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Electroencephalography (EEG) signals are disrupted by technical and physiological
artifacts. One of the most common artifacts is the natural activity that results from the
movement of the eyes and the blinking of the subject. Eye blink artifacts (EB) spread
across the entire head surface and make EEG signal analysis difficult. Methods for
the elimination of electrooculography (EOG) artifacts, such as independent component
analysis (ICA) and regression, are known. The aim of this article was to implement the
convolutional neural network (CNN) to eliminate eye blink artifacts. To train the CNN, a
method for augmenting EEG signals was proposed. The results obtained from the CNN
were compared with the results of the ICA and regression methods for the generated
and real EEG signals. The results obtained indicate a much better performance of the
CNN in the task of removing eye-blink artifacts, in particular for the electrodes located
in the central part of the head.

Keywords: artifacts, electroencephalography, electrooculography, convolutional neural network, independent
component analysis

INTRODUCTION

Motivation
Electroencephalography (EEG) is a method of examining brain activity commonly used in medical
diagnostics (Levin et al., 2018; Browarska et al., 2021). Unfortunately, in some cases direct analysis
of the EEG signal is very difficult or even impossible due to the presence of artifacts (Kilicarslan and
Contreras-Vidal, 2017; Kawala-Sterniuk et al., 2020; Zhang C. et al., 2020). There are many types
of physiological artifacts, for example those caused by muscle clenching, jaw, tongue movements,
or eye movements. One of the strongest artifacts that interfere with the analysis of EEG signals
are electrooculography (EOG) artifacts. EOG artifacts are generally high-amplitude patterns in the
brain signal caused by blinking of the eyes or low-frequency patterns caused by movements (such as
rolling) of the eyes (Anderer et al., 1999). EOG activity has a wide frequency range, being maximal
at frequencies below 4 Hz, and is most prominent over the anterior head regions (McFarland et al.,
1997). The subject of the article concerns the elimination of EOG artifacts created during blinking
(Pham et al., 2017).

Generally, the concept of EOG artifacts is broader and covers both the activity of eye movement
and blinking. For the purposes of this article, the authors equate the concept of EOG with eye
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blinks (EB). To eliminate them, the authors proposed a deep
neural network-based method and compared its operation
with the popular methods of artifact elimination – ICA and
regression. During the research, the focus was on the analysis
of real EEG signals recorded with the use of a professional
biomedical signal amplifier. Twenty people participated in the
experiment, and each session lasted about 60 min. The authors
also used computer-generated signals to train and test the neural
network. For this purpose, an algorithm was created to generate
EEG/EOG signals.

State of the Art
Many methods are used to remove artifacts from the EEG
signal (Mumtaz et al., 2021). The simplest of them just reject
those fragments of EEG signals with artifacts. Unfortunately, this
approach results in the loss of all information from the rejected
signal fragments (Hasasneh et al., 2018; Khatwani et al., 2018;
Nejedly et al., 2019; Tosun and Kasım, 2020; Iaquinta et al.,
2021; Placidi et al., 2021). In addition, we must have a very good
artifact detection algorithm that will allow us to identify them.
Artifacts can also be selected by an expert by visual inspection.
This approach is not always possible and usually applies to off-
line analyzes. Artifact removal approaches may require so-called
reference channels (Mumtaz et al., 2021). The regression method
requires such a reference channel, that is, the one based on
which artifacts of the remaining channels are removed (Mannan
et al., 2018). Usually, one of the channels from the “frontal”
position or the EOG signal is chosen as the reference channel.
Then, with the use of signals from the reference channel, the
regression method eliminates artifacts from successive electrodes
(propagated from the reference electrode to the others). This
means that the artifacts are not removed from the reference
electrode (it only serves to eliminate artifacts from other
electrodes). When artifacts are removed using a reference
electrode (Mannan et al., 2018), it is assumed that neural activity
(EEG) and electro-oculographic signals (EOG) are not correlated.
In turn, the independent component analysis method (ICA)
(Jiang et al., 2019) does not require a reference channel. The ICA
method allows for the determination of the signal components
(statistically independent), which enables the rejection of artifacts
and disturbances. This method allows the removal of artifacts
from all electrodes. In the ICA method, rejected components are
often selected on the basis of their visualization. It requires expert
knowledge (Mannan et al., 2018) and signal recording with the
use of multiple channels. However, there are methods that allow
for automatic selection of rejected components (Li et al., 2017).
Hybrid methods are also used to remove artifacts (Li et al., 2017;
Mumtaz et al., 2021). Their idea is to use more than one algorithm
to remove artifacts. An example is the use of the combination
of wavelet transform and blind signal separation (BSS) (Rakibul
Mowla et al., 2015). By means of BBS, signals are decomposed
into components, and then the components are subjected to the
wavelet transform. The next step is to remove components that
contain artifacts based on thresholding and then reconstruct the
signal. Other examples of hybrid methods are the combination
of adaptive filtering and BSS and the combination of BSS and
supporting vector machine (SVM).

Deep learning methods are becoming more and more popular
every year. An example of this method may be the convolutional
neural network (CNN), which has a very wide application in
many different fields of science (Arora et al., 2020). An example
may be the field related to computer vision and image recognition
(Chen et al., 2019; Lou and Shi, 2020). CNN has also found
application in neuroinformatics to recognize emotions (Zhang
Y. et al., 2020) and detect mild depression (Li et al., 2020)
using encephalography. Another application is the detection of
myocardial infarction based on the ECG signal (Natesan et al.,
2020). On the basis of existing applications, it is assumed that
convolutional networks can also work well in tasks related to
cleaning biomedical signals from artifacts. Moreover, CNN offers
very wide possibilities to select structures and hyperparameters
(Arora et al., 2020).

In work (Garg et al., 2017) a 10-layer convolutional neural
network (CNN) is presented, which directly labels eye-blink
artifacts. Thirty subjects were tested. The classification accuracy
achieved was 99.67%, the sensitivity was 97.62%, the specificity
was 99.77%, and the ROC AUC was 98.69%. The authors also
showed that the learned spatial features correspond to those that
human experts typically use, which corroborated the validity of
the model. In work (Placidi et al., 2021) independent component
analysis (ICA) is used to split the signal into independent
components (ICs) whose re-projections on 2D scalp topographies
(images), also called topoplots, allow to separate artifacts and
useful brain signals (UBS). In the article, a completely automatic
and effective framework for EEG artifact recognition by IC
topoplots is presented, based on 2D convolutional neural
networks (CNNs), capable of dividing topoplots into four classes:
three types of artifacts and UBS. Experiments carried out on
public EEG datasets showed an overall accuracy of more than
98%. In Iaquinta et al. (2021) a reliable and user-independent
algorithm is presented to detect and remove eye blink in EEG
signals using CNN. For training and validation, three sets of
public EEG data were used. All three sets contain samples
obtained while the recruited subjects performed assigned tasks
that included blinking voluntarily at specific moments, watching
a video, and reading an article. The model used in this study
was able to have an embracing understanding of all the features
that distinguish a trivial EEG signal from a signal contaminated
with eye blink artifacts. In Sun et al. (2020) a one-dimensional
residual convolutional neural network (1D-ResCNN) model for
raw waveform-based EEG denoising is proposed. An end-to-end
(i.e., waveform in and waveform out) manner was used to map
a noisy EEG signal to a clean EEG signal. The proposed model
was evaluated on the EEG signal from the CHB-MIT Scalp EEG
Database, and the added noise signals were obtained from the
database. The proposed model was compared with independent
component analysis (ICA), fast independent composite analysis
(FICA), recursive least squares (RLS) filter, wavelet transform
(WT), and deep neural network (DNN) models. Experimental
results show that the proposed model can produce cleaner
waveforms and achieve a significant improvement in SNR and
RMSE. Meanwhile, the proposed model can also preserve the
nonlinear characteristics of the EEG signals. In Yang et al. (2018)
the use of the deep learning network (DLN) to remove ocular
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artifacts (OA) in EEG signals was investigated. The proposed
method consists of an offline stage and an online stage. In the
offline stage, training samples without OAs were intercepted and
used to train a DLN to reconstruct the EEG signals. In the
online stage, trained DLN was used as a filter to automatically
remove OAs from contaminated EEG signals. The advantages
of the proposed method are the non-use of additional EOG
reference signals, the possibility of analyzing any number of
EEG channels, time savings, and strong generalizability. The
proposed method was compared with the classic independent
component analysis (ICA), kurtosis-ICA (K-ICA), second-order
blind identification (SOBI), and a shallow network method.
Experimental results show that the proposed method performs
better even for very noisy EEG.

A large number of teaching examples are needed to train
the CNN. Unfortunately, the number of recorded EEG signal
examples is often too small. Therefore, there is a need to use
a technique called augmentation to increase the number of
training examples. Various methods of augmentation of EEG
signals are presented in Lashgari et al. (2020). In Lashgari et al.
(2020) the authors indicate that the most popular methods of
augmentation are those based on noise addition, GAN networks,
sliding window, sampling, Fourier transform, recombination
of segmentation. Wang et al. (2018) added Gaussian white
noise to training data (in the time domain) to obtain new
samples for an emotion-recognition task. Differential entropy
(DE) features were used to train classifiers. For EEG signals,
the DE features are equivalent to the logarithm of the energy
spectrum in the delta (1–3 Hz), theta (4–7 Hz), alpha (8–
13 Hz), beta (14–30 Hz), and gamma (31–50 Hz) frequency
bands. The authors opted for Gaussian noise due to concerns
that adding some local noise, such as Poisson or salt-and-pepper,
may change the intrinsic features of EEG signals. In Wang et al.
(2018) two basic data augmentation approaches used in image
processing were implemented: geometric transformation and
noise addition. In Luo et al. (2020) methods based on two deep
generative models, variational autoencoder (VAE) and generative
adversarial network (GAN), and two data augmentation
strategies were proposed. To evaluate the effectiveness of these
methods, a systematic experimental study was carried out on
two public EEG datasets for emotion recognition, namely SEED
and DEAP. First, realistic-like EEG training data in two forms
were generated: power spectral density and differential entropy.
Then, the original training data sets were augmented with a
different number of realistic-like generated EEG data. Finally,
support vector machines and deep neural networks with shortcut
layers were trained to build affective models using the original
and augmented training datasets. In Bao et al. (2021) a data
augmentation model named VAE-D2GAN was proposed for
EEG-based emotion recognition using a generative adversarial
network. EEG features representing different emotions were
extracted as topological maps of differential entropy (DE) in five
classical frequency bands. The proposed model was designed
to learn the distributions of these features for real EEG signals
and generate artificial samples for training. The variational
autoencoder (VAE) architecture can learn the spatial distribution
of the actual data through a latent vector and is introduced

into the dual discriminator GAN to improve the diversity of the
generated artificial samples.

Aim of the Paper
We propose a method based on the convolutional neural network
(CNN) that allows the removal of eye blink artifacts from the EEG
signal. The results obtained with the use of CNN were compared
with the most popular methods of artifact removal – ICA and
regression. For the implementation of the CNN-based method,
it was necessary to achieve the intermediate goal, which was the
implementation of the EEG signal and EOG artifact generators.
The use of only a real EEG signal does not give the possibility of
direct evaluation of the obtained results because we do not have a
reference (it is not known what the real EEG signal is). Generated
signals also enable better training of the neural network.

Signal fragments from 2 channels are fed to the CNN input.
The first channel contains the eye blink signal and the second
channel contains the EEG signal from which we want to remove
the eye blink artifacts. The idea is presented in Figure 1. In this
case, at the CNN input, fragments of the signal from the Fp1
electrode (eye blink artifacts) and the signal from which we want
to eliminate blinks (the C3 electrode) are fed. CNN eliminates the
eye blink signal (C3 – CNN). Then the input signals are shifted.
This operation can be performed for each electrode.

The article is organized as follows. In the section “Materials,”
two types of EEG/EOG signals used during the experiments
were presented: real and generated signals containing eye blink
artifacts. Details on generating artificial EEG signals with eye
blink artifacts are also provided. The section “Methods” describes
the structure of the CNN proposed to remove artifacts and
details of training the network. Furthermore, two commonly
used methods for removing eye blink artifacts are presented,
i.e., independent component analysis and regression. The section
“Results and Discussion” presents the results of the comparison
of ICA, REG, and CNN methods for removing eye blink
artifacts. The advantages and disadvantages of using CNN for this
task are discussed.

MATERIALS

To develop and evaluate eye blink artifact removal algorithms,
we decided to use two datasets. The first set contains the real
signals recorded for the N-back experiment. The N-back task
is a standard method used to examine memory and attention
(Salimi et al., 2020). This data set has a long duration and contains
registrations from multiple users. Thanks to our algorithm, it
was possible to generate a second set of artificial EEG/EOG
signals. This data set was of particular importance for CNN
training and testing.

Real Electroencephalography Signals
Real EEG signals were recorded during an EEG test conducted
with 20 people during an N-back task. EEG signals were recorded
for the purposes of previous research related to the detection
of user fatigue (Kołodziej et al., 2020). However, its use for
research on methods to remove EB artifacts was not accidental.
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FIGURE 1 | The idea of using the CNN to eliminate artifacts.

EEG signals were recorded for a relatively long time. There are
numerous eye blink (EB) artifacts in the EEG signal. Participants
(women and men) were 19–25 years old. They were informed
about the overall purpose and organization of the experiment.
The whole experiment lasted about 80 min and the experiment
was always carried out at 10:00 am in a single session. Participants
were recruited through an advertisement on the Internet and
social media. During recruitment, they were asked to complete
a survey via the Internet to collect basic information about
them, such as age, sex, education, and presence/absence of
neurological and psychiatric diseases. We only invited those who
met the basic requirements (including, but not limited to, written
permission to participate in the experiment and confirmation of
no medical burden).

The letters were presented to the participants on a computer
screen (one at a time). The task was to indicate whether the
letter presented currently is the same as N = 2 letters back.
Each participant completed the N-back task for 60 min. To
register the EEG signal, we used a professional biomedical signal
amplifier g.USBamp and an EEG cap equipped with 16 electrodes.
The distribution of electrodes and their names are presented in
Figure 2. The sampling frequency was 512 Hz. Electrodes were
arranged according to the international 10–20 system: Oz, O2,
O1, Pz, P4, P3, C4, C3, Cz, F8, F7, Fz, F4, F3, Fp1, and F9. No
preprocessing methods were used.

A fragment of the EEG signal from one of the subjects is
shown in Figure 3. Eye blink artifacts are very clearly visible,
located around 10 and 12.5 s. The highest amplitudes of artifacts
were recorded on the Fp1 and P3 electrodes. The propagation of
artifacts to other electrodes is also visible.

FIGURE 2 | Electrodes and their location on the head.
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FIGURE 3 | Recorded EEG signal fragment.

The 1-s window presenting the signal fragment from Figure 3
is shown in Figure 4. It is a zoom-in on the eye blink
artifact occurrence.

Generated Electroencephalography/
Electrooculography Signals
The real EEG signal contains various types of artifacts that
appear when the test is performed. However, we do not
have a reference signal from which to conclude what the
EEG signal should look like after the artifacts have been
removed. To enable such an evaluation, we have developed
software that allows the generation of artificial EEG signals
without artifacts and the addition of EOG artifacts to them.
Due to this, it is possible to compare the performance
of each of the analyzed methods (we have an EEG signal
contaminated with artifacts and a clean EEG signal that should be
obtained after cleaning). Statistical parameters of the generated
signals were determined on the basis of observations of real
signals recorded during the tests. These are the standard
deviation (5–15 µV), the peak-to-peak value (45–100 µV), the
interval between the appearance of eye blinks (0.5–4 s), the
amplitude of eye blinks (0–650 µV), and the length of the
signal in seconds.

The first step is to generate an EEG signal and then
add artifacts with the appropriate electrode-dependent gain
to it. The EEG signal can be generated in many ways. One
of them is to get pink noise with given parameters. Pink
noise, also known as 1/f noise, is a random stochastic process
or a signal whose mean power spectral density is inversely

proportional to frequency (Isar and Gajitzki, 2016). According
to Voytek et al. (2015), many natural phenomena, including
electroencephalography, can be described by 1/f noise. We
decided to use a different method of EEG signal generation
(Sakai et al., 2017). This method generates an EEG signal based
on random modifications of the spectrum of a real signal.
As the EEG reference signal, the signal fragment from an
electrode subjected to minimal EOG interference (e.g., the Cz
electrode) is selected. Thus, the generated signal corresponds
best to the undisturbed EEG signal. The signal generation
process begins with the calculation of the spectrum of a given
fragment of the real EEG signal using the fast Fourier transform
(FFT). Then, random coefficients are generated and a modified
spectrum is created by adding/subtracting the random values
to the FFT coefficients of the real EEG signal. The spectrum-
modifying coefficients are in the range of ±2 µV. The last
step is to apply the inverse Fourier transform (IFFT), which
enables us to obtain a time-domain signal similar to the
real EEG signal. The generated EEG signal has a spectrum
similar to pink noise.

The generated EEG signal is in the form of a 1-s window that
can be combined into a signal with a predetermined number of
seconds. The generation algorithm ensures that the amplitude
differences at the border of the joined windows are not too large.
The incoming signal can differ up to 7 µV from the last sample of
the signal already created – this value was determined based on
the observation of real signals. The generated signal (on different
electrodes) based on the real EEG signal from the Cz electrode
is shown in Figure 5. The spectra of the individual signals are
also shown there.
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FIGURE 4 | The EEG signal fragment containing the occurrence of an eye blink artifact.

The next step is to generate eye blink artifacts, according to the
parameters determined on the basis of observation of real signals.
The propagation of artifacts on the EEG signal on individual
electrodes is very important here. For this purpose, the range of
coefficients responsible for artifact propagation was established
for each of the electrodes, depending on their position. Artifacts
were added to the pure signals after appropriate amplification or
attenuation, depending on the coefficient specified for the given
electrode. The eye blink artifact resembles the shape of a Gaussian
window and this shape was used to generate the artifacts (Alquran
et al., 2019). Eye blink artifacts were generated and added to the
clean signal (with an appropriate time interval). Figure 6 presents
5 s of pure EEG signal and EEG signal with eye blink artifacts
propagated on individual electrodes.

Zoom in on the EEG signal (Figure 6) containing the
occurrence of the EOG artifact and its propagation to the
remaining electrodes is shown in Figure 7.

The generated signals allow the check and comparison of
individual methods because we have a reference in the form of a
pure EEG signal. In the case of cleaning the real EEG signal from
artifacts, it is not possible to compare the waveforms with the
reference signal (pure EEG) because it is not known. Artificially
generated signals were also used to train CNN.

METHODS

In our research, we compared the use of the CNN method
to remove EB artifacts with the two best-known methods:
regression (REG) and independent component analysis (ICA).

Each method works differently. The ICA method tries to find the
most independent components. Based on expert knowledge or
quantitative measures, we are able to identify ICA components
responsible for artifacts and remove them. The regression
method removes artifacts from individual channels. For this, it
is required to indicate the signal in which the artifacts are found.
We assumed that this is the signal from the Fp1 electrode.

Independent Component Analysis
The ICA method (Cheng et al., 2019; Jiang et al., 2019) allows
the removal of artifacts from the EEG signal without the need
for a reference channel. The ICA method works by decomposing
the recorded signal into independent components. In principle,
the components will include those responsible for the sources
of artifacts. Such artifact-containing components are rejected
automatically or by an expert, and the signal is then reconstructed
by mixing the remaining components. As a result, we get signals
without artifacts. The problem can be described by the equation
(Jiang et al., 2019):

X = W ∗ S

We assume that X is the matrix of signals recorded by the
measuring electrodes, W is the mixing matrix, and S is the matrix
of source signals. After transforming the equation, we get the
unknown source signals:

S = W−1
∗ X

The assumption of the ICA method (Jiang et al., 2019) is the
statistical independence of the source signals. The aim of ICA
is to find such a mixing matrix W that allows one to obtain the
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FIGURE 5 | The real EEG signal from the Cz electrode, its spectrum, and the artificial signals generated on its basis along with the spectra.

most independent result signals. If the components responsible
for artifacts (eye blink or other) are found, it is enough to reset
the appropriate weights of the W matrix and then mix the other
components. The matrix Wm is the modified mixing matrix.

X = Wm ∗ S

Before making the transformation, the low frequencies
were filtered out (high-pass filtering, cutoff frequency 1 Hz,
Butterworth filter order 6). We decided to choose 15 ICA
components. Two components 0 and 1 (associated with artifacts)
were removed and then the signal without these components was
reconstructed. Examples of the components calculated for the

real signal are shown in Figure 8. Each component was visually
assessed and the eye blink components were selected.

Linear Regression
The regression method, according to Urigüen and Zapirain
(2015), was very often used to remove EOG artifacts in the
1990s due to its simplicity and low computational requirements.
Regression is still a popular and commonly used method of
artifact removal (Ranjan et al., 2021). The method requires a
reference channel, which was chosen by us as Fp1 (the electrode
closest to the eye). The regression method assumes (Urigüen and
Zapirain, 2015) that each EEG measurement channel is the sum
of a certain clean source signal and a reference signal (containing
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FIGURE 6 | Artificially generated EEG and EEG + EOG signals.

artifacts). The aim of regression is to estimate the optimal value
of the propagation coefficient for each of the electrodes (except
the reference one), allowing proper removal of artifacts. Removal
of artifacts is the subtraction of a certain amount of the EOG
reference signal (from the Fp1 electrode) from the contaminated
EEG. As a result, we obtained a cleaned signal. In general, the
regression equation (Jiang et al., 2019) can be written as:

EEGclear = EEGnoised − B ∗ EOGref

EEGclear is the artifact-cleaned EEG signal, EEGnoised is the signal
before artifact removal, B is the propagation factor, and EEGref is
the EOG reference signal. With multiple regression (Urigüen and
Zapirain, 2015), the signals measured on individual electrodes
are influenced by more than one reference signal, for example,
horizontal, vertical, or radial ocular artifacts.

The linear regression method used by us takes the data from
the Fp1 electrode (EOGref ) and subtracts from each sample the
mean of the signal recorded on that channel (EOGref _maen).
Assuming that we have N samples, we can represent this as an
equation:

∀n ∈ {1, ..., N} EOGref (n) = EOGref (n)− EOGref _maen

The signal is then multiplied by its transposition to compute the
cov factor.

cov = EOGref ∗ EOGref
T

In the next step, for each of the channels (separately, in order
to reduce memory use), data is collected, and the average is
calculated, which is subtracted from the entire signal for a given

channel, similarly to the reference channel. To remove artifacts,
from a channel (other than Fp1) containing N samples, the
recorded EEGnoised signal with an average equal to EOGnoised_maen
is transformed as follows:

∀n ∈ {1, ..., N} EOGnoised (n) = EOGnoised (n)− EOGnoised_maen

Then the coefficient B is calculated as a solution to the linear
equation:

cov ∗ B = EOGref ∗ EOGnoised
T

After transforming the equation we get:

B = cov−1
∗ EOGref ∗ EOGnoised

T

In the next step, the reference signal multiplied by factor B is
subtracted from the signal from the analyzed channel (electrode).
In this way, we obtain a signal cleaned of artifacts for a given
electrode (EEGclear).

EEGclear = EOGnoised − B ∗ EOGref

The algorithm works in this way until all channels are cleared
(apart from the reference channel, which in our case is Fp1).

Convolutional Neural Network
Convolutional neural networks (CNN) (Arora et al., 2020) are
most often used in problems related to computer vision. These
networks can be used not only for classification but also for
regression problems. A characteristic feature of CNN compared
to the traditional neural network is the fact that during its
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FIGURE 7 | Close up on the eye blink artifact.

FIGURE 8 | ICA components for the real signal sample.

operation it focuses on the extraction of features (Arora et al.,
2020). Each CNN consists of four basic layers – the convolution
layer (filters with given shapes that allow for the extraction
of features), pooling layer (they are used to reduce the size
of analyzed data, we distinguish several types of pooling, for

example, MaxPooling or Average Pooling), fully connected layer
and loss function (responsible for calculating errors between the
current and the desired network output). There are many CNN
structures, they can vary in the number of layers, shape and size
of filters, activation functions, and other parameters. Examples
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of very popular networks are AlexNet, GoogLeNet, and VGGNet
(Arora et al., 2020; Mutasa et al., 2021).

The operation of CNN is broken down into several stages
(Mutasa et al., 2021). First, filters allow the designation of a
feature map. This is done by the convolution layer (Vinayakumar
et al., 2017). It is a key component of CNN. The process
is repeated several times to filter the feature maps obtained
with the use of subsequent convolutional kernels. Characteristic
parameters of the convolution layer are the number and size
of filters in individual layers, the step by which the window
corresponding to the filter is moved (Murata et al., 2018).
The pooling layer is usually placed between two convolutional
layers (Zhao and Wang, 2019). The layer performs the pooling
operation on feature maps, i.e., the reduction of data size while
maintaining the most important features. For this purpose, the
data is divided into cells of equal size and a certain value is
kept for each cell (maximal – Max Pooling, average – Average
Pooling). The pooling layer has two main hyperparameters.
These are the size of the cell into which we divide the data and the
step by which individual cells will be separated from each other.
The ReLU correction layer allows you to convert all negative
values to zero. It comes as an activation function (Tan and Pan,
2019). The fully connected layer is often the last layer of CNN.
A feature vector is fed as an input, which is transformed into a
new vector using a linear combination and an activation function.
The network output is compared with the training data set and
the resulting loss, depending on its degree, causes the network
weights to be updated using gradient and backpropagation.
During the training of the neural network, this process is repeated
many times to improve the quality of the model.

Selecting the correct CNN structure requires a lot of research.
We focus on ensuring a compromise between operating time
and the effectiveness of cleaning the signal from artifacts. Due
to the one-dimensional input data (signal to be cleaned and
reference signal from Fp1), one-dimensional filters were used.
Two convolutional layers were created. In the first one, the
number of filters was 20, and the kernel size was assumed to be
40. The filter shift step was set to 2. The second convolution layer
contained 10 filters and the kernel size was set to 20. The shift step
was 1. In both convolutional layers, the activation function was
the ReLU. Next, a densely connected layer was added, which also
defined the size of the output data (1-s window, 512 samples). The

TABLE 1 | The structure of the proposed CNN.

Layer Parameters

Input Layer Input shape (512,2)

Convolutional_1D_1 20 filters 40 × 1 convolutions with stride 2 and
padding same

Relu_1 ReLU

Convolutional_1D_2 10 filters 20 × 1 convolutions with stride 1 and
padding same

Relu_2 ReLU

Flatten_3 Flatten layer – flattens the input to fully connected
layer

Dense Output Layer Output layer with desired clear signal shape (512)

ADAM optimizer was used in the training process. Table 1 shows
the structure of the convolutional network. The network training
set contained 70,000 1-s EEG/EOG signal windows, which were
broken down into training data (80%) and validation data (20%).

Training the CNN required the determination of the number
of epochs and examples that were fed to the input during
subsequent iterations (batch size). The selected batch size was
128. This allowed for the use of less memory. Furthermore, more
frequent updates of the network weights were performed, which
accelerated training. The number of epochs used in CNN training
was 10. We considered adding batch normalization layers, but it
did not improve the performance of the network. Therefore, we
decided to omit them. The network structure generated with the
use of the tensorflow packet is shown in Figure 9.

The ADAM optimization algorithm was used in the learning
process. The parameters selected during the training are
summarized in Table 2. The chosen loss function was the
mean square error.

With the use of Learning rate we can determine how much
weights will be modified in subsequent training iterations (Yoo
et al., 2019). Beta_1 and Beta_2 are hyperparameters used for
first- and second-order moment estimation, respectively. Thanks
to them, it is possible to correct the moments by removing the
bias (Şen and Özkurt, 2020). The epsilon parameter is responsible

FIGURE 9 | Structure of the proposed neural network.

TABLE 2 | ADAM optimization function parameters.

Parameter Value

Learning rate 0.001

Beta_1 0.9

Beta_2 0.999

Epsilon 1e-07
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for preventing a possible division by zero when updating the
weights. Therefore, very low epsilon values should be chosen in
such a way as not to affect the result and, at the same time, to
ensure no division by zero.

RESULTS AND DISCUSSION

To evaluate the effectiveness of the proposed CNN method for
removing eye blink artifacts, comparisons were made with the
ICA and regression methods. To be able to compare the methods,
a set of EEG signals and a set of signals containing eye blink
artifacts were generated. The pure EEG signal served as the
reference signal. Then, ten 1-s windows containing EOG artifacts
were generated. For each window, statistical coefficients (Ckk,
CFp1 MAPE, RMSE, and Skewness) were calculated, allowing a
comparison of the effectiveness of artifact removal.

The Ckk is the correlation between the cleaned signal (with
the use of one of the methods – CNN, ICA, and regression) and
the original signal on the electrode k. The measure used is the
Pearson correlation. The higher the absolute value of the Ckk, the
better, because the signal after cleaning is closer to the real signal.
CFp1 is the correlation between the samples of the signal from the
Fp1 (reference) electrode and the samples of the cleaned signal
for a specific electrode. In general, it is better to keep the CFp1
value as low as possible. MAPE determines the mean percentage
error between the reference signal (EEG) and the one cleared by
an algorithm. It is calculated as the arithmetic mean of the sum of
the absolute values of the differences between the samples from
the real signal and the cleaned signal, related to the real signal.

MAPE
(
y, ŷ

)
=

1
nsamples

nsamples−1∑
i = 0

|yi − ŷi|∣∣yi
∣∣

The number of inputs is denoted by nsamples, yi is the value for
the i-th sample, and ŷi is the model predicted value for the i-th
sample. RMSE is the root mean square error. It is calculated as
the root of the arithmetic mean of the sum of the squares of the
differences between the samples of the raw signal (EEG) and the
signal cleaned by the given method.

MSE
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)
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√
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)
MAPE and MSE errors should be kept as low as possible. The
Skewness describes the skewness calculated for the cleaned signal
using a given method. For normally distributed data (perfectly
symmetric distribution), the skewness should be zero. If skewness
is greater than zero, the largest number of data is on the left side
of the curve representing the probability distribution. A skewness
that is different from zero may indicate an existing eye blink
artifact (Xiang et al., 2020).

We calculated Ckk, CFp1, MAPE, RMSE, and Skewness for
all electrodes and all subjects. Detailed results are presented

in Supplementary Appendix 1. The calculated values of the
coefficients are plotted on the head surface (Figures 10–14). Such
a representation allows for easier comparison of the results.

Figure 10 shows the Ckk value plotted on the head surface.
A great similarity can be observed in terms of the distribution
and values for the CNN and ICA methods. On the other hand,
higher values of the Ckk coefficient occur for the REG method.

Figure 11 shows the values of CFp1 plotted on the head surface.
The lowest values of the coefficients are observed for the REG
method. This is due to the principle of the REG method, that
is, minimizing the correlation between individual electrodes and
the Fp1 electrode (associated with eye blink artifacts). We can
observe an increase in the CFp1 value for the electrodes at the front
of the head for the CNN method. On the other hand, lower values
of CFp1 can be observed for electrodes placed in the back of the
head. For the ICA method, the distribution of the CFp1 coefficient
is more homogeneous. In this case we did not observe negative
values of the CFp1 coefficient.

Figure 12 shows the Skewness plotted on the surface of the
head. The smallest disproportions of the coefficient values (close
to zero) are observed for the ICA and REG methods. However,
we can observe significant disproportions for the CNN method.
For the CNN method, we can observe positive values of the
skewness coefficient for the electrodes at the front of the head,
while negative values for the electrodes at the back of the head, in
particular for the electrodes O1, O2, and Oz.

Figures 13, 14 show the RMSE and MAPE errors. We can
observe an increase in the values of the errors for the electrodes
in the front of the head for the ICA and REG methods. Much
lower values of the RMSE and MAPE errors can be observed
for the CNN method, especially in the front part of the head.
We observe lower values of the MAPE error for the entire
head area for the CNN method compared to the ICA and
REG methods. In our opinion, the MAPE/RMSE measure best
describes the effectiveness of artifact removal as it relates to the
reference signal.

To discuss in more detail the values obtained for Ckk, CFp1,
MAPE, RMSE and Skewness, four electrodes were selected,
located in the central, parietal, frontal, and occipital parts of the
head: Cz, P3, F3, and Oz. The Ckk, CFp1, MAPE, RMSE, and
Skewness values for electrodes Cz, P3, F3, and Oz are presented
in Tables 3–6.

Table 3 presents the coefficients related to cleaning the signal
from the Cz electrode. This electrode is located in the center of
the head. In this case, very good results achieved by the CNN
method can be observed. The correlation Ckk (0.93) is very high.
The errors MAPE (0.805) and RMSE (2.935) have low values.
The CFp1 coefficient (−0.027) is low, which confirms the correct
elimination of eye blink artifacts.

Table 4 shows the coefficients related to cleaning the signal
from the P3 electrode. The electrode is located on the left side
of the central part of the head. You can also notice very good
removal of artifacts using the CNN method. The cleaned and
real EEG signals are strongly, positively correlated – the Ckk
coefficient is 0.869. The MAPE (1.219) and RMSE (4.381) errors
for the CNN method are the lowest among the methods analyzed.
The Skewness coefficient (−0.018) is also the smallest – it proves
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FIGURE 10 | The average value of Ckk coefficient plotted on the head surface.

FIGURE 11 | The average value of CFp1 coefficient plotted on the head surface.

FIGURE 12 | The average value of Skewness coefficient plotted on the surface of the head.

that the distribution is even. The correlation with the Fp1
electrode is negative and reaches values close to the ICA method
(CFp1 equal to −0.321). In this case, the CNN method turned
out to be comparable (and even better in terms of errors) to
the regression method. Additionally, the ICA method introduced
changes to the signal skewness, which is not desirable for proper
signal cleaning.

Table 5 presents the coefficients related to the cleaning of the
signals from the F3 electrode. This electrode is located in the
left front of the head. In this case, the CNN cleaning results
are comparable to those of ICA. The CNN method achieved
significantly smaller MAPE (2.712) and RMSE (11.975) errors
compared to the other methods. However, the obtained values
of Ckk (0.508) and a relatively high positive correlation with
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FIGURE 13 | The average value of RMSE coefficient plotted on the surface of the head.

FIGURE 14 | The mean value of MAPE coefficient plotted on the head surface.

the Fp1 reference electrode (CFp1 equal to 0.790) indicate partial
removal of artifacts. Furthermore, the Skewness index for the
CNN method is high (1.499), which may indicate the existence
of artifacts in the signal despite attempts to clean it.

Table 6 presents the average values of the coefficients for the
Oz electrode. This electrode is located on the back of the subject’s
head. In this case, the advantage of the ICA and regression
methods over CNN can be observed. The Ckk coefficient that
describes the correlation between the cleaned and the original
signal is much lower for CNN (0.556) than for the other

TABLE 3 | The averaged values of Ckk , CFp1, MAPE, RMSE, and Skewness for
the Cz electrode.

Method Ckk CFp1 MAPE RMSE Skewness

CNN 0.930 −0.027 0.805 2.935 0.037

ICA 0.692 0.481 4.485 13.140 −0.113

REG 0.934 <0.001 4.795 12.145 −0.051

TABLE 4 | The averaged values of Ckk , CFp1, MAPE, RMSE, and Skewness for
the P3 electrode.

Method Ckk CFp1 MAPE RMSE Skewness

CNN 0.869 −0.321 1.219 4.381 −0.018

ICA 0.872 0.313 3.952 7.763 −0.157

REG 0.974 <0.001 3.010 6.832 −0.079

methods (0.944 for ICA and 0.980 for regression). This means
that there is a discrepancy between the cleaned signal and the
original one. The other coefficients, MAPE equal to 2.810 and
RMSE 10.978, are also high for the CNN method. The CFp1
coefficient indicates a high content of artifacts in the cleaned
signal – the correlation of the cleaned signals on individual
electrodes with the Fp1 reference electrode is high (−0.725). The
Skewness for the CNN method (−0.875) also indicates a higher
occurrence of artifacts than for the ICA (−0.073) and regression
methods (−0.036).

TABLE 5 | The averaged values of Ckk , CFp1, MAPE, RMSE, and Skewness for
the F3 electrode.

Method Ckk CFp1 MAPE RMSE Skewness

CNN 0.508 0.790 2.712 11.975 1.499

ICA 0.567 0.685 10.650 22.356 0.092

REG 0.872 <0.001 10.115 19.954 0.084

TABLE 6 | The averaged values of Ckk, CFp1, MAPE, RMSE, and Skewness for
the Oz electrode.

Method Ckk CFp1 MAPE RMSE Skewness

CNN 0.556 −0.725 2.810 10.978 −0.875

ICA 0.944 −0.006 1.062 3.402 −0.073

REG 0.980 <0.001 0.645 1.719 −0.036
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FIGURE 15 | Artificially generated 1-s window of pure EEG, EEG + EOG, and cleaned signal using ICA, regression, CNN methods. The letter A represents the
moment the blink artifact occurred.

Analyzing Tables 3–6, it can be seen that for the CNN method,
the Ckk coefficient is high for the Cz (0.93) and P3 (0.869)
electrodes, which means that the signals are cleaned properly.
A high correlation indicates a strong similarity between the
cleaned signal and the original. The ICA and CNN methods
are distinguished by relatively low MAPE and RMSE errors (for
3 out of 4 electrodes CNN achieves much lower errors). The
cleaned signals are strongly correlated with the original, and the
Ckk coefficients are high (for the Cz electrode −0.93, for the
P3 electrode −0.869). Furthermore, cleaned signals are poorly
correlated with the Fp1 reference electrode.

Figure 15 shows the artificially generated 1-s window (512
samples) of EEG, EEG + EOG, and cleaned signals using each
of the tested methods – CNN, ICA, and regression. In the case
of generated signals, the CNN changes the polarization of the
Oz, O2, and O1 electrodes at the place of the artifacts (marked
A in Figure 15) – this is not the desired phenomenon. Figure 5
shows the differences in the cleaned signals obtained with the
use of the tested methods. You can observe discrepancies in the
cleaned signal using the ICA method in relation to the others, for
example, electrodes F7, F8, and Fz.

Figure 16 shows the spectrum of the signal from the Cz
electrode (presented in Figure 15). EOG signals (Banerjee et al.,
2013) are in the range of 0.1–20 Hz. In Figure 16, it can be seen
that all the methods eliminated low-frequency amplitudes. The
CNN-based method performed very well. The spectrum of the
cleaned signal is closest to the original one. It should be noted
that the ICA method introduced a significant distortion of the
spectrum for 5–10 Hz.

Figure 17 shows a close-up of the signal from the Cz electrode.
There is a noticeable difference in the operation of ICA and
other methods visible in the times A, B, and C marked in
Figure 17. Changes in the signals for A and C are caused by the
presence of a constant component – in many cases of EEG signal
analysis, it does not matter. It can also be seen that the highest
coverage of signals with the original EEG (correct cleaning) is
in the case of the regression method and CNN. In the part
marked B, we can observe a significant modification of the signal
using the ICA method.

Figure 18 shows the cleaning effect on the real EEG signal
(user S03). It can be seen that artifacts from the real EEG signal
are correctly removed. The ICA method, as described above, also
cleans the signal on the reference electrode. It can be seen that the
removal of artifacts from the Fp1 reference electrode with ICA is
much worse than the cleaning of signals on other electrodes.

Figure 19 shows the spectrum of the signal from the Cz
electrode (presented in Figure 18). There is a visible decrease in
the amplitudes of successive bands of the spectrum in the low-
frequency range, which indicates the correct operation of the
methods used to eliminate eye blink artifacts. It can be seen that
all the methods allow us to obtain a similar spectrum.

Figure 20 shows a close-up of the signals recorded on
electrode Cz (presented in Figure 18). The figure shows two eye
blink artifacts labeled A and B. The first was correctly removed
with each of the analyzed methods. In the case of B, it can be
seen that the artifact removal using the ICA method was not
complete. Much better results were obtained using CNN and the
regression method.
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FIGURE 16 | The spectrum of the signal from the Cz electrode.

FIGURE 17 | A fragment of the simulated EEG signal for the Cz electrode. The letters A–C represent selected moments: A and C the EEG signal fragment without
artifacts and B with an eye blink artifact.

The above discussion shows that the application of the CNN
method gives very good results in the removal of eye blink
artifacts, in particular for the electrodes placed in the central part

of the head. Therefore, the application of the proposed method
may be useful as a pre-processing in the analysis of the P300
potential or other event-related potential (ERP) occurring in the
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FIGURE 18 | The real EEG signal fragment recorded during the test and cleaned by ICA, regression, CNN method.

FIGURE 19 | An example of the spectrum of the signal from the Cz electrode.

central part of the head. To verify the usefulness of the method
to eliminate eye blink artifacts, we cleared the EEG signals from
the Cz electrode for the signals registered during the experiments
with the N-back task.

Table 7 presents the signal statistics – parameters describing
the real signal and signals after artifact removal for the Cz
electrode. Average values for standard deviation and peak-to-
peak values are shown for all 20 users. The results obtained
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FIGURE 20 | A fragment of the EEG signal recorded for the Cz electrode. The letters A and B represent the times when the blink artifact occurred.

indicate that the artifacts are correctly removed. The peak-to-
peak value for the tested methods is lower than that for the raw
signal containing the artifacts. The peak-to-peak value of the
signal before cleaning is 141.76 µV. After cleaning, it decreases
for each method (CNN – 88.8 µV, ICA – 93.73 µV, regression –
101 µV). These indicate a good performance of the CNN and
ICA methods and slightly worse for the regression method. In
addition, a reduction in the standard deviation can be seen for
each method. This indicates a reduction in the scattering of
samples in the cleaned signal compared to the raw signal. The
decrease is most noticeable for the CNN method (from 25.89 µV
to 15.197 µV) and regression (from 25.89 µV to 16.58 µV).

Eye blink artifacts produce much larger amplitudes than
potentials of interest in the EEG signal. This is especially true for
ERP. During the N-back task, the users watched the computer
monitor. Stimuli that are presented for a long time can cause
discomfort in the examined person and force the eyes to blink.
This is a natural activity. It happens that such blinks provoked
by the presented stimuli can be easily mistaken for the desired
potentials. Such an example can be observed in the case of
recorded signals. For user S03, about 0.4 s after the stimulus

TABLE 7 | Statistical parameters describing 3 s of the real and cleaned signals
(using CNN, ICA, and regression methods) for the Cz electrode.

Method Standard deviation Peak-peak

Real EEG 25.89 141.76

CNN 15.197 88.80

ICA 18.22 93.73

REG 16.58 101.00

presented, blinking of the eyes occurs very frequently and
regularly. It is observable on the FP1 electrode but also on Cz,
where we would expect, e.g., the P300 potential. Figure 21 shows
an example of averaged ERP after the N-back stimulus. ERP
without filtration (real) is shown in blue, orange – after removing
artifacts using CNN, green – after removing artifacts using the
ICA method, and red – after removing artifacts using regression.
Even averaging, which is standard in this type of analysis, does
not eliminate the problem of repetitive artifacts. This may result
in incorrect interpretation of potentials.

Next, we check the operating times of the CNN, ICA, and
regression algorithms implemented. We used the real signal
(S03_EEG), fragments of various lengths were selected – 10 s,
60 s, 10 min, 30 min, and 50 min. The operation of the methods

FIGURE 21 | Averaged ERP potential for the user S03 – electrode Cz.
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TABLE 8 | Real signal cleaning times using CNN, ICA, and regression.

Duration CNN (s) ICA (s) REG (s)

10 s 5.29 0.437 0.043

60 s 32.414 0.662 0.0799

10 min 335.13 5.33 0.489

30 min 984.10 18.681 1.373

50 min 1578.91 19.690 2.176

was tested using a computer equipped with an Intel Core i7-
9750H 2.60 GHz processor, 32 GB RAM, and a GeForce GTX
1660 Ti graphics card with 6 GB GDDR6 memory. Table 8 shows
the operating times of each method needed to clean EEG signals
of various lengths.

According to the data in Table 8, it can be seen that the CNN
method is the slowest method. It takes about 26 min to clean
1 h of an EEG signal with 16 channels. The fastest method is
regression – for a signal lasting 50 min, the cleaning lasted 2.176 s.
The time differences are due to the computational complexity of
the individual methods. Despite long training and long operating
time, the CNN method gave very good results in cleaning the
signals from the electrodes located in the center and slightly on
the back of the head. The RMSE and MAPE errors for these
electrodes are much lower than those obtained when using other
methods. In the case of analysis of real signals, the CNN method
does not introduce distortion into the cleaned signal, which
shows its advantage over the ICA method.

It should be noted that in experiments we used a signal
database recorded previously with a fixed sampling frequency
(fs = 512 Hz). The trained CNN for set conditions cannot be used
for differently recorded EEG signals. Changing the sampling rate
or changing the amplifier has to be associated with retraining the
CNN. However, the results presented show that it is a promising
method of artifact removal. In future experiments, the authors
plan to record EEG signals, EOG signals, and muscle activity.
The network could then be trained not only to remove EB-type
artifacts, but also artifacts related to the movement of the eye,
facial muscles, and neck. Future research should also include
optimization of the number of samples of the EEG signal fed the
CNN. Currently, the number of samples is 512. This number of
samples is somewhat of a compromise between the signal time,
which may contain a blink pattern, and the number of samples
at the input of the network. Too many samples make it difficult
to train the network, but too few samples could not take into
account the shape of the eye blink.

CONCLUSION

Experiments have shown that the use of CNN method gives better
results in the task of removing eye blink artifacts than regression
methods or independent component analysis. The mean value
of the MAPE error for the CNN method was 4.69, for the ICA
method it was 7.84, and for the REG method it was 7.76. The
CNN method better removes eye blink artifacts, especially in the
central and parietal parts of the head. An example can be the

electrode Cz. In that case, for the CNN method, errors such as
MAPE (0.805) and RMSE (2.935) are much lower than for ICA
(MAPE = 4.485 RMSE = 13.140) and regression (MAPE = 4.795
RMSE = 12.145). Furthermore, visual inspection showed that
the ICA method introduces distortion in the shape of the EEG
signal. No such changes were observed for the regression method
and CNN. On the other hand, better artifact removal results
were obtained for ICA and regression methods when it comes
to electrodes placed in the occipital area of the head (O1, O2, and
Oz). In this case, the use of the CNN method is questionable. It
should be noted that the CNN method is much better suited for
offline removal of artifacts than online removal. This is because
we need to have a set of signals that are needed to train the
network. In addition, we need to train the network. The time
required on the CNN method to work on short EEG signals
is acceptable (a few minutes). For EEG signals that last several
hours, the analysis may be too time-consuming. Further research
should also consider other CNN neural network structures and
training the network using more examples and types of artifacts.
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