.57

dp/dtmax (mmHg s−1) 0.96 0.57

CFI (min−1) 0.56 0.76

COP (mmHg) 0.87 0.11

FLOW (ml/min) 0.38 0.79

Slope (B1) 0.79 0.05

CVR from Slope 1/B1 0.87 0.14

CVR from CSP 0.83 0.28

CVR from LVEDP 0.85 0.39

CVR from COP 0.73 0.10
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COP is calculated by linear extrapolation of the instantaneous diastolic P-F relationship

in the respective grafts to zero flow. Similarly, but without extrapolation to zero flow,

CVR can be assessed by the slope of the instantaneous diastolic P-F relationship. The

Table 4 Arterial and coronary sinus blood gas analyses. Results are presented as medians and ranges.

Control Isoflurane

T15 T30 Control

T15 vs T30

T15 T30 Isoflurane

T15 vs T30

Hbart (g/dl) 9.1 (7.5–10.0) 9.0 (7.8–10.9) 0.51 9.2 (8.1–10.3) 9.2 (7.6–11.6) 0.91

SaO2 (%) 99 (94.1–99.6) 99 (93.7–99.9) 1.0 99 (98.7–99.7) 99 (97.2–99.7) 0.31

PaO2 (mmHg) 163 (71–298) 153 (75–364) 0.43 200 (124–293) 213 (141–277) 0.28

PaCO2 (mmHg) 46 (38–54) 48 (39.7–51.7) 0.08 43 (35–55) 44 (34–50) 0.82

pHart 7.35 (7.24–7.41) 7.35 (7.22–7.38) 0.08 7.35 (7.24–7.44) 7.34 (7.28–7.45) 1.0

BEart (mmol/l) −0.4 (−7.6–1.3) −1.2 (−7.2–1.1) 0.55 −1.4 (−4.4–1.2) −2.4 (−3.6–0.1) 0.31

SBICart (mmol/l) 24.1 (18.2–25.5) 23.5 (18.5–25.5) 0.58 22.7 (20.7–24.2) 22.4 (21.4–24.6) 0.43

ScsO2 (%) 49 (23.5–82.9) 46 (39.3–74.9) 0.49 46 (29.7–74.5) 56 (33.1–80.3) 0.05

PcsO2 (mmHg) 26 (19–51) 27 (24–43) 0.70 27 (19–44) 33 (22–49) 0.006

PcsCO2 (mmHg) 56 (38–64) 58 (48–62) 0.06 54 (38–66) 55 (40–64) 1.0

pHcs 7.30 (7.14–7.35) 7.30 (7.17–7.32) 0.13 7.30 (7.19–7.42) 7.28 (7.23–7.40) 0.30

BEcs (mmol/l) 0.3 (−7.9–2.0) −0.1 (−6.8–1.9) 0.91 −1.4 (−3.9–0.7) −2.2 (−3.4–0.2) 0.02

SBICcs (mmol/l) 23.9 (17.0–25.3) 23.7 (18.1–25.2) 0.84 22.6 (20.8–24.3) 21.9 (21.3–24.2) 0.03

Lactatecs (mmol/l) 1.0 (0.6–5.8) 1.0 (0.5–5.3) 0.16 1.8 (1.0–3.0) 2.0 (0.8–2.7) 0.39

Isofluranecs (mg/dl) 0 0 0 1.4 (0.8–2.3)

Table 5 Arterial and coronary sinus blood gas analyses. Isoflurane vs Control.

Control vs Isoflurane

T15 (p-value)

Control vs Isoflurane

T30 (p-value)

Hbart (g/dl) 0.43 0.57

SaO2 (%) 0.17 0.32

PaO2 (mmHg) 0.32 0.08

PaCO2 (mmHg) 0.39 0.12

pHart 0.35 0.68

BEart (mmol/l) 0.22 0.25

SBICart (mmol/l) 0.19 0.25

ScsO2 (%) 0.85 0.17

PcsO2 (mmHg) 0.58 0.17

PcsCO2 (mmHg) 0.80 0.35

pHcs 0.79 0.85

BEcs (mmol/l) 0.53 0.17

SBICcs (mmol/l) 0.63 0.16

Lactatecs (mmol/l) 0.06 0.03

Isofluranecs (mg/dl)
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determination COP in IMAB grafts for calculating CPP and CVR revealed that

both CSP and LVEDP (generally used as measures of downstream pressure to calculate

CPP and CVR) underestimate the effective downstream pressure and, consequently, CVR.

The concept of using COP to define the effective downstream pressure is convincing

because basic physiology predicts that blood flow ceases if the difference between the

upstream and downstream pressure in a vascular tree equals zero; thus, the arterial

pressure at zero flow represents the effective downstream pressure of organ blood flow

(Hoffman & Spaan, 1990).

Earlier experimental and clinical studies investigating the effects of massive coronary

vasodilatation on diastolic P-F demonstrated that the linearity of the relationship between

pressure and flow velocity was not influenced. The slope increased and COP decreased

after vasodilatation in these studies (Dole et al., 1984; Klocke et al., 1981; Nanto et al.,

2001). Intracoronary injections of angiographic contrast medium or adenosine

triphosphate depressed vasomotor activity and induced an atrioventricular blockade

followed by a non-physiological increase in diastole.

In contrast to these studies, we found a remarkable decrease in CVR only when COP

was used to calculate the effective perfusion pressure and CVR. As expected, the

calculation of CVR using the instantaneous diastolic P-F relationship yielded identical

results. Using CSP and LVEDP as downstream pressures to calculate CPP and CVR

revealed unchanged CPP and CVR. CSP and LVEDP may not adequately reflect

downstream pressure (Kazmaier et al., 2006). In earlier studies, blood flow velocity

measurements were performed (in contrast to our study in which blood flow was

assessed). The relative accuracy of flow probes has been described and validated (within

± 2%)(Beldi et al., 2000; Groom et al., 2001). Flow velocity is linearly related to flow only if

the diameter of the vessel in which the measurements are performed is calculated. Studies

have demonstrated that the cross-sectional areas of epicardial coronary vessels are nearly

independent of pressure and flow (Douglas & Greenfield, 1970; Klocke, Ellis & Orlick,

1980). Thus, differences in results are probably not due to different measurement

techniques but to different study conditions.

Furthermore, it remains questionable whether the CVR and COP results assessed

in the previously mentioned studies during maximal coronary vasodilatation and

atrioventricular blockade reflect physiologic conditions in human coronary circulation

as presented in our study.

Most studies on intraoperative myocardial blood flow measurements are focused on

graft patency (D’Ancona et al., 2000; Leung et al., 1991; Takami & Ina, 2001;

Walpoth et al., 1998). In our first study, we demonstrated the feasibility of calculating COP,

CPP and CVR by assessing the instantaneous P-F relationship in coronary bypass grafts

(Kazmaier et al., 2006). In another study, a negative correlation was observed between

COP and residual myocardial viability after angioplasty in patients with acute myocardial

infarction (Shimada et al., 2003). In a group of similar patients, short- and long-term

myocardial outcomes were closely correlated with the deceleration time of diastolic

coronary flow velocity (Furber et al., 2004; Yamamuro et al., 2002). Several studies
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have demonstrated the myocardial protective effects of isoflurane in patients

undergoing CABG surgery. Nevertheless, in our study, isoflurane did not influence

COP (in contrast to CPP and CVR). Additionally, CPP was considerably

overestimated if CSP or LVEDP, which were not influenced by isoflurane, were used

in the calculations.

In addition to providing a more valid calculation of CPP using COP for downstream

pressure, our study also has clinical implications. After short-term application of

isoflurane with sub-anesthetic concentrations, COP was unchanged, but MDAP decreased

significantly, resulting in a remarkable decrease in CPP. Despite this decrease in CPP,

coronary flow remained unchanged, which is due to a considerable decrease in CVR.

These effects could only be measured by the calculation of CVR using the diastolic

instantaneous P-F relationship (in contrast to the standard formula). Undiminished flow

was accompanied by an unaltered CI. Nevertheless, we observed increased ScsO2, which is

an indicator of hyper-perfusion.

Our study had a few limitations that may affect the interpretation of these results.

The second measurement in the isoflurane group was performed after 15 minutes of

isoflurane application. The expiratory isoflurane concentrations reached 95% of the

inspiratory concentrations indicating steady state conditions in the isoflurane blood

concentrations at 1.0 MACsedative. Nevertheless, we cannot exclude the possibility that the

myocardial uptake of isoflurane was incomplete resulting in unstable concentrations in

the myocardial tissue. Studies on long-term applications and dose-response relationships

of isoflurane may provide further insights on the effects of isoflurane on the instantaneous

P-F relationship in arterial coronary bypass grafts.

CONCLUSIONS
Short-term application of isoflurane with sub-sedative concentrations markedly increased

the slope of the instantaneous diastolic P-F relationship in arterial coronary bypass grafts.

This finding implies a distinct decrease in CVR in patients undergoing CABG surgery that

cannot be observed with the conventional CVR calculations using MDAP as the upstream

pressure and LVEDP or CSP as the downstream pressure. The simultaneous decrease in

myocardial oxygen extraction supports the validity of CVR calculation using the slope of

the diastolic P-F relationship possibly indicating hyper-perfusion of the myocardium.

Thus, the technique provides a more rational approach for the measurement of regional

coronary vascular perfusion. Independent of the anesthetic, CSP and LVEDP greatly

underestimated the effective downstream pressure and COP leading to a systematic

overestimation of CPP. This result can be explained by a vascular waterfall phenomenon

in the coronary circulation. However, in contrast to CVR, COP (the more reliable

downstream pressure) is not influenced by isoflurane.
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