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ABSTRACT: G protein-coupled receptors (GPCRs) are the most common targets of drug discovery. However, the similarity
between related GPCRs combined with the complex spatiotemporal dynamics of receptor activation in vivo has hindered drug
development. Photopharmacology offers the possibility of using light to control the location and timing of drug action by
incorporating a photoisomerizable azobenzene into a GPCR ligand, enabling rapid and reversible switching between an inactive and
active configuration. Recent advances in this area include (i) photoagonists and photoantagonists that directly control receptor
activity but are nonselective because they bind conserved sites, and (ii) photoallosteric modulators that bind selectively to
nonconserved sites but indirectly control receptor activity by modulating the response to endogenous ligand. In this study, we
designed a photoswitchable allosteric agonist that targets a nonconserved allosteric site for selectivity and activates the receptor on its
own to provide direct control. This work culminated in the development of aBINA, a photoswitchable allosteric agonist that
selectively activates the Gi/o-coupled metabotropic glutamate receptor 2 (mGluR2). aBINA is the first example of a new class of
precision drugs for GPCRs and other clinically important signaling proteins.

G protein-coupled receptors (GPCRs) are membrane
proteins that play important roles in health and disease.1

They are expressed in virtually every cell, are activated by
diverse stimuli (chemicals, peptides, light), and initiate
pleiotropic signaling via canonical G protein- and noncanonical
arrestin-dependent pathways.1 GPCRs are the most common
targets of drug discovery efforts, constituting 36% of approved
drugs (∼700 compounds).2 The development of therapeuti-
cally efficacious drugs, however, is hindered by the complex
nature of GPCR function. First, the endogenous ligand binding
site (orthosteric site) to which most drugs bind can be highly
similar in related GPCRs, making it difficult to target specific
receptor subtypes.3,4 Second, each GPCR can be expressed and
have distinct functions in more than one location. Third, the
timing by which GPCRs are turned on and off by their
endogenous ligands (milliseconds to tens of seconds5−7) is a
major determinant of downstream signaling and physiological
outcome.8,9 These factors compound the challenge of
developing drugs that can target specific receptor subtypes
with spatiotemporal precision.
The advent of photopharmacology has opened the door to

using patterned light to control drug action with spatial and
temporal specificity.10−13 GPCR ligands are transformed into
rapid and reversible optical photoswitches by employing
azobenzene, a chemical moiety that isomerizes between its
trans and cis configurations within milliseconds in response to
specific wavelengths of light.14 Azobenzene is placed close to
or within a receptor ligand,15 allowing it to switch between two
states: one that is exposed and can bind the receptor and one
that is obstructed and cannot bind the receptor. Nonetheless,
most photoswitchable GPCR ligands are not absolutely
selective for specific receptor subtypes because they contain

inherently nonselective agonists or antagonists that bind the
orthosteric site.11,16−23

To increase the specificity, a class of receptor ligands called
allosteric modulators24−26 was recently converted into photo-
pharmaceuticals. Allosteric modulators bind nonconserved
receptor binding sites (allosteric sites), increasing the like-
lihood of establishing a selective interaction with a specific
receptor subtype. Unlike agonists and antagonists, allosteric
modulators have no effect on receptor function in the absence
of endogenous ligand binding. Instead, they potentiate (as
positive allosteric modulators; PAMs) or decrease (as negative
allosteric modulators; NAMs) the actions of the endogenous
ligand.27 This feature would allow photoswitchable allosteric
modulators to control signaling without disrupting the natural
temporal dynamics of receptor activation, which may be
therapeutically beneficial for certain disease states but less
effective when the endogenous ligand is dysregulated (Figure
S1). For example, the precise millisecond to second-time scale
release dynamics of the major excitatory neurotransmitter
glutamate in the brain is disrupted in neurological disorders
such as epilepsy, schizophrenia, bipolar disorder, and
depression.28

Whereas allosteric modulators have no effect on their own,
allosteric agonists bind to the allosteric site and activate the
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receptor independently of the endogenous ligand.29 In this
study, we sought to combine the receptor subtype selective and
agonistic properties of allosteric agonists with the rapid and
reversible photoswitching properties of azobenzene. The
development of photoswitchable allosteric agonists would
represent a considerable advance in drug design, resulting in
compounds that, by not relying on the endogenous ligand,
have the potential to override aberrant receptor signaling with
subtype-selectivity and spatiotemporal precision (Figure S1).
To develop a photoswitchable allosteric agonist, we targeted

metabotropic glutamate receptor 2 (mGluR2), a Gi/o-coupled
family C GPCR dimer (Figure 1), which has been proposed as
a target for the treatment of schizophrenia and anxiety.30

Conventional mGluR2 agonists or antagonists are non-
selective, as they bind a large extracellular glutamate-binding
ligand binding domain (LBD) that is highly conserved with
mGluR3 (Figure 1A).30 Several mGluR2-selective allosteric
ligands have recently emerged that bind in the receptor’s
transmembrane domain (TMD; Figure 1B,C),31 which is less
conserved across mGluRs (Figure 1B). Among them, we chose
biphenyl-indanone A (BINA) as a parent compound for the
development of a photoswitchable allosteric agonist because it
is highly mGluR2-selective and displays robust agonist
activity.32−35

To develop a photoswitchable analog of BINA, we used
molecular docking analyses to explore the effect of exchanging
its benzyloxy-dimethylbenzene group with azobenzene (azo-
benzene-BINA or aBINA; Figure 2A,B). As previously
observed,33,36 our docking showed that BINA can bind in
the mGluR2 TMD, forming hydrophobic contacts with
residues L639 and F643 and hydrogen bonding with R635
(Figure 2C). Whereas the trans configuration of aBINA bound
mGluR2 in a pose similar to that observed for BINA (Figure
2D), the cis configuration did not interact with residues deeper
in the binding site or hydrogen bond with R635 (Figure 2E).

These results suggested that aBINA can adopt two functionally
distinct configurations, an extended pose that mimics the
binding mode of BINA (trans) and a constrained pose that is
unable to form critical contacts with the receptor (cis).
To synthesize aBINA (Figure 3), the commercial benzyl

bromide 1 was substituted with cyclopentylamine. The
resulting nitroarene 2 was hydrogenatively reduced to aniline
3 and selectively oxidized to the nitrosoarene 4. This
nitrosoarene 4 was coupled with the biaryl aniline 5 in a
Baeyer−Mills reaction and gave the azobenzene derivative 6.

Figure 1. Photoswitchable allosteric agonists are receptor subtype
selective and operate independently of endogenous ligands. (A)
mGluR2 (gray) is an obligate dimer that binds its endogenous ligand
glutamate in its orthosteric site formed by a large extracellular ligand
binding domain (LBD). A photoswitchable agonist or antagonist
binds to the orthosteric site in only one photoisomeric configuration.
Because the orthosteric site of mGluR2 is conserved in mGluR3,
photoswitchable agonists and antagonists are not likely to be receptor
subtype selective. (B) A photoswitchable allosteric modulator (PAM
or NAM) binds selectively to mGluR2 in a nonconserved allosteric
site formed by the receptor transmembrane domain (TMD) but
depends on glutamate binding to affect receptor function. (C) A
photoswitchable allosteric agonist binds selectively to the allosteric
site of mGluR2 and activates the receptor independently of glutamate.

Figure 2. Design of aBINA. (A) Chemical structure of BINA, which
contains a benzyloxy-dimethylbenzene group that is suitable for an
exchange with azobenzene. (B) Chemical structure of aBINA, which
interconverts between its trans and cis configurations with light. (C)
According to molecular docking analyses, BINA binds mGluR2 at an
allosteric site formed within the receptor transmembrane domain
(TMD). The carboxyl group of BINA hydrogen bonds with R635 of
mGluR2 (red line) and forms hydrophobic contacts with residues
throughout the binding site (green side chains). (D) The trans
configuration of aBINA binds in the TMD of mGluR2 in a manner
similar to BINA. (E) Unlike BINA or the trans configuration of
aBINA, the cis configuration of aBINA does not hydrogen bond with
R635 or form hydrophobic contacts with residues deep within the
allosteric binding pocket.

Figure 3. Chemical synthesis of aBINA.

Journal of the American Chemical Society pubs.acs.org/JACS Communication

https://doi.org/10.1021/jacs.1c02586
J. Am. Chem. Soc. 2021, 143, 8951−8956

8952

https://pubs.acs.org/doi/suppl/10.1021/jacs.1c02586/suppl_file/ja1c02586_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.1c02586?fig=fig3&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.1c02586?rel=cite-as&ref=PDF&jav=VoR


Hydrolysis of the methyl ester (6) with LiOH provided aBINA
in good yields.
We next characterized the photophysical properties of

aBINA. aBINA efficiently converted to its cis configuration
with wavelengths ranging from 340 and 380 nm (UV) light
and to its trans configuration with wavelengths ranging from
400 to 600 nm (visible) light, according to UV/vis spectros-
copy (Figures 4A and S2A−D) and LCMS (Figure S2E,F).
These photoswitching wavelengths are slightly hypsochromic
relative to that of azobenzene,14 which is likely due to electron-
withdrawing substituents in the aromatic system. In most
subsequent studies, 420 nm light and 340 nm light were used.
aBINA switched between its trans and cis configuration over
multiple cycles without any loss of activity (Figure 4B).
Furthermore, both configurations of aBINA were sufficiently
stable toward thermal relaxation (Figure S2G−I), and thus the
compound is considered bistable.
To evaluate the effect of aBINA on mGluR2, we used a

mGluR2-mediated G protein-inwardly rectifying potassium
channel (GIRK) activation assay (Figure S3).37 mGluR2 and a
homotetramerizing mutant of GIRK1 (F137S) were transiently
transfected into HEK293T cells, whereby receptor activation
results in Gi/o-dependent GIRK activation and enhanced
inward-current. Transfected cells were patch clamped in
whole-cell configuration and exposed to alternating 420 nm
light and 340 nm light to interconvert aBINA between its trans
and cis configuration, respectively. The application of aBINA
under 420 nm light (trans; 100 nM) robustly activated
mGluR2 relative to a saturating concentration (1 mM) of
glutamate (70 ± 4%, n = 8 cells; Figure 5A,C). This effect was
not observed in cells expressing GIRK alone or in cells
expressing a mutant of mGluR2 (N735D) in which the
allosteric binding site in the receptor TMD is disabled (Figure
S4),33 indicating that aBINA operates through the known
allosteric mechanism. The effect of the trans configuration of
aBINA was largely reversed by switching the compound to the
cis configuration with 340 nm light (Figure 5A,C), a
photoeffect not observed in the absence of aBINA (0 ± 1%
of 1 mM glutamate, n = 4 cells; Figure 5A). mGluR2 activation
in response to aBINA under 420 nm light could also be
reversed with 360 nm light (Figure S5), which has greater
biocompatibility than 340 nm light. Photoactivation of
mGluR2 with aBINA was rapid and repeatable (Figure 5A),
consistent with its photophysical properties.
The potency of the trans configuration of aBINA was ∼11-

fold lower than that of the parent compound BINA32−34

(Figure S6), indicating that the replacement of benzyloxy-

dimethylbenzene with the trans-isomer of azobenzene some-
what diminishes agonist affinity. aBINA activated mGluR2 at
high concentrations under 340 nm light (Figure 5B). The
degree of activation was consistent with the presence of a
minor fraction of active trans configuration (Figures S2E,F and
S7). Taken together, these results indicate that aBINA is a
photoswitchable allosteric agonist of mGluR2 that activates the
receptor in the trans configuration but not the cis
configuration.
Whereas the effect of aBINA on mGluR2 was reversed after

minutes of washout (Figures 5A and S8), the parent
compound BINA is resistant to washout due to its high
hydrophobicity (cLogP = 8.3) and ability to form a reservoir in
the plasma membrane.35 The faster washout of aBINA is
consistent with the reduction in hydrophobicity by ∼200-fold
(cLogP = 6.0) due to the substitution of the indanone scaffold
with isoindolinone and the replacement of the benzyloxy-
dimethylbenzene with azobenzene.
The parent compound BINA is a PAM that potentiates the

potency of glutamate at mGluR2 by ∼5−10 fold.32−34 To
evaluate whether aBINA is also a PAM, we examined the
activation induced by a low dose (100 nM) of glutamate in the
presence of the active trans configuration of aBINA (Figure
S9A,B). Low-dose glutamate activated mGluR2 under these
conditions (Figure S9C−E), indicating that aBINA has PAM
activity. However, because aBINA nearly fully activates
mGluR2 on its own (Figure 5A,C), the effect of low-dose
glutamate with aBINA was limited (Figure S9C−E). Thus,

Figure 4. Photophysical properties of aBINA. (A) Absorbance spectra
of aBINA (20 μM in 10% DMSO) in the dark or under 340 or 420
nm light. (B) aBINA reversibly and repeatedly switched to its trans
configuration with 420 nm light and to its cis configuration with 340
nm light.

Figure 5. aBINA is a selective photoswitchable allosteric agonist of
mGluR2. (A) mGluR2 is activated by the trans configuration of
aBINA (420 nm light) in the GIRK assay. This effect is reversed by
switching to cis configuration of aBINA (340 nm light) or washout.
Photoactivation of mGluR2 with aBINA is rapid and repeatable. (B)
Dose-dependent effect of aBINA on mGluR2 under 420 nm light and
340 nm light. n = 3−9 cells per concentration. (C) Summary of the
effect of aBINA on various mGluRs. The effect of aBINA on mGluR2
under 420 nm light was significantly different from all other
conditions. One-way ANOVA, F = 48.7, ****p < 0.0001 for each
comparison.
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although aBINA acts as a PAM, its dominant effect on
mGluR2 is allosteric agonism.
We next evaluated whether aBINA is selective for mGluR2.

The eight mGluRs belong to three groups (I−III) based on
sequence and function.30 We tested the effect of aBINA on the
closest homologue of mGluR2, the single other group II
member mGluR3, as well as one representative of the other
groups: mGluR1 (Group I) and mGluR4 as well as mGluR7
(group III). Like BINA, aBINA had no effect on any of these
receptors under 420 nm light or 340 nm light (Figures 5C and
S10), indicating that aBINA is highly selective for mGluR2.
We next sought to determine whether aBINA can control

the native mGluR2 of neurons. To accomplish this, we
measured the effect of aBINA on the activity of primary
cortical neurons (CNs) in culture using whole-cell current-
clamp recordings. Consistent with the effects of the orthosteric
mGluR2 agonist LY379268,37 the active trans configuration of
aBINA (100 nM; 420 nm light) suppressed spontaneous CN
firing (Figure 6A,B). This effect was reversed by switching
aBINA to its inactive cis configuration with 340 nm light
(Figure 6A,B). Photoinhibition was rapid and repeatable
(Figure 6A,B). aBINA had no effect on spontaneous firing in
the presence of a saturating concentration of the mGluR2-
selective NAM MNI137 (10 μM; Figure 6C,D), which
competes with aBINA for the allosteric binding site. Taken
together, aBINA selectively photoactivates endogenous
mGluR2 in CNs.
Although significant progress has recently been made toward

applying photopharmacology in intact organisms,11 the success
of photopharmaceuticals as therapeutics will depend on ligand
efficacy, affinity, and target specificity. While orthosteric
agonists can combine high efficacy and affinity, conservation
of the orthosteric binding pocket makes it difficult to create

completely selective ligands.4 In contrast, allosteric ligands
usually bind to much less conserved pockets and can more
readily be imparted with selectivity. However, these allosteric
ligands typically have no direct activity and instead modulate
the response to the endogenous orthosteric ligand. Our
example of a photoswitchable allosteric agonist combines
target specificity with high efficacy and affinity while also
bypassing the endogenous ligand. In addition, the installation
of the azobenzene moiety into the parent compound BINA
resulted in a reduction in hydrophobicity without substantially
sacrificing activity, increasing its therapeutic potential.
The development of photoswitchable allosteric agonists

requires suitable parent molecules for incorporation with
azobenzene. Like aBINA, some allosteric agonists are partial
agonists and/or have PAM activity (so-called ago-PAMs).
Therefore, further efforts could result in new high efficacy,
pure allosteric agonists of GPCRs. Nevertheless, allosteric
agonists are available for diverse and clinically important
GPCRs such as other mGluRs,38 cannabinoid receptors,39 free
fatty acid receptors,40 GABAB receptors,41 muscarinic
receptors,42 and serotonin receptors.43 Moreover, small
molecules that harness the same mechanism have been
identified for ligand-gated ion channels such as GABAA
receptors,44 suggesting that the photoswitchable allosteric
agonist approach is broadly applicable. As such, our study sets
the stage for the development of photoswitchable allosteric
agonists that enable the control of GPCRs and ligand-gated ion
channels with high spatiotemporal control and subtype
specificity. We are also intrigued by the potential of combining
this new class of drug with azobenzene derivatives that
photoisomerize in response to wavelengths of light that
penetrate biological tissue more efficiently (650−950
nm)45,46 and with membrane anchors that are introduced
virally to provide photocontrol in genetically selected cells.37
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