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Whole exome sequencing in Brugada 
and long QT syndromes revealed novel rare 
and potential pathogenic mutations related 
to the dysfunction of the cardiac sodium 
channel
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Abstract 

Background: Brugada syndrome (Brs) and long QT syndrome (LQTs) are the most observed “inherited primary 
arrhythmia syndromes” and “channelopathies”, which lead to sudden cardiac death.

Methods: Detailed clinical information of Brs and LQTs patients was collected. Genomic DNA samples of peripheral 
blood were conducted for whole-exome sequencing on the Illumina HiSeq 2000 platform. Then, we performed bio-
informatics analysis for 200 genes susceptible to arrhythmias and cardiomyopathies. Protein interaction and transcrip-
tomic co-expression were analyzed using the online website and GTEx database.

Results: All sixteen cases of Brs and six cases of LQTs were enrolled in the current study. Four Brs carried known path-
ogenic or likely pathogenic of single-point mutations, including SCN5A p.R661W, SCN5A p.R965C, and KCNH2 p.R692Q. 
One Brs carried the heterozygous compound mutations of DSG2 p.F531C and SCN5A p.A1374S. Two Brs carried the 
novel heterozygous truncated mutations (MAF < 0.001) of NEBL (p.R882X) and NPPA (p.R107X), respectively. Except for 
the indirect interaction between NEBL and SCN5A, NPPA directly interacts with SCN5A. These gene expressions had 
a specific and significant positive correlation in myocardial tissue, with high degrees of co-expression and synergy. 
Two Brs carried MYH7 p.E1902Q and MYH6 p.R1820Q, which were predicted as "damaging/possibly damaging" and 
"damaging/damaging" by Polyphen and SIFT algorithm. Two LQTs elicited the pathogenic single splicing mutation 
of KCNQ1 (c.922-1G > C). Three LQTs carried a single pathogenic mutation of SCN5A p.R1880H, KCNH2 p.D161N, and 
KCNQ1 p.R243S, respectively. One patient of LQTs carried a frameshift mutation of KCNH2 p. A188Gfs*143.

Conclusions: The truncated mutations of NEBL (p.R882X) and NPPA (p.R107X) may induce Brugada syndrome by 
abnormally affecting cardiac sodium channel. SCN5A (p.R661W, p.R965C and p.A1374S) and KCNH2 (p.R692Q) may 
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Background
Inherited primary arrhythmia syndromes (IPAS), a rare 
disease (prevalence < 1/1,000) also called “channelopa-
thies,” are commonly induced by genetic disorders and 
result in ventricular tachycardia (VT), torsade de pointe 
(TdP) and ventricular fibrillation (VF), consequently 
leading to sudden cardiac death (SCD) and even sudden 
unexplained death [1, 2]. The Brugada syndrome (Brs) 
and long QT syndrome (LQTs) are the most frequently 
observed IPAS in the general population. The prevalence 
of Brs and type-2/3 Brugada pattern electrocardiogram 
(ECG) is 0.5/1,000 and 6.1/1,000 and is reported to be the 
highest in Southeast Asia [3]. According to a study enroll-
ing 44, 596 infants 15 to 25 days old (43, 080 whites) from 
18 maternity hospitals, the prevalence of LQT between 
451 and 470 ms of QTc might be close to 1:2000 [4]. A 
literature search reported that the prevalence of LQTs-
induced sudden infant death syndrome (SIDS) ranged 
from approximately 3.9 to 20.6%, with an average of 12% 
[5]. The poor prognostic factors for mixed populations 
described in the series of Brs and LQTs, including sex 
(men for Brs, type-2 LQTs for female), symptoms, ECG 
characteristics, family history of SCD, genetic mutation, 
and inducibility of ventricular arrhythmia during the car-
diac electrophysiological examination [6, 7].

For drug therapies of Brs, quinidine, blocking  Ito and  IKr 
channels reduces the arrhythmias incidence, including 
arrhythmic storms and multiple shocks, or as an alterna-
tive to an implantable defibrillator (ICD) in children at 
risk of arrhythmias. Additionally, isoproterenol, increas-
ing the  ICaL inflow current, has been used successfully in 
cases of electrical storms [6]. Syncope in patients with 
LQTs is often triggered by periods of high sympathetic 
activity, including stress and exercise, for example, swim-
ming. The type-1 LQTs patients should not be allowed to 
participate in competitive sports, especially swimming, 
or only cautiously with supervision. Type-2 and -3 LQTs 
patients are more susceptible to events during sleep. 
Type-2 LQTs patients are particularly sensitive to star-
tle or sudden noises while sleeping, such as alarm clocks 
and telephones, and thus should avoid unexpected noises 
during sleep. ß blockers are recommended as the first 
line of therapy for all patients with LQTs. Patients with 
type-1 LQTs appear to benefit most from β blockers and 
should be started on β  blockers as the first-line therapy 
[8]. According to the 2017 AHA/ACC/HRS guidelines, 
the ICD is the most important treatment for Brs and 

LQTs [9, 10]. The  left cardiac sympathetic denervation 
should be considered for LQTs patients with β blockers 
therapy  who continue to have syncope, TdP, recurrent 
appropriate ICD shocks despite antiarrhythmic drug 
therapy, or cardiac arrest [8].

Approximately 25 genes associated with Brs have 
been identified, of which eighteen genes are responsi-
ble for encoding ion channel subunits and seven genes 
for encoding regulatory proteins. Mutations on SCN5A 
are the most dominant for Brs and have more than 300 
mutations related to Brs [11]. More than 20 disease-
causing genes have been reported in almost 70% LQTs 
patients, including KCNQ1 (30.1%, type-1 of LQTs), 
KCNH2 (23.2%, type-2 of LQTs)  and SCN5A (5.7%, 
type-3 of LQTs). However, the genetic causes for about 
one-third of LQTs remain unknown [12]. Notably, 
the genotype of SCN5A is a crucial component of the 
scheme for risk stratification of Brs and LQTs. It encodes 
 Nav1.5, a sodium channel protein, wherein type-1 LQTs 
with mutations affecting the transmembrane domain or 
C-loop and type-2 and -3 LQTs with missense mutations 
on the S5-pore-S6 region have a considerably higher risk 
for cardiac events. Brs with pore-SCN5A mutation has 
a higher event risk than SCN5A-negative variants [1]. 
Based on these researches, the pathogenic genotypes of 
IPAS, for example, the Brs and LQTs are tightly associ-
ated with the risk of malignant cardiac events, espe-
cially ventricular arrhythmia and SCD. In this study, we 
enrolled twenty-two unrelated cases of Brs and LQTs. 
The potential pathogenic mutations carried by these 
patients will be identified by Whole Exome Sequencing 
(WES) to analyze the correlations among pathogenic 
mutations, clinical phenotypes and their risks. Interest-
ingly, in these cases, we found that some common patho-
genic genetic mutations may be related to Brs and LQTs. 
At the same time, we also first found and speculated that 
truncated NEBL and NPPA mutations might lead to Brs 
by aberrantly affecting the function of the cardiac sodium 
channels.

Methods
Study population and diagnostic criteria
Twenty-two cases of Brs and LQTs were enrolled from 
June 2015 to June 2017. Detailed clinical information was 
collected. The clinical information included family his-
tory, age of presentation, initial symptoms of VT, physi-
cal examination, ECGs, and monitoring of ICD based on 

cause Brugada syndrome, while SCN5A (p.R1880H), KCNQ1 (c.922-1G > C and p.R243S) and KCNH2 (p.D161N and 
p.A188Gfs*143) may lead to long QT syndrome.
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their informed consent. The clinical diagnosis of Brs was 
based on the presence of typical type I Brugada pattern 
on the ECGs, characterized by a coved ST-segment and 
J-point elevation ≥ 0.2  mV in the right precordial leads 
[13]. The ECG’s QTc (corrected for heart rate) can be 
calculated (QTc = QT interval + square root of the RR 
interval). The QTc interval helps us diagnose LQT. A QTc 
is prolonged if exceeding 0.47 s in women and 0.45 s in 
men [14, 15]. According to the Schwartz score, a definite 
LQTS is defined by an LQTS score ≥ 3.5 points [16].

Ethics approval
This study was approved by the Guangdong Medical 
Institutional Review Board and Medical Ethics Commit-
tees [No. GDREC2016001H (R1)]. With the consent of 
the ethics committee, we followed up with the patients 
under the condition of informed consent and obtained 
blood samples for genetic analysis.

Whole exome sequencing
Peripheral bloods from the patients were extracted for 
WES. Genomic DNA samples were isolated from periph-
eral blood using a standard DNA extraction protocol. 
The isolated genomic DNA was then fragmented into 
150-200  bp and subjected to DNA library preparation 
using established Illumina paired-end protocols. Adap-
tor-ligated libraries were amplified via PCR. A portion of 
each library was used to create an equimolar pool. Each 
pool was amplified to enrich targets sequenced by the 
Agilent SureSelectXT Target Enrichment System (Agi-
lent Technologies Inc., Santa Clara, CA, USA). According 
to the manufacturer’s protocol, whole-exome capture was 
performed with the Agilent SureSelectXT Human All 
Exon 50  Mb Kit (Agilent Technologies Inc.). According 
to the manufacturer’s instructions, the exome-enriched 
libraries were sequenced with the Illumina Hiseq 2000 
platform (Illumina, San Diego, CA, USA), and 100  bp 
paired-end sequencing reads were generated. Each sam-
ple was sequenced per lane to obtain an average theoreti-
cal depth of 100 × [17, 18].

Read mapping, variant detection, and functional 
annotation
After WES, raw reads were collected for quality con-
trol, in which low-quality reads were filtered, and 3′/5′ 
adapters were trimmed using the Trim Galore program 
(version 0.4.4). Clean reads were aligned to the human 
reference genome (University of California Santa Cruz, 
UCSC build hg19) using the Burrows-Wheeler Aligner 
(BWA, version: 0.7.17-r1188) program. The quality scores 
were recalibrated, and reads were realigned to the refer-
ence genome using the Genome Analysis Toolkit (GATK, 
version: 3.5-0-g36282e4) software package. Following the 

exclusion of duplicate reads, insertion-deletions (InDels) 
and single-nucleotide polymorphisms (SNPs) were called 
using the GATK or Sequence Alignment/Map tools 
(SAM tools, Version: 1.3.1). The quality value of variants 
detected by GATK was 99 (the highest value), and the 
variant abundance was more than 30% [17, 18].

Pathogenic risk classification
The SNPs and Indels were annotated using a pipeline, 
in which all insertion and deletion variants occurring at 
coding regions were considered damaging, and nonsyn-
onymous SNPs were predicted by SIFT (http:// sift. jcvi. 
org/ www/) and PolyPhen-2 (Polymorphism Phenotyp-
ing v2, http:// genet ics. bwh. harva rd. edu/ pph2/) [19]. 
Subsequently, the common risk genes associated with 
cardiomyopathies and arrhythmias, as reported in our 
previous research [18, 20], were detected in the patients. 
These variants were screened with the following filtering 
criteria: (1) same variants in the WES data; (2) missense, 
nonsense, insertion and deletion variants; (3) SNPs with 
minor allele frequency, not ≥ 0.01 according to the SNP 
database of National Center; excluded variants with allele 
frequency in 1000genomes (2015 version) higher than 
1%, or higher than 5% in house frequency. The potential 
risk variants were classified as “pathogenic (P)”, “likely 
pathogenic (LP)”, “uncertain significance (VUS)”, “likely 
benign (LB)” or “benign (B)” by the Clinvar database [17, 
18] and InterVar tool [21] following the 2015 ACMG/
ACP guidelines [22]. The detailed ACMG classification 
was shown in our previous research [18].

Protein interaction analysis
Using the online website https:// string- db. org/, the target 
gene was input for protein–protein interaction analysis. 
The combined score between proteins with interaction 
records was scored by combining other database records, 
experimental verification, gene fusion, co-localization, 
co-expression and homology analysis. It is currently the 
mainstream and high-reliability database of protein-
interaction information.

Transcriptomic co‑expression analysis
In the Genotype-Tissue Expression (GTEx) database 
[23], the TPM matrix of ventricular tissue, spleen, whole 
blood, ovary, lung and liver were used for co-expression 
analysis. The GTEx version was GTEx analysis V8 (dbgap 
access phs000424.v8.p2). The "Cor" function in the R lan-
guage was used to calculate the gene correlation matrix. 
The method parameter used Spearman correlation, in 
which the correlation threshold was above 0.7, indicating 
a very close relationship; 0.4–0.7 indicated a close rela-
tionship; 0.2–0.4 indicated a general relationship.

http://sift.jcvi.org/www/
http://sift.jcvi.org/www/
http://genetics.bwh.harvard.edu/pph2/
https://string-db.org/
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Results
Genotype–phenotype relationship
In all, sixteen cases of Brs (median onset-age, 46-year-
old; IQR 21.5-year-old; 22 to 65-year-old) and six cases 
of LQTs (median onset-age, 15-year-old; IQR 18-year-
old; 6 to 55-year-old) were enrolled in the current study 
(Table 1). The echocardiograms (ECGs) of these patients 
showed normal cardiac structure. VT or VF was detected 
in 19 cases. Two cases of Brs were induced VF by electro-
physiological examination (EPS). These patients suffered 
from clinical symptoms, including dizziness, syncope, 
palpitation, amaurosis, and chest distress. Nineteen cases 
were implanted with ICD, while three Brs refused ICD 
implantation. Two cases of Brs and one case of LQTs had 

a familial history of SCD. One case of Brs was the domi-
nant familial inheritance because three siblings had Bru-
gada-like ECGs without clinical symptoms.

The WES detected some known and pathogenic/
likely-pathogenic (P/LP) mutations. Four cases of Brs 
demonstrated single mutations with known or likely 
pathogenicity, including p.A1374S (Clinic/ACMG = LP/
VUS, No.5, VT/VF, ICD therapy), p.R661W (Clinic/
ACMG = P/VUS, No.8, VF, ICD therapy), and p.R965C 
(Clinic/ACMG = LP/VUS, No.10, VF induced by 
EPS, ICD therapy) on SCN5A, and p.R692Q (Clinic/
ACMG = LP/VUS, No.18, ICD therapy) on KCNH2. One 
case of Brs carried the compound heterozygous and path-
ogenic mutations of DSG2 p.F531C (Clinic/ACMG = LP/

Table 1 The clinical characteristics of patients with Brugada syndrome and long QT syndrome

DS diseases, M male, F female, AF atrial fibrillation, VT ventricular tachycardia, VF ventricular fibrillation, Tdp torsades de pointes, EPS electrophysiology study, SCD 
sudden cardiac death, ICD Implantable Cardioverter-Defibrillator,- loss of follow-up or lack of clinical data due to refuse of hospitalization

No DS Sex Age (years) Onset 
of age 
(years)

Ventricular 
arrhythmia

Symptoms ICD therapy Drugs Familial history

1 Brs F 40 38 VT Dizzy, syncope refused Beta blocker No

2 LQTs F 61 55 VF Syncope ICD Beta blocker No

3 Brs M 72 65 VT Syncope refused Beta blocker Brother (SCD, 31-year-
old)

4 Brs M 48 47 VF Amaurosis, syncope ICD No No

5 Brs M 46 45 VT, VF Dizzy, amaurosis, 
syncope

ICD No No

6 Brs M 60 57 VT, VF Syncope ICD Beta blocker, mexi-
letine

No

7 Brs M 57 47 No Syncope refused No Three brothers (Brs)

8 Brs M 41 13 VF Syncope ICD No No

9 Brs M 49 47 VT Palpitation, chest 
distress

ICD No No

10 Brs M 63 53 EPS induced VF Dizzy, amaurosis, ICD No No

11 Brs M 22 22 VF Syncope ICD No No

12 Brs F 51 51 VF Syncope when wake 
up

ICD No No

13 LQTs F 13 6 Tdp, VF Sleeping syncope ICD Mexiletine No

14 LQTs F 19 16 VF Palpitation, amauro-
sis, Syncope

ICD Beta blocker, potas-
sium magnesium 
aspartate

No

15 Brs M 41 34 VF Syncope ICD Beta blocker No

16 Brs M 54 53 EPS induced VF Amaurosis, palpita-
tion

ICD No No

17 Brs M 32 31 VT, VF Syncope, convulsion ICD Beta blocker, potas-
sium

No

18 Brs M 33 23 No No ICD No No

19 LQTs F 35 30 VF Syncope ICD Beta blocker No

20 Brs M 41 30 VF, AF Amaurosis, syncope ICD No No

21 LQTs F 16 14 VF Amaurosis, syncope ICD Beta blocker, pacing 
rate of 95 bpm

No

22 LQTs F 16 12 VF Syncope, chest 
distress

ICD No Mother (SCD, 33-year-
old)
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LP) and SCN5A p.A1374S (Clinic/ACMG = LP/VUS, 
No.11, VF, ICD therapy). Two cases of LQTs elicited the 
pathogenic and single splicing mutation of KCNQ1 c.922-
1G > C (Clinic/ACMG = P/P, No.19, VF, ICD therapy). 
Three cases of LQTs carried a single pathogenic mutation 
of SCN5A p.R1880H (Clinic/ACMG = P/VUS, No.13, 
TdP and VF, ICD therapy), KCNH2 p.D161N (Clinic/
ACMG = P/LP, No.21, VF, ICD therapy), and KCNQ1 
p.R243S (Clinic/ACMG = P/LP, No.22, familial history of 
SCD, VF, ICD therapy), respectively (Table 2).

We also found several novel mutations potentially asso-
ciated with Brs and LQTs. In two Brs patients, we first 
found the heterozygous p.R882X (Clinic/ACMG = VUS/
VUS, No.1, VT, refused ICD therapy) of the NEBL 
gene (at the rs151012132 locus) and p.R107X (Clinic/
ACMG = -/LP, No.3, VT, family history of SCD, refused 
ICD therapy) of the NPPA gene (Table  3), respectively, 
as truncating mutations, which were absent from or 
found with MAF (minor allele frequency) < 0.001 in the 
1000genomes population. NEBL p.R882X may induce the 
loss of domains of partial linker and SH3 in NEBL pro-
tein (Fig. 1A, B). NPPA p.R107X only expressed the pro-
peptide (Fig. 1C) but lost the effective structure of atrial 
natriuretic peptide (ANP).

The variants of MYH7 (p.E1902Q, rs187073962, Clinic/
ACMG = -/VUS, No.17, VT/VF, ICD therapy) and 
MYH6 (p.R1820Q, rs371222772, Clinic/ACMG = -/VUS, 
No.15, VF, ICD therapy), predicted as “damaging/pos-
sibly damaging” and “damaging/damaging” by Polyphen 
and SIFT algorithms, were demonstrated in patients of 
Brs. A patient of LQTs carried a frameshift mutation of 
KCNH2 p.A188Gfs*143 (Clinic/ACMG = -/LP, No.13, 
TdP and VF, ICD therapy), which did not exist in the 
1000genomes population.

Literature summary of NEBL and SCN5A interaction
According to previous studies, abnormal desmosome 
genetic expressions, including desmocollin-2 (DSC2), 
desmoglein-2 (DSG2), plakophilin-2 (PKP2), desmo-
plakin (DSP), plakoglobin (JUP) and desmin (DES) par-
ticipate in the pathogenic mechanism of arrhythmogenic 
cardiomyopathy (ACM) [17, 18, 20, 24–27]. Interestingly, 
loss-of-function of SCN5A mutations induced complex 
arrhythmia, including Brs, atrial fibrillation (AF), atrial 
standstill, VT and sick sinus syndrome [28]. In this study, 
we first discovered some interesting interactions among 
desmosome proteins and cardiac sodium channels in 
cardiomyocytes, including DSG2 and  Nav1.5 (α  subunit 
of the sodium channel, encoded by SCN5A), PKP2 and 
 Nav1.5, DES and  Nav1.5, NEBL and DES in the cardiac 
desmosomes, through literature research using “NEBL 
and SCN5A (or  Nav1.5, or sodium channel), nebulette 
and SCN5A (or  Nav1.5, or sodium channel), each protein 

of desmosomes (including DSG2, DSC2, PKP2 and DSP) 
and NEBL (or nebulette), each protein of desmosomes 
(including DSG2, DSC2, PKP2 and DSP) and SCN5A (or 
 Nav1.5, or sodium channel), NEBL (or nebulette) and 
Brugada syndrome, each protein of desmosomes (includ-
ing DSG2, DSC2, PKP2 and DSP) and Brugada syn-
drome” in the NCBI PubMed database. We summarized 
these literatures related to NEBL, desmosome proteins 
and  Nav1.5 as follows (shown in Fig. 2A, B).

NEBL encodes a nebulin-like protein expressed in car-
diac muscle. This protein binds to actin, interacting with 
thin filaments and Z-line-associated proteins in striated 
muscle and cardiac myofibril assembly. NEBL plays a vital 
role in the dynamics of the DES-NEBL-actin complex in 
cardiac myocytes and maintains the relaxation–contrac-
tion cycles of the heart. The NEBL exhibits high-affinity 
interaction and synergic action with DES filaments and 
is a direct linker between actin and DES. The pathogenic 
mutations of NEBL will induce dilated cardiomyopathy, 
hypertrophic cardiomyopathy, left ventricular non-com-
paction cardiomyopathy, and endocardial fibroelastosis 
[24–27].

Additionally, the pathogenic mutants E245D, T453I, 
and knockout of DES increase binding affinity for NEBL, 
delay filament assembly kinetics, and cause significant 
attenuation and disruption of cardiac actin-NEBL- 
DES-Z lines filament network as dynamic DES assembly 
[29]. The pathogenic mutations of DES can cause severe 
impairment of filament formation and induce ACM, 
consequently complicating rhythm disorder, conduction 
disease, and heart failure [30]. Therefore, the underlying 
mechanism of NEBL-inducing cardiomyopathies may 
be comparable to DES. According to previous studies, 
some cases of ACM overlap the phenotype of Brs [31, 
32]. Like DES, PKP2 is one of the critical components in 
desmosomes of the intercalated disk. It is necessary to 
maintain gap junction integrity and formation through 
the DES-DSP-PKP2 complex in desmosomes. The lost 
expression of PKP2 decreases and disrupts the expres-
sion and trafficking of the sodium channel  (Nav1.5) at 
the intercalated disc, which can degrade cardiac sodium 
current and subsequently lead to overlapped phenotypes 
of ACM and Brs [33–36]. Based on these evidences, we 
proposed that the mutation of NEBL might theoretically 
associate with Brs through the interaction of abnormal 
NEBL protein with the sodium channel, which has not 
been demonstrated yet.

Literature summary of NPPA and SCN5A interaction
We also first discovered obvious interactions between 
natriuretic peptide precursor A (NPPA) and  Nav1.5 
through current summating research from the NCBI 
PubMed database using “NPPA and SCN5A (or  Nav1.5, 
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or sodium channel), natriuretic peptide precursor A 
and SCN5A (or  Nav1.5, or sodium channel), ANP and 
SCN5A (or  Nav1.5, or sodium channel), Brugada syn-
drome and NPPA (or ANP, or natriuretic peptide pre-
cursor A)”. The literature summary related to NPPA and 
 Nav1.5 was as follows (shown in Fig. 2A, B).

NPPA encodes ANP, expressed in the embryo’s atrial 
and ventricular myocardium. NPPA is also expressed 
in the adult heart but is downregulated in the ventri-
cles around birth to become restricted to the atria 
and the ventricular conduction system. In a previous 
study, for atrial myocyte of transgenic mice carrying a 
frameshift mutation of NPPA, the expression, currents 
 (INa and  ICaL) and action potential duration of cardiac 
sodium  (Nav1.5) and L type calcium  (Cav1.2/Cav1.3) 
channels were significantly reduced. In contrast, the 
rectifier potassium channel current  (IKs) markedly 
increased compared to the wild type of NPPA. The 
malignant changes induced by the frameshift NPPA 
mutation create an atrial substrate of recurrent AF. It 
is worth noting that ANP is expressed in the atrium 
and the ventricle. Especially, ANP expression is more 
significantly re-induced in the ventricles in response to 

Fig. 1 The changes in amino acids of NEBL and NPPA proteins induced by the truncated mutations

Fig. 2 The interactions among NEBL, NPPA and SCN5A associated 
with Brugada syndrome. The desmosome proteins of cardiomyocytes 
include desmoglein-2 (DSG2), desmocollin-2 (DSC2), plakophilin-2 
(PKP2), desmoplakin (DSP), desmin (DES). SCN5A encoded  Nav1.5 
protein, as a subunit of the cardiac sodium channel. Ankyrin-G (AnkG) 
promotes the  Nav1.5 anchoring and localizing to the cell membrane. 
Cav1.2 and Cav1.3 are the subunits of the L-type calcium channel. 
According to previous research, the arrows illustrate that DSG2, 
PKP2, DSP, and DES dysfunction would abnormally regulate sodium 
channel function  (Nav1.5). NEBL, nebulin-like protein. NPPA, natriuretic 
peptide precursor A
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pathological cardiac stress, such as cardiac hypertrophy 
or myocardial infarction [37]. There were also obvious 
interactions among NPPA,  Nav1.5 and CaV1.2/CaV1.3 
 (ICaL). The truncated NPPA may induce Brs through the 
impact on the function of the sodium channel.

NEBL and NPPA interact and co‑expressed with SCN5A
The genes of cardiac desmosome components include 
DSG2, DSC2, PKP2, DSP, JUP and DES. We analyzed 
the protein interactions corresponding to these genes 
to test our hypothesis. In the existing interaction data-
base, PPI interaction network analysis shows that these 
genes have significant interaction (Fig.  3A). The genes 
including DSG2, PKP2, DSP and JUP directly inter-
act with SCN5A. There is indirect interaction between 
NEBL/DES and SCN5A, while DES has indirect inter-
action with SCN5A through DSG2. VCL connects the 
indirect interaction between NEBL and SCN5A. Vin-
culin protein encoded by VCL is a cytoskeleton protein 
related to extracellular matrix adhesion and connec-
tion, and its mutation may lead to dilated and hyper-
trophic cardiomyopathy.

In addition, we downloaded the expression data from 
six different tissue sources (including ventricular tis-
sue, whole blood, spleen, ovary, lung and liver) from the 
public database of GTEx, and calculated the correla-
tion of the expression of these genes (including SCN5A, 
NEBL, NPPA, DSP, DES, DSG2 and PKP2) in each tissue 
(Fig.  3B–G). It was found that the expression of these 
genes had the highest correlation in cardiac tissue. The 
correlation between SCN5A and NEBL reached 0.83, and 
the correlation between SCN5A and NPPA also reached 
0.53. The correlations between SCN5A and other genes 
(including DSP, DES, DSG2 and PKP2) are significantly 
positive between 0.41 and 0.94, with high degrees of co-
expression and synergy. In other tissues, these genes’ 
co-expression has low or no correlation. Therefore, we 
verified significant co-expression and protein interac-
tion between NPPA, NEBL, SCN5A, DSP, DES, DSG2 and 
PKP2 genes.

Discussion
Our study enrolled twenty-two cases of Brs and LQTs 
and conducted WES for these cases to explore the poten-
tial pathogenic mutations. Interestingly, according to 
genotype-phenotype, protein interaction and transcrip-
tomic co-expression analysis, we first found that the 
truncated mutations of NEBL and NPPA might induce 
Brs through the abnormal impact on the function of the 
cardiac sodium channel. Additionally, SCN5A (p.R661W, 
p.R965C and p.A1374S) and KCNH2 (p.R692Q) may 

cause Brs, while SCN5A (p.R1880H), KCNQ1 (c.922-
1G > C and p.R243S) and KCNH2 (p.D161N and 
p.A188Gfs*143) may lead to LQTs.

NEBL and NPPA mutations may induce Brugada syndrome 
by aberrantly affecting the cardiac sodium channel
The cardiac actin-NEBL-DES-Z lines filament network 
participates in the maintenance of the desmosome junc-
tion and the stability of the myocardial structure. As 
reported before, NEBL p.G202R can augment desmo-
some separation. The NEBL p.A592E presents abnor-
mal ultrastructure changes and DES downregulation 
[38]. A GWAS analysis has revealed that NEBL p.A219D 
(rs2296610) is significantly correlated with AF [39], sug-
gesting that the NEBL mutation may probably associate 
with an increased risk of arrhythmia. NPPA mutation has 
been disclosed to link with familial AF, increasing the risk 
of AF [40] and stroke (NPPA p.V32M) [41]. The heterozy-
gous mutation of NPPA p.S64R caused refractory AF due 
to the augmented potassium current and shortened atrial 
action potential [42, 43]. The homozygous mutation of 
NPPA p.R150Q is associated with dilated cardiomyopa-
thy with atrial standstill [44]. NPPA p.I138T causes AF 
by activating TNF-α, NF-κB, and IL-1β signaling, inflam-
mation, and fibrosis [45]. The mice with frameshift NPPA 
mutation elicited the most dramatic prolongation of QRS 
wave, slightly attenuated atrioventricular conduction and 
ventricular repolarization through the downregulation 
of the sodium channel in the atrium, ventricle, and atri-
oventricular junction [46]. In addition, ANP can reduce 
mRNA expression of  Nav1.5 in the epithelium [47] and 
modulate KCNQ1 expression [48]. Loss-of-function 
of  Nav1.5 induced by its abnormalities of expression, 
trafficking, and location to the membrane, will lead to 
decreased sodium current, delayed activation, or ear-
lier/faster inactivation, which can thus cause Brugada-
like ECG or Brugada syndrome [49]. NPPA (p.R107X) 
and NEBL (p.R882X) mutations were identified in Brs 
patients. Our further analysis showed the indirect inter-
action between NEBL and SCN5A and the direct inter-
action between NPPA and SCN5A. Interestingly, there 
are high degrees of co-expressions among NEBL, NPPA 
and SCN5A in myocardial tissue. Therefore, we proposed 
that truncated mutations of NPPA (p.R107X) and NEBL 
(p.R882X) may induce Brugada syndrome by aberrantly 
affecting the cardiac sodium channel, similar to loss-of-
function of the sodium channel.

The common ionic‑channel genetic mutations caused 
Brugada syndrome and Long QT syndrome
Our study also identified several pathogenic or likely 
pathogenic mutations of SCN5A, KCNH2, and KCNQ1 
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Fig. 3 Protein interaction and transcriptomic co-expression analysis
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in Brs and LQTs. The mutations of SCN5A (p.A1374S, 
p.R661W, and p.R965C) and KCNH2 p.R692Q may be 
associated with Brs, which is consistent with previous 
studies [50–54]. SCN5A p.R965C can cause hyper-
polarized inactivation and slower recovery from the 
inactivation of the sodium channel [55]. However, the 
mechanisms of how the mutations of SCN5A (p.A1374S 
and p.R661W) and KCNH2 p.R692Q induce Brs are still 
unknown. Up to date, there is no functional research 
on the splicing mutation (c.922-1G > C) [56] and 
p.R243S [57–62] of KCNQ1 demonstrated in LQTs. 
KCNQ1 p.R243C can induce slower activation and 
the voltage dependence of activation and inactivation, 
which may shift to more positive potentials in the  IKs 
channel. It can also impair the regulation by PKA and 
 IKs channel-PIP2 (phosphatidylinositol 4, 5-bisphos-
phate) interactions. Therefore, it increases the risk of 
life-threatening events while having pronounced ben-
efits from β-blocker treatment [57, 59, 60]. SCN5A 
p.R1880H (or p.R1898H), predicted to be a patho-
genic mutation, has been previously reported in LQTs 
and Brs. It can dramatically reduce the sodium chan-
nel current [63, 64] and the abundance of  Nav1.5 and 
N-Cadherin clusters at the intercalated disc, which is 
associated with ACM [65]. KCNH2 p.D161N (similar 
to D501N) has been reported in cases of LQTs, even 
in a five-year-old boy of the ventricular non-compac-
tion with LQTs [63, 66–69]. The KCNH2 encodes 1159 
amino acids of the α-subunit of voltage-dependent 
potassium channel mediator for the rapid component 
of delayed rectifying  IKr current. For one LQTs case 
in our study, we also detected a novel and pathogenic 
frameshift mutation of KCNH2 (p.A188Gfs*143). How-
ever, more than sixty patterns of frameshift mutations 
in KCNH2 have been reported in LQTs [69]. For exam-
ple, KCNH2 p.G1006fs*49 can cause a significant delay 
in the voltage-sensitive transition to the channel open 
state, faster-inactivating kinetics, and quicker recovery 
from the inactivation for the delayed rectifying  IKr cur-
rent [70].

MYH7 and MYH6 variants were identified in Brugada 
syndrome
According to a previous report, DSG2 and MYH7 have 
been identified as new potential Brs candidates [71]. The 
mutations of MYH7 have been demonstrated in approxi-
mately 25% of patients with the overlap of hypertrophic 
cardiomyopathy and LQTs. Meanwhile, rare mutations 
of MYH6 have also been identified in these patients [72]. 
In our study, MYH7 (p.E1902Q) and MYH6 (p.R1820Q) 
were predicted as "damaging/possibly damaging" and 
"damaging/damaging" by Polyphen and SIFT algorithms 

and were also identified in cases of Brs. However, 
whether these two variants cause Brs remains unclear, 
which needs further confirmation by more research 
center data and functional research.

Limitations
The WES of blood DNA from these patients was com-
pleted before June 2017. This study was a retrospective 
study. We did not carry out the verification by Sanger 
sequencing for these mutations and variants. Our study 
needs further family genotype–phenotype co-segrega-
tion analysis and cell/animal research to investigate how 
the Brs and LQTs are associated with potential patho-
genic mutations of NEBL, NPPA, SCN5A, KCNH2 and 
KCNQ1.

Conclusions
In our study, we first reported the indirect interaction 
between NEBL and SCN5A and the direct interaction 
between NPPA and SCN5A. There are high degrees of co-
expressions among NEBL, NPPA and SCN5A in myocar-
dial tissue. The truncated mutations of NEBL (p.R882X) 
and NPPA (p.R107X) may induce Brs by abnormally 
affecting the cardiac sodium channel. SCN5A (p.R661W, 
p.R965C and p.A1374S) and KCNH2 (p.R692Q) may 
cause Brs, while SCN5A (p.R1880H), KCNQ1 (c.922-
1G > C and p.R243S) and KCNH2 (p.D161N and 
p.A188Gfs*143) may lead to LQTs. Additionally, MYH7 
(p.E1902Q) and MYH6 (p.R1820Q) were identified in 
Brs. However, further pedigree and functional research 
related to these mutations and variants are needed.
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