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Atrial Fibrillation (AF) is the most common cardiac arrhythmia. It naturally tends to become a chronic condition, and chronic
Atrial Fibrillation leads to an increase in the risk of death. The study of the electrocardiographic signal, and in particular of the
tachogram series, is a usual and effective way to investigate the presence of Atrial Fibrillation and to detect when a single event
starts and ends.This work presents a new statistical method to deal with the identification of Atrial Fibrillation events, based on the
order identification of the ARIMAmodels used for describing the RR time series that characterize the different phases of AF (pre-,
during, and post-AF). A simulation study is carried out in order to assess the performance of the proposed method. Moreover, an
application to real data concerning patients affected by Atrial Fibrillation is presented and discussed. Since the proposed method
looks at structural changes of ARIMA models fitted on the RR time series for the AF event with respect to the pre- and post-AF
phases, it is able to identify starting and ending points of an AF event even when AF follows or comes before irregular heartbeat
time slots.

1. Introduction

During the last 20 years, there has been a widespread interest
in the study of variations in the beat-to-beat timing of the
heart, known as Heart Rate Variability (HRV) [1, 2]. This
is due to several different reasons. HRV has been reported
as strong predictor of cardiovascular mortality, and it is one
of most popular parameter to assess the autonomic tone
(see [3] and the references therein for a detailed discussion).
Moreover, it represents a noninvasive way to assess post-
surgical risks (see, e.g., [4]) or to investigate and tune gold
standard practices [5]. Nevertheless, as highlighted in [6],
the potential for HRV to be used widely in clinical practice
remains to be established. When the sinus rhythm is normal,
the tachogram series (i.e., the series of RR intervals; see
Figure 1(a)) presents spontaneous beat-to-beat oscillations
related to the autonomic nervous system regulatory action
[7]. On the other hand, during arrhythmias, the spontaneous
RR variability is perturbed and the spectral pattern changes
according to the generating mechanisms of arrhythmia (see
[8, 9]). Atrial Fibrillation (AF) is the most common cardiac

arrhythmia, and involves the two upper chambers (atria) of
the heart [10]. During AF, the normal electrical impulses
generated by sinoatrial node are overwhelmed by disor-
ganized electrical impulses that originate in the atria and
pulmonary veins, leading to conduction of irregular impulses
to the ventricles that generate the heartbeat. The result is
an irregular heartbeat (see Figure 1(b)), which may occur in
episodes lasting from minutes to weeks, or it could occur all
the time for years. The natural tendency of AF is to become a
chronic condition, and chronic AF leads to an increase in the
risk of death.

Themain device used in order to investigate the heartbeat
is the Electrocardiogram (ECG) [11]. This diagnostic tool
measures and records the electrical activity of the heart in
details.The interpretation of these details allows for diagnosis
of a wide range of heart diseases and AF among others.
A stylized shape of an ECG is depicted in Figure 2. In
general, atrial contraction shows up as the Pwave; ventricular
contraction is identified as a series of three waves, Q, R,
and S, known as the QRS complex. The third wave in an
ECG is the T wave. It reflects the electrical activity produced
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Figure 1: Typical series of RR intervals during normal sinus rhythm (a) and during Atrial Fibrillation (b).
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Figure 2: Stylized shape of a physiological single beat, recorded on ECG graph paper. Main relevant points, segments, and waves are
highlighted.

when the ventricles recharge for the next contraction, named
repolarization (see [12] for more details on ECG).

Concerning the ECG detection of AF events, character-
istic findings are the absence of P waves with unorganized
electrical activity in their place and irregular RR intervals due
to irregular conduction of impulses to the ventricles. While
the analysis of P wave is quite complicate, the study of RR
intervals is simpler. Hence, it could be an effective way to
investigate the presence of AF and to detect when a single
event starts and ends. Several examples exist in the literature
(see [13–16]), which are focused on the peculiar variance of
RR intervals during the AF process, and this variance is much
greater than the one during the physiological heartbeat.

Anyway, in many situations, an AF event does not follow
a physiological time slot but comes after other types of
arrythmia. At the same time, in many cases, the irregu-
lar heartbeat does not disappear when the event finishes.
According to these problems, it may be possible to look at
an irregular heartbeat even when the AF event itself has not
already started or has already finished. So, a method based
on detection of changes in the variance of the process can
lead to inaccurate results and can fail as described previously.
Hence, methods which are not based on the analysis of the
process variance are needed, in order to identify suitable
quantities to characterize the different phases, say “pre- AF,”
“AF,” and “post- AF.” To this aim, efforts are usually focused
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on changepoint detection of the spectrum or of the mean
of a time series (see [17–20] among others). In these cases,
the tachogram is considered as a time series (see [21, 22]),
the order of the model is fixed, that is, orders 𝑝, 𝑑, and 𝑞 of
the autoregressive (AR), integrated (I), and moving average
(MA) component, respectively, are previously established,
and the focus is on the evolution of the estimated model
parameters.

In this work, we assume that the tachogram, during an
AF event, is characterized by a specific process. Hence we
propose a different approach: we describe the phases of AF by
means of ARIMAmodels characterized by different orders 𝑝,
𝑑, and 𝑞. The main issue becomes then to point out proper
statistical methods for detecting changes in the order of the
model. To achieve this goal, we firstly carry out a simulation
study to test the new statistical method we propose, then we
analyze data of 8 patients affected by AF. In particular we
have for each patient the tachogram from two hours before
to two hours after an event of AF. Although there are a lot
of readings about the change point detection of time series,
there is a lack of literature if the approachwe justmentioned is
considered.

The paper is organized as follows. In Section 2, we
introduce some elements of time series processes theory
related to ARIMAmodels used for modeling the RR intervals
time series. We present the statistical method developed
for identifying the AF event (Section 2.3), based on the
analysis of multiple test 𝑃-values with an improvement of
the Bonferroni correction, and we test it in a simulation
setting (Section 2.4), in order to assess the performance of the
proposed method. Then in Section 3, we present the results
obtained applying our method to real data (tachograms of
patients affected by AF). Section 4 contains discussion and
conclusions.

All the simulations and the analyses of real data have been
carried out using R statistical software [23].

2. Materials and Methods

In this section, we introduce ARIMA models [24] as a tool
for modeling the RR time series dynamic. Then, we present
the statistical techniques developed for identifying onset and
end of AF events. Moreover, a simulation study is carried out
to test the performance of the new method we propose, and
results of simulations are discussed.

2.1. Autoregressive Integrated Moving Average (ARIMA) Mod-
els. Many empirical time series have no constant mean. Even
so, they exhibit a sort of homogeneity in the sense that a suit-
able affine transformation could have constant mean. Models
which describe such homogeneous nonstationary behavior
can be obtained by supposing some suitable differences of
the process to be stationary. Referring to the framework
and theory treated in [24], we focus on the properties of
the important class of models for which the 𝑑th difference
(∇𝑑𝑧𝑡 = 𝑧𝑡 − 𝑧𝑡−𝑑) is a stationary ARMA process. Then, let us
consider the model

𝜙 (𝐵) ∇
𝑑
𝑧𝑡 = 𝜃 (𝐵) 𝑎𝑡, (1)

where 𝐵 is the backward shift operator,

𝜙 (𝐵) = 1 −

𝑝

∑

𝑗=1

𝜙𝑗𝐵
𝑗
, 𝜃 (𝐵) = 1 −

𝑞

∑

ℎ=1

𝜃ℎ𝐵
ℎ
, (2)

with 𝜙𝑗, 𝑗 = 1, . . . , 𝑝 and 𝜃ℎ, ℎ = 1, . . . , 𝑞 suitable parameters
to be estimated. Generally these estimates are performed
through ML methods [24]. Process (1) is an Autoregres-
sive Integrated Moving Average (ARIMA) process. If the
autoregressive operator 𝜙(𝐵) in (1) is of order 𝑝 and the
moving average operator 𝜃(𝐵) is of order 𝑞, then (1) is an
ARIMA(𝑝, 𝑑, 𝑞) process.

2.2. Model Diagnostic Checking. Suppose to fit model (1)
obtaining ML estimates (𝜙, 𝜃) for the parameters of interest.
We will refer to the quantities

𝑎𝑡 = 𝜃
−1
(𝐵) 𝜙 (𝐵) ∇

𝑑
𝑧𝑡 (3)

as the residuals. As the number of observations increases,
𝑎𝑡 becomes closer to the white noise 𝑎𝑡. Now suppose 𝑝,
𝑑, and 𝑞 were chosen correctly and that we knew the true
parameter values𝜙 and 𝜃.Then, the estimated autocorrelation
𝑟𝑘(𝑎) of the process 𝑎 would be distributed approximately
normally with zero mean (see [25]). Now, in practice, the
parameters 𝑝, 𝑑, and 𝑞 are unknown and only the estimates
(𝜙, 𝜃) are available for calculating 𝑎. Then, autocorrelation
𝑟𝑘(𝑎) of 𝑎 can yield valuable evidence concerning the lack
of fit. An interesting way to analyze the goodness of fit of
the model is then to consider the 𝑟𝑘(𝑎) taken as a whole. Let
us suppose that we have the first 𝐾 autocorrelations 𝑟𝑘(𝑎)
(𝑘 = 1, 2, . . . , 𝐾) from any ARIMA(𝑝, 𝑑, 𝑞) process. Then,
it is possible to show (see [26]) that, if the fitted model is
appropriate, the statistic

𝑄 = 𝑛 (𝑛 + 2)

𝐾

∑

𝑘=1

𝑟
2

𝑘
(𝑎)

(𝑛 − 𝑘)
(4)

is approximately distributed as 𝜒2(𝐾 − 𝑝 − 𝑞), where 𝑛 = 𝑛 −
𝑑, with 𝑛 equal to the number of observations. Therefore, an
approximate test of the hypothesis of model adequacymay be
performed. The statistic 𝑄 is called Ljung-Box statistic.

2.3. A Method to Detect Structural Changes in Time Series.
We now consider a phenomenon that evolves according to
an ARIMA process. We wish to analyse a time series and to
detect when such a phenomenon starts and/or ends. If this
specific phenomenon is characterized by a higher (or lower)
variability with respect to the current situation, then there is a
huge number of methods effective in detecting these changes
in variability. Examples are control charts (see [27]) and
methods based on graphical analysis among others (see [15]).
However, there are a lot of situations in which a phenomenon
is not characterized by amodification of the variability, but by
some changes in the process that generates the observations.
In these cases, methods such those mentioned earlier are
useless and other methodologies have to be considered. For
example, in the literature, there is a huge quantity of methods
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that deal with structural changes in time series concerning
changes of the mean or of the parameters values of the
ARIMA model (see [19, 20] and the references therein).
Nevertheless, we may be interested in dealing with a different
situation. For example, wemay consider a problemwhere the
presence or the absence of a phenomenon is characterized not
in a change of the parameters values of the model, but in a
modification of the process itself. We wish to present here a
method for dealing with this kind of situations.

As we mentioned before, our main goal is to identify the
beginning and the end of a specific phenomenon modeled
by an ARIMA process. This means firstly to identify the
model parameters of the phenomenon under study, that is,
the values of 𝑑, 𝑝, and 𝑞. As we have previously presented,
in the case of a stationary model, the autocorrelation and
partial autocorrelation function will quickly approach zero.
Knowing that the estimated autocorrelation function tends
to follow the behavior of the theoretical autocorrelation
function, failure of this estimated function approaching zero
rapidly might logically suggest that we should treat the
underlying stochastic process as nonstationary in 𝑧𝑡, but
possibly as stationary in ∇𝑑𝑧𝑡. Once identifying one or more
possible values for 𝑑, we move to the choice of 𝑝 and 𝑞.
This may be done considering the specific behaviors of the
autocorrelation and partial autocorrelation functions and
corresponding cut-off lags (see [24] for the details).

To identify the starting and ending times of the phe-
nomenon of interest, we propose the following procedure.
Consider the first𝑁 observations (with𝑁much smaller then
the number 𝑛 of observations) and fit the identified model
on this subsample. Then, the 𝑃-value of the Ljung-Box test
(choosing a value for 𝐾) is recorded. These operations have
to be repeated over the sub-sample from the second to the
𝑁+ 1th observation. Once reaching the last observation, the
procedure ends producing a “time series” of 𝑃-values which
may be used to detect the beginning and the end of the
phenomenon of interest.

The purpose is to test the null hypothesis that the
phenomenon is present against the alternative hypothesis that
the phenomenon is absent.Thismay be formalised as follows:

𝐻0 : 𝑝 = 𝑝 ∧ 𝑑 = 𝑑 ∧ 𝑞 = 𝑞 versus

𝐻1 : 𝑝 ̸= 𝑝 ∨ 𝑑 ̸= 𝑑 ∨ 𝑞 ̸= 𝑞,

(5)

where 𝑝, 𝑑, and 𝑞 are the parameters indicating the order of
the ARIMA process related to the phenomenon under study.
In order to build the critical region for the test (5), the first
𝑃-values, say𝑀, can be considered, and the rejection region
can be constructed through a multiple test procedure, where
the adjustment for multiplicity is based on the correction
proposed by Simes. So doing, the approximate level of the test
is equal to 𝛼 (see [28] for the detailed work). The decisional
criterion is the following. After the 𝑀 𝑃-values have been
ordered from the minimum (say 𝑝(1)) to the maximum (say
𝑝(𝑀)), the null hypothesis is rejected if for at least one 𝑗 from
1 to𝑀 the following inequality is satisfied:

𝑝(𝑗) ≤
𝑗𝛼

𝑀
. (6)

It can be proved that this procedure provides an approximate
level equal to 𝛼. Furthermore the test results are less conser-
vative than a test implemented using a classical Bonferroni
correction, especially in this situation, where single tests are
highly correlated.

The method to detect start and/or end of a specific
phenomenon follows these steps:

(1) implement the test in (5)-(6) over the first𝑀𝑃-values,
and at the𝑁 +𝑀 − 1th observation, the output is set
to 0 if there is statistical evidence to reject the null
hypothesis, while it is set at 1 otherwise;

(2) repeat step (1) after a shift of one observation until the
last one is reached.

Once the procedure ends, an output of 0


s and 1


s is
available. Also, 1 indicates the presence of the phenomenon,
0 the absence. Starting and end points can be then detected
through this last 0/1 time series.

2.4. Simulation Study. In order to validate the proposed
method, different situations have been tested and analysed.
The main goals are the following:

(i) to point out settings where our method performs at
best,

(ii) to assess the robustness of the method varying 𝛼 and
𝑁,

(iii) to make a sensitivity analysis over the parameter𝐾 of
the Ljung-Box statistics.

The method presented in this paper is a technique to
detect modification in the process underlying the observed
phenomenon. We chose an ARIMA (0, 1, 1) as Reference
Process (RP), considering a sequence of 7000 realizations
from a process, say 𝑃pre, then 40000 realizations from the
reference model, and finally 7000 realizations from another
different process, say 𝑃post. For all the simulations, the value
of 𝑀 was fixed equal to 100. In this particular case, test (5)
becomes.

𝐻0 : 𝑝 = 0 ∧ 𝑑 = 1 ∧ 𝑞 = 1 versus𝐻1 : 𝑝 ̸= 0 ∨ 𝑑 ̸= 1 ∨ 𝑞 ̸= 1.

(7)

We tested it in different situations; in the first, second, and
third simulations, 𝑃pre and 𝑃post are very different from
RP, whereas in the fourth one they are quite similar. In
particular we set 𝑃pre ≡ 𝑃post, and we considered an ARIMA
(4, 1, 2), ARIMA (5, 1, 3), ARIMA (2, 2, 0) and ARIMA (1, 1, 1),
respectively.

The parameters values for these simulations have been
chosen randomly, under the constraint that the models were
admissible. Their values are reported in Table 1. Figures 3(a),
3(b), and 3(c), obtained fixing 𝐾 = 5, 𝑁 = 600, and 𝛼 =

0.01, show that our method works very well in the first 3
settings, where the correspondence among the real starting
and end points (red lines) and the 0/1 sequence is visible. In
the fourth simulation, instead, themethod is less able to catch
the phenomenon under study, as it is shown in Figure 3(d).
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Figure 3: Analysis of the output of themethod changing the process underlying the observations before and after the phenomenon. Red lines
represent the start and the end of the phenomenon.

Table 1: Parameters values used in the simulations. The first four
models refer to 𝑃pre and 𝑃post, while the fifth model refers to RP.

ARIMA 𝜙1 𝜙2 𝜙3 𝜙4 𝜙5 𝜃1 𝜃2 𝜃3

(4,1,2) 0.52 0.35 −0.04 0.11 / −0.07 0.12 /
(5,1,3) −0.66 −0.3 0.24 0.01 0.14 −0.08 −0.19 −0.29
(2,2,0) −0.08 −0.25 / / / / / /
(1,1,1) −0.15 / / / / 0.12 / /
(0,1,1) / / / / / 0.3 / /

Table 2: Empirical type-I error probability varying 𝑁 and the
nominal value 𝛼.

𝑁 = 400 𝑁 = 600 𝑁 = 800

𝛼 = 0.01 0.004547 0.005300 0.004969
𝛼 = 0.05 0.025889 0.028244 0.027377
𝛼 = 0.1 0.051221 0.055458 0.058005

In the following, we focus on the case related to
Figure 3(b), where the generating process is an ARIMA
(0, 1, 1), anticipated and followed by a process of observations
generated from an ARIMA (5, 1, 3). Cases (3a) and (3c) give
similar results. We analyse how the power of the test in (7) is
affected by 𝛼 and𝑁. For this analysis, we considered 𝐾 = 5.
If 𝛼 was the real probability of the type-I error, the power
would increase as𝛼 grows.Wedonot have the real probability
of the type-I-error, but only an upper estimate. Nevertheless,
we would observe the power growing as 𝛼 increases. Another
parameter that affects the power of the test is 𝑁. Again,

Table 3: Empirical power varying𝑁 and the nominal value 𝛼.

𝑁 = 400 𝑁 = 600 𝑁 = 800

𝛼 = 0.01 0.676305 0.873391 0.960046
𝛼 = 0.05 0.828791 0.945367 0.987309
𝛼 = 0.1 0.880587 0.967746 0.993346

the bigger𝑁 is, the greater the power of Ljung-Box test is. So,
also the power of the global test should be raised. In Figure 4,
the output of the method varying 𝛼 (along the rows) and
𝑁 (along the columns) is shown. It can be inferred that the
behavior of the method is consistent, since the number of
errors before and after the phenomenon decreases as 𝛼 and
𝑁 increase, as we expected.

We consider, for different values of 𝛼 and𝑁, the empirical
type-I error probability and the empirical power computed
over 40 simulations. Table 2 shows that this test is conser-
vative, but the empirical type-I error probability is not so
far from the nominal level of the test. Moreover, the results
presented in Table 3 suggest that, once 𝛼 is fixed, it is possible
to increase the power of the test tuning 𝑁 in a suitable way.
Then, one could think to set a very high value of 𝑁 in order
to obtain a satisfactory power. However, this is not costless.
In fact, the higher the value of 𝑁 is the greater the delay in
starting and ending points detection is.

Hence, the choice of the parameter 𝑁 is regulated by
a tradeoff between the desired power of the test and the
delay in the detection of the phenomenon. To conclude
the simulations’ analysis, we would like to infer about
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Figure 4: Output of the method varying 𝛼 (along the rows) and𝑁 (along the columns).
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Figure 5: Output of the method varying 𝐾.

the parameter 𝐾 of the Ljung-Box statistics in order to
understand if the method is affected by a modification of its
value. Let consider the situation where observations before
and after the phenomenon were generated by an ARIMA
(5, 1, 3), and fix 𝛼 = 0.01 and𝑁 = 600. In Figure 5, the output
of the method for different values of𝐾 (equal to 5, 10, 15, and
20, resp.) is shown. Although the outputs are different, no
pattern of dependence on𝐾 appears.

3. Results and Discussion

Let us consider now an application of themethod proposed in
this paper to real data. Specifically we analysed RR intervals
of 8 patients during Atrial Fibrillation (AF).

Data have been supplied to authors by Professor Luca
Mainardi responsible of the Biomedical Signal Processing
Laboratory of the Department of Bioengineering, Politecnico
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Figure 6: Tachogram of two patients. For patient 1 (a), AF event comes after and is followed by normal sinus rhythm, characterized by low
heart rate variability. Patient 4 (b) presents a high rate variability even before and after the AF event.

Table 4: Duration and number of beats of the event of AF.

Pat. no. Duration AF (min.) Beats
1 521 41085
2 613 43178
3 433 52937
4 13 1066
5 56 4326
6 442 52661
7 319 28229
8 229 17989

di Milano. Before patients underwent an ablation interven-
tion, a seven-day Holter trace had been recorded using a
one-channel Del Mar Reynolds Holter recorder, with sample
frequency equal to 128Hz. This protocol of data collection is
in accordance with the Declaration of Helsinki for research
with human beings. The data available are the RR intervals
of such patients from two hours before to two hours after
an event of AF. The duration of the phenomenon is different
between patients and it is displayed in Table 4.

We want to detect the event of AF from the study
of tachogram series. In some cases, the variability of RR
intervals during AF is very high with respect to the physi-
ological heartbeat. However, this remarkable change in the
variability of the phenomenon could be absent, as highlighted
in Figure 6.This is an example where the traditional methods
based on detection of changes in the process variability are
ineffective in detecting AF starting point.

The first step consists in the identification of a model
for the RR intervals during AF. We used the autocorrelation
and partial autocorrelation functions to determine a suit-
able model. As it is shown in Figure 7, the autocorrelation

function of ∇𝑧𝑡 is truncated after the lag number one, while
that of ∇2𝑧𝑡 is zero after the lag two. This behavior is typical
of an ARIMA (0, 1, 1) and (0, 2, 2).Then, we set RP ≡ ARIMA
(0, 1, 1). The same analysis done on the RR time series of pre-
and post-AF does not lead to the same conclusions. Indeed
autocorrelation and partial autocorrelation functions do not
highlight these characteristics. Hence, the assumption that
during Atrial Fibrillation the stochastic process generating
the RR time series is different from the one that models other
phases seems reasonable. Then, we would like to analyse the
performance of themethod in detecting start and end of such
a phenomenon.

In order to achieve this goal, let us fix the following values
for parameters: 𝐾 = 5, 𝛼 = 0.001, and 𝑀 = 100. Since
in Section 2.4 the parameter 𝑁 has been highlighted as the
most important in affecting the performance of the proposed
method, we analyse the output as 𝑁 varies. In Figure 8, the
outputs of the method applied to patients 1 and 5 are shown.
We present here only the output for two patients, because the
results for the other patients are quite similar.

Some considerations can be extrapolated observing
Figure 8. First, we may point out to the behavior of the
method as𝑁 increases. It can be seen that this behavior is in
agreement with conclusions drawn from simulations. Then,
we may analyse the delay in the detection of start and end of
AF and the number of errors.

Dealing with the delay, since each observation is the time
between an R peak and the following one, we can evaluate the
time of the delay in the detection of the event of AF and not
only the number of observations. As it is shown in Table 5, the
delay in detecting the phenomenon is negligible if compared
with the duration of AF, except for patient 4 affected by a very
short AF event. Moreover, in some cases, the method is able
to detect the AF event in advance.
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Figure 7: Patient 1: autocorrelation (a) and partial autocorrelation (b) functions for the time series of RR intervals, of the differences of order
one and of the differences of order two.
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Figure 8: Output of the method for the patients 1 (a) and 5 (b) varying𝑁.

Table 5: Delays of the method’s output.

(a) Delays detecting the start of AF

Pat. num. 𝑁 = 400 (min.) 𝑁 = 600 (min.) 𝑁 = 800 (min.)
1 4.3 4.9 5.4
2 4.5 6.1 7.3
3 −2.4 0.2 −4.6
4 3.9 5.9 8.4
5 −1.4 2.7 5.6
6 −2.2 1 2.8
7 16.6 16.8 29.1
8 4.8 6.1 7.5

(b) Delays detecting the end of AF

Pat. num. 𝑁 = 400 (min.) 𝑁 = 600 (min.) 𝑁 = 800 (min.)
1 3.2 4.6 6
2 5.6 8.5 12
3 6.8 7.2 8.9
4 7.3 9.8 10.1
5 5.1 5 3.3
6 −3.3 −6.9 −6.3
7 3.2 5.3 7
8 3.3 5.3 7.2

Another important point we want to focus on is the
number of errors made by the proposed method. From a
first insight of Figure 8, we can observe that the most part
of the errors seems to involve a few number of consecutive
observations.

Table 6: Number of errors before (bef. corr.) and after (aft. corr.) the
introduction of the artificial time delay (we fixed𝑁 = 600).

Pat.
no.

Type-I
errors

(bef. corr.)

Type-I
errors

(aft. corr.)

Type-II
errors

(bef. corr.)

Type-II
errors

(after corr.)

Duration
AF

(min.)
1 0 0 4 1 521
2 1 0 0 0 613
3 16 6 1 1 433
4 0 0 4 4 13
5 1 0 2 0 56
6 23 5 3 1 442
7 8 1 8 3 319
8 0 0 10 6 229
Total 49 12 32 16

Then, a correction can be implemented in order to reduce
the number of errors (in this case, the whole time interval
detected in a wrong way is considered as an error). We
introduced an artificial time delay: after the first instant of
output switching from zero to one (or vice versa), we wait for
a given time to declare the AF event started (or ended); only
if after this time the method is still indicating the presence
(or absence) of the phenomenon, we can detect it. The
introduction of this correction and its duration are problem
driven. Since AF is not a dead risk pathology, the problem
concerning the number of errors is more important than the
detection delay, and so we chose to insert an artificial time
delay of 3minutes. Doing that, we decreased considerably the
number of errors, as shown in Table 6.
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4. Conclusions

In this paper, we proposed a statistical tool to identify starting
and ending points of an event of AF (a common cardiac
arrhythmia characterized by an irregular heartbeat) starting
from the analysis of the RR intervals series. We presented a
method based on time series analysis, and we performed a
statistical test to automatically recognize the phases “pre-AF,”
“AF,” and “post AF,” especially in those situations where the
AF event does not follow a physiological time slot and/or the
irregular heartbeat is still present when the event finishes.
The novelty of this work consists in looking at a structural
change of the order (𝑝, 𝑑, or 𝑞) of ARIMAmodel fitted on the
RR time series for the AF event with respect to the “pre-AF”
and “post-AF” phases. We tested the proposed method on
different simulated data, taking a referenceARIMAmodel for
the AF phase, and varying the model of “pre-AF” and “post-
AF” phases.

Then, we applied the method to real RR intervals data.
The results we obtained confirmed the goodness of the
proposed method, which seems to be able to identify starting
and ending points of an event of AF even when AF follows
or comes before irregular heartbeat time slots. This is the
innovative feature of our method, because the large variety of
techniques that deal with the detection of AF do not take into
account this particular situation. Since our method analyzes
structural changes of the order of the ARIMA model, it can
detect AF episodes also in those particular cases when before
and/or after the AF event the heartbeat does not follow a
normal sinus rhythm, characterized by a significative lower
variability. This fact confirms that this methodology may
become a helpful tool for the online and/or offline detection
of AF. In particular this method could be useful in an offline
control of Atrial Fibrillation events, such as a Holter monitor
that is a prolonged type of ECG tracing. Since the traditional
detection of AF through the analysis of the P wave might be
long and hard and, in general, it is simpler to extract the RR
intervals from aHolter, the proposedmethod could represent
an automatic diagnostic tool that simplifies the detection of
AF events.

Acknowledgments

The authors wish to thank Professor Luca Mainardi respon-
sible of the Biomedical Signal Processing Laboratory of
the Department of Bioengineering, Politecnico di Milano,
for supplying the data and Dr. Valeria Vitelli for technical
support in the statistical analysis.

References

[1] M. Malik and A. J. Camm, Eds., Heart Rate Variability, Futura
Publishing Company, Armonk, NY, USA, 1995.

[2] M. Malik, “Heart rate variability: standards of measurement,
physiological interpretation, and clinical use,” Circulation, vol.
93, no. 5, pp. 1043–1065, 1996.

[3] N. Chattipakorn, T. Incharoen, N. Kanlop, and S. Chattipakorn,
“Heart rate variability in myocardial infarction and heart
failure,” International Journal of Cardiology, vol. 120, no. 3, pp.
289–296, 2007.

[4] T. Kinoshita, T. Asai, T. Ishigaki, T. Suzuki, A. Kambara, and
K. Matsubayashi, “Preoperative heart rate variability predicts
atrial fibrillation after coronary bypass grafting,” The Annals of
Thoracic Surgery, vol. 91, no. 4, pp. 1176–1182, 2011.

[5] L. Mourot, N. Tordi, M. Bouhaddi, D. Teffaha, C. Monpere,
and J. Regnard, “Heart rate variability to assess ventilatory
thresholds: reliable in cardiac disease?” European Journal of
Preventive Cardiology, vol. 19, pp. 1272–1280, 2012.

[6] B. Xhyheri, O. Manfrini, M. Mazzolini, C. Pizzi, and R. Bugia-
rdini, “Heart rate variability today,” Progress in Cardiovascular
Diseases, vol. 55, pp. 321–331, 2012.

[7] S. Akselrod, D. Gordon, F. A. Ubel, D. C. Shannon, A. C.
Berger, and R. J. Cohen, “Power spectrum analysis of heart rate
fluctuation: a quantitative probe of beat-to-beat cardiovascular
control,” Science, vol. 213, no. 4504, pp. 220–222, 1981.

[8] G. Baselli, D. Bolis, S. Cerutti, and C. Freschi, “Autoregres-
sive modeling and power spectral estimate of R-R interval
time series in arrhythmic patients,” Computers and Biomedical
Research, vol. 18, no. 6, pp. 510–530, 1985.

[9] R. G. Mark and G. B. Moody, “ECG arrhythmia analysis: design
and evaluation strategies,” inAdvances in Processing and Pattern
Analysis of Biological Signals, I. Gath and G. F. Inbar, Eds.,
chapter 18, pp. 251–272, Plenum Press, New York, NY, USA,
1996.

[10] S. S. Chugh, J. L. Blackshear, W. K. Shen, S. C. Hammill, and
B. J. Gersh, “Epidemiology and natural history of atrial fibril-
lation: clinical implications,” Journal of the American College of
Cardiology, vol. 37, no. 2, pp. 371–378, 2001.

[11] A. Houghton and D. Gray,Making Sense of the ECG, 1997.
[12] A. E. Lindsay, “ECG learning centre,” 2006, http://ecg.utah

.edu/.
[13] B. K. Bootsma, A. J. Hoelsen, J. Strackee, and F. L. Meijler,

“Analysis of R-R intervals in patients with atrial fibrillation at
rest and during exercise,”Circulation, vol. 41, no. 5, pp. 783–794,
1970.

[14] R. Couceiro, P. Carvalho, J. Henriques, M. Antunes, M. Harris,
and J. Habetha, “Detection of Atrial Fibrillation using model-
based ECG analysis,” in Proceedings of the 19th International
Conference on Pattern Recognition (ICPR ’08), December 2008.

[15] L. Mainardi, L. Sornmo, and S. Cerutti, Understanding Atrial
Fibrillation: the Signal Processing Contribution, Morgan and
Claypoll Publishers, 2008.

[16] K. Tateno and L.Glass, “Automatic detection of atrial fibrillation
using the coefficient of variation and density histograms of
RR and ΔRR intervals,”Medical and Biological Engineering and
Computing, vol. 39, no. 6, pp. 664–671, 2001.

[17] A. Boardman, F. S. Schlindwein, A. P. Rocha, and A. Leite, “A
study on the optimum order of autoregressive models for heart
rate variability,” Physiological Measurement, vol. 23, no. 2, pp.
325–336, 2002.

[18] R. A. Davis, D. Huang, and Y. C. You, “Testing for a change in
the parameter values and order in autoregressive models,” The
Annals of Statistics, vol. 23, no. 1, pp. 282–304, 1995.

[19] S. Ling, “Testing for change points in time series models and
limiting theorems for NED sequences,”The Annals of Statistics,
vol. 35, no. 3, pp. 1213–1237, 2007.

[20] D. Picard, “Testing and estimating change-points in time series,”
Advances in Applied Probability,, vol. 17, no. 4, pp. 841–867, 1985.

[21] S. Cerutti, L. T.Mainardi, A. Porta, and A.M. Bianchi, “Analysis
of the dynamics of RR interval series for the detection of Atrial
Fibrillation episodes,” in Proceedings of the 24th AnnualMeeting
on Computers in Cardiology, pp. 77–80, September 1997.

http://ecg.utah.edu/
http://ecg.utah.edu/


Computational and Mathematical Methods in Medicine 11

[22] C. Cammarota and E. Rogora, “Independence and symbolic
independence of nonstationary heartbeat series during atrial
fibrillation,” Physica A, vol. 353, no. 1–4, pp. 323–335, 2005.

[23] RDevelopment Core Team, R: A Language and Environment for
Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2011, http://www.r-project.org/.

[24] P. Diggle, Time Series: A Biostatistical Introduction, Clarendon
Press, Oxford, UK, 1990.

[25] G. E. P. Box and D. A. Pierce, “Distribution of residual auto-
correlations in autoregressive-integrated moving average time
series models,” Journal of the American Statistical Association,
vol. 65, pp. 1509–1526, 1970.

[26] G.M. Ljung andG. E. P. Box, “On ameasure of lack of fit in time
series models,” Biometrika, vol. 65, no. 2, pp. 297–303, 1978.

[27] D. C. Montgomery, Introduction to Statistical Quality Control,
McGraw-Hill, New York, NY, USA, 2005.

[28] R. J. Simes, “An improved bonferroni procedure for multiple
tests of significance,”Biometrika, vol. 73, no. 3, pp. 751–754, 1986.

http://www.r-project.org/

