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Incorporating of daily cone-beam computer tomography (CBCT) image into online 
radiation therapy process can achieve adaptive image-guided radiation therapy 
(AIGRT). Registration of planning CT (PCT) and daily CBCT are the key issues 
in this process. In our work, a new multiscale deformable registration method is 
proposed by combining edge-preserving scale space with the multilevel free-form 
deformation (FFD) grids for CBCT-based AIGRT system. The edge-preserving 
scale space, which is able to select edges and contours of images according to their 
geometric size, is derived from the total variation model with the L1 norm (TV-L1). 
At each scale, despite the noise and contrast resolution differences between the 
PCT and CBCT, the selected edges and contours are sufficiently strong to drive the 
deformation using the FFD grid, and the edge-preserving property ensures more 
meaningful spatial information for mutual information (MI)-based registration. At 
last, the deformation fields are gained by a coarse to fine manner. Furthermore, in 
consideration of clinical application we designed an optimal estimation of the TV-L1 
parameters by minimizing the defined offset function for automated registration.

Six types of patients are studied in our work, including rectum, prostate, lung, H&N 
(head and neck), breast, and chest cancer patients. The experiment results demon-
strate the significance of the proposed method both quantitatively with ground truth 
known and qualitatively with ground truth unknown. The applications for AIGRT, 
including adaptive deformable recontouring and redosing, and DVH (dose volume 
histogram) analysis in the course of radiation therapy are also studied.

PACS numbers: 87.57.Gg, 87.57.Ce, 87.62.+n
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I.	 Introduction

Radiation therapy planning is currently limited to a single three-dimensional (3D) anatomical CT 
image at the onset of treatment. This idea may result in severe treatment uncertainties, includ-
ing the irradiation of risk organs and reduced tumor coverage.(1) It is necessary to incorporate 
daily images into treatment process for patient setup and treatment evaluation.(2) Recently, the 
advancement of volumetric imaging in daily treatment room by using KV (kilo-voltage) CBCT 
(cone-beam computer tomography) has provided the imaging data needed to perform AIGRT 
(adaptive image-guided radiation therapy).(3) The concepts of AIGRT provide methods to monitor 
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and adjust the treatments to accommodate the changing and moving  of the patient. Ideally, 
AIGRT is implemented where the patient alignment and radiation beam angles are continuously 
updated to maximize the radiation dose to the tumor and minimize radiation to healthy organs 
in the treatment room,(4) and it is possible that the treatment is evaluated periodically and the 
plan for radiation therapy is adaptively modified for the remaining course of radiotherapy.

CBCT-based AIGRT system is typically implemented in the following way:(4-6) planning 
CT (PCT) images are obtained several days or weeks before the treatment. Then radiation 
planning is done including tumor and organ contouring, radiation beam optimization, and dose 
volume analysis. Just before the treatment, CBCT images are obtained in the treatment room 
and are used to register with PCT for adjusting the treatment parameters, which can maximize 
the radiation dose delivered to the tumor and minimize radiation to the healthy tissue. This 
enables the oncologists to adjust the treatment plan to account for patient movement, tumor 
growth, and deformation of the surrounding tissues. Hence, this treatment program would 
require real-time deformable registration algorithm for PCT and daily CBCT images obtained 
during every intrafraction treatment. 

Deformable registration for PCT and CBCT has been investigated by several literatures.  
B-spline–based registration algorithms are used for estimating the deformation fields as shown 
in Paquin et al.,(5) where multiscale technique is used for efficiency. In Brock et al.,(7) finite 
element model (FEM) is used for getting more accurate assessment of tumor response. Demons 
registration method is also used for CBCT-guided procedures in the head and neck cancer radia-
tion therapy.(8) Optical flow-based deformable registration is also used for CBCT-based IGRT; in 
Ostergaard Noe et al.,(9) both CBCT to CBCT and CBCT to PCT registration are performed, and 
the acceleration obtained using GPU (graphics programming unit) hardware makes it possible 
for the registration to be done online for the CBCT system. Deformable registration methods 
for CBCT-based AIGRT system mentioned above can be classified into physical model-based 
methods described by partial differential equations of continuum mechanics, and basis function 
expansions-based methods derived from interpolation and approximation theory according to 
transformation models.(10) Physical model-based methods have the advantage of providing 
physically realistic solutions. However, solving the Navier PDEs (partial differential equations), 
which are the expressions of the physical model-based methods, is particularly computationally 
intensive.(10-11) The radial basis functions and piecewise polynomials (splines) based methods 
are using a set of basis functions, and the coefficients are adjusted so that the combination of 
basis functions fit the displacement field.(10) Radial basis functions and piecewise polynomials 
(splines) based methods are widely used for medical image registration in recent years.(5,10,12) 
Despite the significant progress which has been made in recent years, deformable registration 
algorithm for PCT and CBCT is still a hot research  topic for clinical application and remains 
a challenging task.(5,13)

Furthermore, mutual information (MI) as a similarity metric has the advantage of directly 
exploiting the raw data without requiring segmentation or extensive user interaction, which 
is the most popular accepted intensity measure for registration, particularly for multimodal 
images.(14-15) However, in addition to the high computational complexity of MI for 3D image, 
optimization process can always be trapped into local extremes when searching for the global 
optimum and, hence, result in misalignment. Although multiscale registration methods can 
improve the registration efficiency including speed, accuracy, and robustness,(5,16) Pluim et 
al.(17) believed that one reason for misregistration in MI-based registration is the absence of 
spatial information in MI measurement. 

In our work, aiming for reducing radiation therapy uncertainties and increasing replanning 
efficiency in CBCT-based AIGRT system, we designed a new multiscale deformable registration 
framework that can improve registration accuracy and robustness for PCT and daily CBCT in 
the treatment process. Our framework is constructed by combining the edge-preserving scale 
space with the coarse–to–fine FFD grids. The edge-preserving scale space, which is able to 
select edges and contours of the images according to their geometric size, is derived from the 
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total variation model with the L1 norm (TV-L1). At each scale, despite the noise and contrast 
resolution differences between the PCT and CBCT, the selected edges and contours are suf-
ficiently strong to drive the deformation using the FFD grid, and the edge-preserving property 
ensures more meaningful spatial information for MI-based registration. Finally, the deforma-
tion fields are gained by a coarse to fine manner. Experiment results and clinical applications 
demonstrate the efficiency of the proposed method.

 
II.	 Materials and Methods

A.	R egistration method
A.1  Hierarchical multiscale decomposition based on TV-L1 scale space
The proposed multiscale registration framework is based on edge-preserving scale space 
which is derived from the total variation with the L1 norm.(18) TV-L1 model has been suc-
cessfully used in image processing, with the  benefit of edge preserving and unique edge and 
contour selecting property, for instance, in the area of face recognition,(19) DNA microarray 
data analysis,(20) and other image processing.(21) Here we give the theory analytical properties 
for TV-L1 scale space.

Based on the work of Chan and Esedoglu,(18) within TV-L1 model the input image I0 can 
be modeled as the sum of the image cartoon I and texture V (V(x) = I0(x) - I(x)). The image 
cartoons contain important contours and edges which can provide meaningful spatial infor-
mation for MI-based registration. The rest of the image, which is texture, is characterized by 
irregular components and noise. Formally, the TV-L1 model can be formulated using the fol-
lowing energy function:

		  (1)
	

0( , ) min | ( ) | | ( ) ( ) |
I

E I I x dx I x I x dx

It has been proved that solving energy function Eq. (1) is equivalent to solving the following 
level set based geometrical problem:(18)

		   (2)
	 0( , ) min ({ : ( ) }) ({ : ( ) } { : ( ) })

I
E I Per x I x I Vol x I x I x I x I dI

In Eq. (2), Per(.) is the perimeter and Vol(.) is the volume; and for any set S1 (Set 1) and S2 
(Set 2), S1 S2 := (S1US2)-(S1∩S2) where ‘:=’ means ‘define’,  ‘U’ means ‘union’, ‘∩’ means 
‘intersection’, and ‘–‘ means ‘exclude’. By using Eq. (2), we can get the following geometric 
properties of the solution to Eq. (1):(18)

•	 Given a disk image 
0 1 ( )( ) 1 ( )

rB yI cx x , image with the intensity c1 in the disk Br(y) which 
is centered at y and with radius r, and with the intensity 0 anywhere else, then we have
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Clinical medical images can be thought of as composed of different organs and tissues which 
are different from each other by geometric sizes. Suppose that medical image I is composed by 
n components with different geometric sizes, as illustrated in Fig. 1. It can be formulated as:

		  (5)
	 1

n

i
i

I C

where the components are classified according to their geometric sizes, and C1>C2>C3…..>Cn. 
Normally, considering noise existing in medical images, the smallest pattern Cn can be considered 
as noise in image I which can also be removed by TV-L1 scale space filtering. Based on Eqs. 
(3) and (4), TV-L1 can be used for scale space decomposition of medical images, and features 
of different sizes in medical images can be extracted from I by applying different values of λ. 
This λ is in inverse proportion to the geometric size of the different component Ci. 

Fig. 1.  The first row are multiscale decomposition images using TV-L1 scale space filtering with λ = 0.26, 0.17, 0.1, 
0.08, 0.06, 0.04, and the first image is the original image; the second row shows the difference between original image 
and TV-L1 decomposition images; the third row shows multiscale decomposition images using Gaussian scale space 
with standard deviation σ = 2, 4, 8, 16, 32, 64, 80; and the fourth row shows the differences between original image and 
Gaussian decomposition images.
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The images are then decomposed with multiscale representation, the minimization of energy 
function E(I, λ) results in a decomposition I0 = I(λ) + V(λ),  where I(λ) extracts the edges and 
contours of I0, and V(λ) extracts the textures or noise at scale λ. This interpretation depends 
on the scale λ, since edges and contours at scale λ consist of edges and contours when viewed 
under a refined scale (e.g., λ1 where λ1 < λ). Thus we can do hierarchical multiscale decom-
position of I0 by repeating this process following Eq. (6). Starting with an initial scale λ = λ1, 
we obtain the multiscale decomposition of the image I0:

		
(6)
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Now we get n-level multiscale decomposition of I0 as Eq. (6). Furthermore, the geometric 
properties of TV-L1 decomposition developed for 2D images can be extended to 3D images 
straightforwardly.(18) The TV-L1 scale space is capable of selecting edges and contours of an 
image according to their geometric sizes rather than intensities with the merit of edge preserving 
property. This capability is illustrated in row 1 of Fig. 1 and in row 1 of Fig. 2, which shows 
that in larger scales (low resolution) edges and contours of smaller components can be removed 
by adjusting λ, whilst edges and contours of larger regions are kept in the corresponding scale. 
Comparatively, because the smoothness is isotropic in traditional Gaussian scale space filtering, 
all edges and contours are blurred at coarse Gaussian scales, as illustrated in row 3 of Fig. 1 
and in row 2 of Fig. 2.

From Figs. 1 and 2, comparing with the Gaussian scale space, TV-L1 scale space shows 
advantages of edge and contour selecting with the merit of edge preserving property. This 
multiscale decomposition can ensure more meaningful spatial information for MI-based reg-
istration where the selected edges and contours are sufficiently strong to drive the deformation 
by a coarse to fine manner.

There are several numerical methods for solving the TV-L1 energy function. The most classic 
one is the time marching PDE method based upon Euler-Lagrange equations.(18) Other methods 
include second order cone programming method,(22) and parametric max-flow algorithms.(23) In 
our work, we use the parametric max-flow method to solve the TV-L1 model for efficiency.

Fig. 2.  Multiscale decomposition using TV-L1 scale space filtering in row 1 with λ = 0.7, 0.45, 0.3, 0.2, 0.15, 0.12 and 
Gaussian scale space filtering in row 2 for CT image with σ = 2, 4, 8, 16, 32, 64, and 80.
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B.	 Multiscale deformable registration algorithm
B.1.  B-spline–based FFD deformable registration
Because the proposed method mainly focused on the multiscale strategy for improving the ef-
ficiency, in different scales we can use different deformable models for computation efficiency. 
Conventional methods always use  affine or rigid transformation model in coarser scales for 
simplification, and then use more advanced deformable models in finer scales.(16) However, 
deformable models with little computation in coarse scale can improve the registration per-
formance. Many researches argue that B-splines are optimal as approximating functions for 
registration.(10) Furthermore, these  basic functions can be extended to multivariate ones using 
tensor products. The FFD is the most frequently used one for medical image registration.(10) 
B-spline–based free-form deformation (FFD) registration method has the advantage over other 
spline-based deformation models (e.g., TPS (thin plate splines)) in that perturbing the position 
of one control point only affects the deformation in a neighborhood of that point.(10) Changing 
one control point only affects the deformation in a local neighborhood. The control points act 
as parameters of the B-spline deformation model, and the freedom degree of deformation field 
depends on the resolution of the mesh of control points. A coarse spacing of control points 
can model global deformation, while a fine spacing of control points can model local defor-
mations.(24) Furthermore, the number of control points determines the degrees of freedom in  
deformation model and the computational complexity. So coarse–to–fine multilevel FFD grids 
can be conveniently combined with the multiscale edge-preserving scale space for registration. In 
lower image scale, coarse spacing of control points are used for estimating the global deforma-
tion, while in higher image scale, fine spacing of control points are used for estimating the local 
deformation. In our work, multiscale FFD grids of control points were chosen automatically, 
and there is a trade-off between the model flexibility and its computational complexity. 

B.2. � Multiscale registration by combining edge-preserving scale space with 
multilevel FFD grid

In the proposed method (shown in Fig. 3), at stage 1 the reference image and the floating image 
are first decomposed with a multiscale representation using TV-L1 scale space filtering (the 
first row and the third row in Fig. 3). The scale levels are denoted as L1 … Lm, where m is the 
number of multiscale levels.

At stage 2, the decomposed image pairs are registered using proposed multiscale registra-
tion framework in coarse-to-fine manner (the second row in Fig. 3). Because stage 2 uses 
the intermediate results from stage 1, so the flowchart is first from left to right for multiscale 
decomposition, and then from right to left for multilevel registration (Fig. 3). The deformation 
is described by FFD based on B-splines. The control points act as parameters of FFD and the 
degree of deformation is in dependant on the resolution of the mesh of control points. A large 
spacing of control points allows modeling of global deformations, while a small spacing of 
control points allows modeling of highly local deformations. 

As illustrated in Fig. 3, the coarsest scale images in TV-L1 scale space — which include 
the largest edges and contours of original images by removing the smaller patterns and noises 
from the original image — are first utilized for an initial registration. Once the registration has 
finished with the low resolution grids, it then proceeds to initialize higher resolution. 

Because only global structures remain in the coarsest scale, the coarsest FFD grid is used for 
estimating the global deformation with a rapid convergence. The optimum set of transformation 
parameters at a coarser resolution level is up-sampled to become the starting point for the next 
finer resolution level with higher resolution FFD grids. The registration can then be optimized 
by gradually introducing more detailed components at finer scale images. At each scale, the 
selected edges and contours are sufficiently strong to drive the deformation, which makes the 
algorithm more efficient in accuracy and robustness. Consequently, the local deformation is 
gradually gained through coarse-to-fine manner. 
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Because the size of the overlapping part of the image pairs influences the MI measure, nor-
malized measure of MI which is less sensitive to changes in overlap is used for registration. 
In our work, normalized mutual information (NMI) as in Studholme et al.,(25) which can give 
promising accuracy and robustness for registration, is used as similarity measure. Our multi-
scale registration can accelerate NMI computation process by coarse to fine manner without 
decrease accuracy and robustness. In order to further improve computational efficiency at 
each successive level of the framework, TV-L1 scale space filtering is preceded by equidis-
tant subsampling to reduce the image size, as well as susceptibility to noise. So the proposed 
framework can combine edge preserving and scale selection properties of the TV-L1 with the 
FFD grids, which can provide more meaningful spatial information for NMI based registration 
while maintaining the high efficiency of the pyramid framework. The NMI used in our work 
is defined as follows:(25)

 			 
		  (7)
	

( ) ( )
NMI( ; )

( , )
H A H B

A B
H A B

where H(A) is the Shannon entropy of the image A, and H(A,B) is the joint entropy of image 
A and image B.

B.3.  Estimation of the optimal TV-L1 parameter for automated registration
As explained above in Eqs. (1) and (4), the choice of parameter λ determines the structures 
that are kept in each scale, and proper estimation of λ is important for building the multiscale 
registration framework. The selection of λ is related to image properties, and is often determined 
heuristically and experimentally in image processing.(18-19,22-23) To achieve automated registra-
tion for clinical applications, estimation of the optimal value for TV-L1 model is proposed by 
training and minimizing an offset, which is defined as:

		  (8)
	

'

n n n

n

Offset

where n is the number of transformation parameters, ρn are the ground truth parameters of 
transformation between the reference and floating image, ρn’ are the transformation parameters 
obtained by the registration algorithm, and Kn are weighting coefficients. 

For deformable registration, the transformation freedom is always innumerable. From Eqs. 
(3) and (4), λ is in inverse proportion to the geometric size of the different components in the 
image. Suppose that λ is the same when it is optimal for any freedom. In clinical application, 
we can then obtain an optimal λ by optimizing the simple rigid transformation process. Rigid 
transformation considers three translation parameters and three rotation parameters for 3D 
registration. Suppose that the influence of the transformation along each 3D direction on the 
offset is the same, and that the offset caused by 1° in rotation direction is equal to the offset 
caused by 1 mm in translation direction. In our estimation framework, the unit for the rotation 
parameter θ is not degrees but radians; therefore, we should change radians into degrees for 
computation, and the weighting coefficients can be set as k1 = k2 = k3 = 1 and k4 = k5 = k6 = 
180/ϕ. As shown in Fig. 4, λ can be obtained automatically by the following function:  
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In Fig. 4, known transformations (KT) which can serve as ground truth are implanted on 
the floating images. In our experiment, well-registered image pairs from hospital are used for 
estimating the λ. Once the optimal λ is determined, it can be used for all incoming datasets of 
the same type and size as the training data.

So we do not need to optimize the λ for each patient. When the patient data are received, 
we first will find the λ in the computer memory that is optimal for the same type and same size 
computed before. Here the same type means that the received data are from same modality 
with the one in the memory, and the same size means that they both have the same organ size, 
such as lung, liver, heart, or other organ. In our experiment, for application efficiency, we sup-
posed that if two patients are the similar size, they will have similar size of lung, liver, heart, 
or other organ. So in clinical application, we can only consider an incoming patient size which 
is the same as the patient in computer memory, and then we can use the same λ. If we cannot 
find the same size patient in our memory, we can get the optimal λ using rigid transformation 
by minimizing Eq. (9).

Actually, for clinical image registration in our experiment, the optimal λ is not the one 
which can always select the proper organs, such as lung or liver. However, it always gives 
a good edge protection in different scales within images, so different edges and contours 
with difference geometric sizes are preserved in different scales. These protected edges with 
optimal λ can make the MI maximization in that scale, and then this can result in a good  
registration performance.

 
III.	Res ults & DISCUSSION

A.	 Data collection
Data were collected from 30 patients treated under the on-board imager (OBI cone-beam CT, 
Varian Medical Systems, Palo Alto, CA), which has been in routine clinical use in Shandong 
Cancer Hospital. The OBI consists of a diagnostic X-ray tube and a KV flat-panel imager, both 
mounted on robotic arms and designed for three main functions: orthogonal radiographs for 
3D patient setup, KV-CBCT and real-time tumor tracking, and fluoroscopy. Before treatment 
planning, each patient underwent a series of imaging studies including intravenous contrast 
planning CT imaging (Brilliance CT Big Bore 16, Philips Healthcare, Andover, MA). Then 
the GTV (gross tumor volume) and PTV (planned target volume) were delineated on every 
section of the planning CT scans by the radiation oncologists. Radiation physicists contoured 
the organs such as liver, external surface, spinal cord, kidneys, spleen, and stomach. These 
contours were reviewed and edited by the radiation oncologists.(26) Finally, treatment planning 
is made with four components including RTstruct (radiotherapy structure), RTplan, RTdose and 
DVH (dose volume histogram) analysis. In each planning CT image, the dose distribution and 

Fig. 4.  Diagram of automated estimating optimal λ (m level).
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dose volume histogram are calculated by the radiation oncologists using the planning system 
installed in Shandong Cancer Hospital. At the time of each delivered treatment fraction, a KV 
CBCT scan was obtained for the patient during normal breathing. 

Of the 30 patients investigated here, five had rectum cancer, five had prostate cancer, five 
had lung cancer, five had head-neck cancer, five had breast cancer, and five had chest cancer. 
The method used for radiotherapy is IMRT (intensity-modulated radiotherapy), CRT (conformal 
radiotherapy) or IMAT (intensity-modulated arc therapy). Table 1 is the description of patients 
for the experiments, including patient ID, cancer type, radiotherapy method, image resolution, 
and voxel resolution for PCT and CBCT.

Table 1.  Description of patients for experiments.

	 Resolution for PCT	 Resolution for CBCT
	Patient ID	 Cancer	 Radiotherapy	 Image (p)	 Voxel (mm3)	 Image (p)	 Voxel (mm3)

			   1,3 IMRT 	 1-5	 Rectum	 4,5  CRT	 512×512×96	 1.02×1.02×3	 384×384×64	 1.17×1.17×2.5

	 6-10	 Prostate	 6-10 IMRT	 512×512×88	 1.12×1.12×3	 384×384×64	 1.17×1.17×2.5

	 11-15	 Lung	 11-15 CRT	 512×512×104	 0.99×0.99×3	 384×384×64	 1.17×1.17×2.5

	 16-20	 H&N	 16-20 IMRT	 512×512×96	 1.12×1.12×3	 384×384×64	 0.65×0.65×2.5

	 21-25	 Breast	 21-25 IMRT	 512×512×96	 1.07×1.07×3	 384×384×64	 1.17×1.17×2.5

			   26-28 CRT	 26-30	 Chest	 29,30 IMAT	 512×512×96	 0.84×0.84×3	 384×384×64	 1.17×1.17×2.5

	

B.	 Quantitative evaluation of the synthetic results
Generally, evaluating the performance of the deformable registration is a challenging task, 
because there is always lack of ground truth. In our work, for quantitatively evaluating pro-
posed multiscale registration algorithm, we produce the registration problems in which the 
deformation between the reference images and floating images is known. Although same organ 
and tissue are displayed both in PCT and CBCT images, CBCT images contain low-frequency 
components which are not present in PCT images (similar to inhomogeneity related components 
in magnetic resonance images) as illustrated in Fig. 5. So the main challenge in PCT-CBCT 
image registration is thus accounting for the artifacts or noises that appear in one of them but 
not in another. 

To simulate synthetic CBCT images using CT images, gray transformation (linear) and 
synthetic noise (both of Gaussian and salt–pepper noise) are  added to the CT images, as shown 
in Eq. (10):(16, 27-28)

	
CBCT CT CT

Noise( )Image Gray_Trans(Image ) Image 	 (10)

Then, we begin to deform the synthetic CBCT image which is derived from the correspond-
ing CT image obtained by Eq. (10) using known deformations. We deformed the planning 
CT images using three defined splines vectors where the deformation fields are known. Three 
known splines vectors (Fig. 6) are D1 (deformation 1), D2, and D3. The source code for defined 
spline vectors used here for warping images is from open source software sponsored by the 
National Library of Medicine and the National Institutes of Health. Here D1, D2, and D3 are 
all two-dimensional deformation fields; in our experiment, we deformed three-dimensional 
images slice by slice using the two-dimensional deformation fields. As illustrated in Fig. 6, the 
meta-image magnitude tells us that the maximum shift of each case is 10 mm.

All 30 planning CT images that include six types of cancers are gray transformed and  
noise added for simulating CBCT images, and then three deformation fields are implemented  
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on 30 planning CT images, respectively. Lastly, we register planning CT with the synthetic 
CBCT images. 

To quantitatively evaluate accuracy of the registration algorithm, we compute the deforma-
tion difference (DD) with the sum of mean absolute difference between the deformation vector 

Fig. 5.  Planning CT and cone-beam CT image comparisons, where images are 2D slices from 3D dataset: (a) chest 
images, (b) prostate images, (c) H&N images; in each group, the first row is CT image for planning, the second row is 
daily CBCT.

(a)

(b)

(c)
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calculated by proposed method and the known defined vector deformation for each pair of 
images. The DD can be defined as:

		  (11)
	 1

( , ) 1 /
N

i i
i

DD C K N W K
=

=

	
In Eq. (11), N is the total number of pixels, Wi is the ith vector of the calculated deformation 

field, and Ki is the ith vector of the known deformation field. Table 2 is the DD comparison 
between proposed edge-preserving FFD registration method (EFFD) and normal B-spline–based 
FFD method (NFFD).(29) Each value in Table 2 is the mean value for five groups of PCT-CBCT 
registration experiments using clinical data.

From Table 2, the deformation differences gained by EFFD are always smaller than the NFFD, 
which indicates that EFFD is more accurate than the NFFD for three levels of deformation. Fur-
thermore, the registration accuracy is also affected by the deformation between reference image 
and floating image. Larger deformation is more difficult to resume than the small deformation. 
This is outlined in Table 2 by comparing D3, D2, and D1. This property is also informed from 
the different cancer types, including head and neck (H&N), rectum, prostate, breast, chest, and 
lung cancers. From Table 2, H&N case is the easiest one to recover the deformation, which is 
indicated by the smallest deformation difference. This is mainly accounted for by the small-
est deformation in H&N case in clinical images, and in most cases, it can be considered rigid 
movement in clinical application. The rectum and prostate cases are in the same level when 
recovering the deformation, and the breast and chest are also in the same level to recover the 
deformation. The breast and chest cases are more difficult to recover the deformation than 
the H&N cases. The lung case is the most difficult type to recover the deformation and this 
is because the lung is the essential respiration organ in air-breathing system, and it is always 
moving with the breathing all the time. The planning CT and CBCT for registration are always 
not in the same breathing phase because they are acquired at different time stages, which will 
result in the largest deformation comparing other organs.

Furthermore, from Table 2 we can conclude that EFFD is more robust than NFFD method 
with more stable lower DDs for six kinds of cancer registration and three levels of deformation. 
In particular when D3 deformation registration is combined with larger deformation organs 
including breast, chest, and lung cancers, the deformation difference will exceed 0.7 mm using 
NFFD, where the registration results have a low accuracy. However, EFFD can still get the 
stable registration results as in Table 2.

On the other hand, accuracy of the EFFD registration was also demonstrated by the mean 
MI comparison between reference and deformed floating image after registration, when using 
EFFD and NFFD, respectively, in Table 3. Corresponding to the previous deformation differ-
ence results, the mean MI is different from each other with different cancer types and different 
deformations. H&N case has the highest values, which indicates the most accurate results and 

Fig. 6.  Three levels of deformation fields: from left to right, the deformation is from small to large and we index them 
using D1, D2, D3. The last one is meta-image magnitude for the deformation, and the unit is the millimeter.



117    Li et al.: Deformable registration for IGRT	 117

Journal of Applied Clinical Medical Physics, Vol. 12, No. 4, Fall 2011

the easiest cases to recover the deformation, and lung case has the lowest values which also 
indicates the most unreliable result and the most difficult to recover the deformation. Rectum, 
prostate, breast, and chest cases are between the H&N and lung cases. Similarly, each value in 
Table 3 is also the mean value for five groups of PCT-CBCT registration experiments.

C.	 Qualitative evaluation of the clinical results
Next, we present the results obtained with the multiscale registration algorithm for clinical plan-
ning CT to CBCT, including lung, prostate, and H&N cancer patients as illustrated in Fig. 7. In 
each case, we illustrate a 2D slice of the 3D registration results from transversal, sagittal, and 
coronal directions, and checkerboards comparison after normal FFD registration method and 
our proposed edge-preserving FFD registration method.

Here, we present the visual registration results for one lung example, one prostate example, 
and one H&N example. The results obtained with all other volumes are similar to those pre-
sented here. We have highlighted areas of misregistration in the checkerboard images after 
NFFD registration with arrows. In particular, we notice that misalignment always occurs in 
breast, chest, and lung cases, where larger deformation exists. However, we are able to recover 
this misalignment using proposed EFFD registration algorithm. The accurate registration of 
organ structures (where both small and larger deformations present in the registered pairs with 
proposed EFFD) is due to the fact that we combine edge-preserving scale space with the free-
form deformation which can provide meaningful spatial information for the registration process. 
Furthermore, the advantage of our proposed method can also be demonstrated by higher MI 
from the registration results as outlined in Table 4.

Table 2.  The mean deformation difference comparison for the EFFD and NFFD (in millimeters).

	 H&N	 Rectum	 Prostate	 Breast	 Chest	 Lung

NFFD (D1)	 0.504	 0.553	 0.554	 0.606	 0.615	 0.703
EFFD (D1)	 0.473	 0.548	 0.539	 0.593	 0.590	 0.658
NFFD (D2)	 0.530	 0.569	 0.563	 0.625	 0.673	 0.725
EFFD (D2)	 0.496	 0.550	 0.552	 0.613	 0.646	 0.660
NFFD (D3)	 0.581	 0.594	 0.595	 0.714	 0.723	 0.753
EFFD (D3)	 0.514	 0.568	 0.570	 0.617	 0.648	 0.664

Table 3.  The mean mutual information comparison for the EFFD and NFFD.

	 H&N	 Rectum	 Prostate	 Breast	 Chest	 Lung

FFD (D1)	 0.894	 0.815	 0.818	 0.737	 0.728	 0.685
EFFD (D1)	 0.903	 0.833	 0.823	 0.742	 0.731	 0.694
FFD (D2)	 0.875	 0.806	 0.815	 0.703	 0.695	 0.669
EFFD (D2)	 0.896	 0.814	 0.819	 0.716	 0.704	 0.675
FFD (D3)	 0.842	 0.798	 0.810	 0.689	 0.686	 0.643
EFFD (D3)	 0.867	 0.821	 0.818	 0.701	 0.727	 0.677
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Fig. 7.  Checkerboards after planning CT and CBCT deformable registration, where images are 2D slices from 3D dataset: 
(a) result for chest images, (b)  result for prostate images, (c) result for head and neck (H&N); in each group, the first row 
is using NFFD based method, the second row is using EFFD-based method.

Table 4.  The mean mutual information comparison for the EFFD and NFFD.

	 H&N	 Rectum	 Prostate	 Breast	 Chest	 Lung

NFFD	 0.883	 0.807	 0.812	 0.732	 0.724	 0.673
EFFD	 0.921	 0.853	 0.865	 0.768	 0.759	 0.721

(a)

(b)

(c)
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D.	C linical application for AIGRT
After deformable registration of PCT and daily CBCT, we can do some applications with AIGRT 
by using the deformation fields. Adaptive deformable recontouring and redosing for improving 
treatment process are such applications. We performed qualitative evaluation of contours and 
doses generated automatically by visual inspection of the contour matches with the underlying 
structures in CBCT images. The deformation field provides voxel to voxel mapping between 
the reference image and the floating image. 

The contours and doses in the floating PCT image can be transferred to the reference of CBCT 
image for replanning by the deformation maps. Figure 8 illustrates the adaptive deformable 
recontouring examples of the chest and lung patients where in planning CT images, normal 
organs, PTV, and GTV contours are delineated by radiation oncologists, while in daily CBCT 
images, normal organs, PTV, and GTV contours are generated automatically by the deforma-
tion map with proposed deformable registration algorithm. Similarly, Fig. 9 also illustrates 
adaptive deformable redosing with same chest and lung patients, where dose distribution in 
planning CT are calculated by the oncologists using the planning system, while corresponding 
dose distribution in CBCT is generated automatically by the deformation map using proposed 
deformable registration algorithm.

Fig. 8.  Adaptive deformable recontouring for daily CBCT images using the proposed registration algorithm, where images 
are 2D slices from 3D dataset. Group (a) is for the breast cancer patient, and group (b) is for the lung cancer patient. In each 
group, the first row is the planning CT which is contoured by the oncologist. The second row is automatically generated 
contours by the deformation map using proposed registration algorithm.

(b)

(a)
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From Figs. 8 and 9, the contours and dose distribution are successfully transferred to the 
daily CBCT image from the planning CT by the proposed deformable registration algorithm 
(using the deformation maps). After statistic analysis by the radiation oncologists, the overlap 
between the automatically generated contours and the contours delineated by the oncologist 
using the planning system is on an average 95%, while the dose distribution overlap is also on 
an average 97%. The radiation oncologists concluded that the results from recontouring and 
redosing are helpful for clinical replanning using daily CBCT.  

After obtaining the contours and dose distribution, DVH are analyzed for radiation therapy 
using the planning system (see Fig. 10). DVH for PCT are calculated by dose distribution which 
is generated by the treatment planning system, and DVH for CBCT are calculated by dose 
distribution which is gained by adaptive recontouring and redosing using proposed deformable 
registration algorithm. After analyzing by the oncologists and clinical doctors, the DVH for the 
CBCT is qualified for following radiation therapy and replanning. 

During the experiments, the Insight Toolkit (ITK), which is an open source software spon-
sored by the National Library of Medicine and the National Institutes of Health, is used for 
building our B-spline–based FFD framework. MATLAB (The MathWorks, Natick, MA) is 

Fig. 9.  Adaptive deformable redosing for daily CBCT images using the proposed registration algorithm, where images are 
2D slices from 3D dataset. Group (a) is for the breast cancer patient, and group (b) is for the lung cancer patient. In each 
group, the first row is dose distribution for the planning CT which is gained by the oncologist using planning system. The 
second row is automatically generated dose distribution by the deformation map using proposed registration algorithm.

(a)

(b)
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used for TV-L1 multiscale decomposition and parameter λ estimation. All the registration ex-
periments are generated on HP Intel Duo core CPU T6570 with 2.10 GHz and RAM memory 
2.00 GB. The computation time for the multiscale decomposition process with our 3D data 
requires approximately 80-100 sec per group of data, and the time for multiscale registration 
process requires approximately 180-210 sec per group of data. As we know, in an ideal AIGRT 
system, the planning CT and daily CBCT image will be registered in the treatment room where 
the whole process needs to be continuously updated. So currently we focus on improving the 
speed of our registration process in our future work, and parallel computing hardware can be 
used for the computational efficiency.

 
IV.	C onclusions

In our work, we proposed a new multiscale deformable registration method by combining edge-
preserving scale space with the multilevel free-form deformation grids for CBCT based AIGRT 
system. The edge-preserving scale space, which is able to select edges and contours of images 
according to their geometric size, is derived from the total variation model with the L1 norm. 
At each scale, despite of the noise and contrast resolution differences between the PCT and 
CBCT, the selected edges and contours are sufficiently strong to drive the deformation using 
the FFD grid, and the edge-preserving property ensures more meaningful spatial information 
for mutual information-based registration. Finally, the deformation fields are gained by a coarse 

Fig. 10.  DVH analyzing (by normalized volume) for the daily CBCT after recontouring and redosing. Group (a) is for 
the breast cancer patient, and group (b) is for the lung cancer patient. In each group, the left one is DVH for the planning 
CT, which is gained by the oncologists using planning system. The right one is DVH, which is generated by automatically 
generated contours and dose distribution by the deformation map using proposed registration algorithm.

(a)

(b)
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to fine manner. Furthermore, considering clinical application we design an optimal estimation 
of the TV-L1 parameters by minimizing the defined offset function for automated registration. 
In the experiments, six types of cancer patients are studied in our work, including rectum, 
prostate, lung, H&N (head and neck), breast, and chest. The experiment results demonstrate 
the significance of our proposed registration method. The applications of proposed deformable 
registration for AIGRT and ART, including adaptive deformable recontouring and redosing 
and DVH analysis are successfully implemented. The proposed deformable registration for 
planning CT and daily cone-beam CT can be used for AIGRT, and the method proves to be an 
efficient tool to quickly transfer contours for radiation therapy treatment planning systems, and 
then aid following adaptive therapy.

However, as we know, CBCT has not only poor image contrast, but has severe artifact and 
low frequency components. All these make the registration process very difficult for obtaining 
accurate result in all cases. Actually, although our method can give better results in most normal 
cases compared with the conventional method, our method  is weak in some  instances. For 
example, our method is not effective when it comes to the case where the CBCT cannot show 
some of the organ or structure as in the planning CT. We have tried several cases, but they all 
failed. And these special cases have encourage us to research a more robust method for the 
critical clinical application.

Furthermore, images for registration of planning CT and CBCT are always not in the same 
breathing phase because they are acquired at different time stages. So the deformation for some 
cases is very large for the CT-CBCT pairs. The research for the rule of lung breathing  talks 
about the 4D CT direction(30) and 4D CBCT direction.(31) We can combine 4D CT technique 
for solving this problem so that we can make the planning CT and CBCT in the same phase 
for improving treatment accuracy.

 
Acknowledgments

The authors wound like to express thanks to the staff in the Department of Radiation Oncology, 
Shandong Cancer Hospital, and Institute, for their valuable suggestions to our work. This work 
is supported by the Shandong Natural Science Foundation (ZR2010HM010 and ZR2010HM071) 
and the NSFC (National Natural Science Foundation of China: 30870666). 

 
References

	 1.	Wang W, Wu Q, Yan D. Quantitative evaluation of cone-beam computed tomography in target volume definition 
for offline image-guided radiation therapy of prostate cancer. Radiother Oncol. 2010;94(1):71–75.

	 2.	Cho B, Poulsen PR, Keall PJ. Real-time tumor tracking using sequential kV imaging combined with re-
spiratory monitoring: a general framework applicable to commonly used IGRT systems. Phys Med Biol. 
2010;55(12):3299–316.

	 3.	Yong Y, Schreibmann E, Li T, Wang C, Xing L. Evaluation of on-board kV cone beam CT (CBCT)-based dose 
calculation. Phys Med Biol. 2007;52(3):685–705.

	 4.	Li T, Thongphiew D, Zhu X, et al. Adaptive prostate IGRT combining online re-optimization and re-positioning: 
a feasibility study. Phys Med Biol. 2011;56(5):1243–58.

	 5.	Paquin D, Levy D, Xing L. Multiscale registration of planning CT and daily cone beam CT images for adaptive 
radiation therapy. Med Phys. 2009;36(1):4–11.

	 6.	Lawson JD, Schreibmann E, Jani AB, Fox T. Quantitative evaluation of a cone-beam computed tomography-
planning computed tomography deformable image registration method for adaptive radiation therapy.  J Appl 
Clin Med Phys. 2007;8(4):96–113.

	 7.	Brock KK, Dawson LA, Sharpe MB, Moseley DJ, Jaffray DA. Feasibility of a novel deformable image registra-
tion technique to facilitate classification, targeting, and monitoring of tumor and normal tissue. Int J Radiat Oncol 
Biol Phys. 2006;64(4):1245–54.

	 8.	Nithiananthan S, Brock KK, Daly MJ, Chan H, Irish JC, Siewerdsen JH. Demons deformable registration for 
CBCT-guided procedures in the head and neck: convergence and accuracy. Med Phys. 2009;36(10):4755–64.

	 9.	Østergaard Noe K, De Senneville BD, Elstrøm UV, Tanderup K, Sørensen TS. Acceleration and validation of 
optical flow based deformable registration for image-guided radiotherapy. Acta Oncol. 2008;47(7):1286–93.



123    Li et al.: Deformable registration for IGRT	 123

Journal of Applied Clinical Medical Physics, Vol. 12, No. 4, Fall 2011

	 10.	Holden M. A review of geometric transformations for nonrigid body registration. IEEE Trans Med Imaging. 
2008;27(1):111–28.

	 11.	Vercauteren T, Pennec X, Perchant A, Ayache N. Diffeomorphic demons: efficient non-parametric image registra-
tion. Neuroimage. 2009;45(1 Suppl):S61–S72.

	 12.	Klein S, Staring M, Murphy K, Viergever MA, Pluim JP. elastix: a toolbox for intensity-based medical image 
registration. IEEE Trans Med Imaging. 2010;29(1):196–205.

	 13.	Chen T, Kim S, Goyal S, et al. Object-constrained meshless deformable algorithm for high speed 3D nonrigid 
registration between CT and CBCT. Med Phys. 2010;37(1):197–210.

	 14.	Loeckx D, Slagmolen P, Maes F, Vandermeulen D, Suetens P. Nonrigid image registration using conditional 
mutual information. IEEE Trans Med Imaging. 2010;29(1):19–29.

	 15.	Pluim JPW, Maintz JB, Viergever MA. Mutual-information-based registration of medical images: a survey. IEEE 
Trans Med Imaging. 2003;22(8):986–1004.

	 16.	Dengwang L, et al. Multiscale registration for noisy medical images, vol. VI. In: Wang J, editor. 2010 International 
Conference on Computer Design and Applications (ICCDA). Proceedings of the 2010 International Conference; 
2010 Jun 25-27; Hebei, China. IEEE; 2010. on Computer Design and Applications, 2010. p. 469-73.

	 17.	Pluim JPW, Maintz JB, Viergever MA. Image registration by maximization of combined mutual information and 
gradient information.  IEEE Trans Med Imaging. 2000;19(8):809–14.

	 18.	Chan TF and Esedoglu S. Aspects of total variation regularized L1 function approximation. SIAM J Appl Math. 
2005;65(5):1817–37.

	 19.	Chen T, Yin W, Zhou XS, Comaniciu D, Huang TS. Total variation models for variable lighting face recognition. 
IEEE Trans Pattern Anal Mach Intell. 2006;28(9):1519–24.

	 20.	Yin W, Chen T, Zhou SX, Chakraborty A. Background correction for cDNA microarray images using the TV+L1 
model. Bioinformatics. 2005;21(10):2410–16.

	 21.	Buades A, Le TM, Morel JM, Vese LA. Fast cartoon + texture image filters. IEEE Trans Image Process. 
2010;19(8):1978–86.

	 22.	Goldfarb D and Yin W. Second-order cone programming methods for total variation-based image restoration.  
SIAM J Sci Comput. 2006;27:622–45.

	 23.	Goldfarb D and Yin W. Parametric maximum flow algorithms for fast total variation minimization. SIAM J Sci 
Comput. 2009;31:3712–43.

	 24.	Pereira SMP, Hipwell JH, McCormack VA, et al. Automated registration of diagnostic to prediagnostic x-ray 
mammograms: evaluation and comparison to radiologists’ accuracy.  Med Phys. 2010;37(9):4530–39.

	 25.	Studholme C, Hill DLG, Hawkes DJ.  An overlap invariant entropy measure of 3D medical image alignment. 
Pattern Recognition. 1999;32:71–86.

	 26.	Sousa Santos B, Ferreira C, Silva JS, Silva A, Teixeira L. Quantitative evaluation of a pulmonary contour seg-
mentation algorithm in x-ray computed tomography images. Acad Radiol. 2004;11(8):868–78.

	 27.	Murphy MJ, Wei Z, Fatyga M, et al. How does CT image noise affect 3D deformable image registration for 
image-guided radiotherapy planning? Med Phys. 2008;35(3):1145–53.

	 28.	Wang J, Xing L, Anwei C. Noise correlation in CBCT projection data and its application for noise reduc-
tion in low-dose CBCT [abstract]. SPIE Medical imaging 2009: Physics of Medical Imaging, Vol. 7258. 
doi:10.1117/12.813891.

	 29.	Rueckert D, Sonoda LI, Hayes C, Hill DL, Leach MO, Hawkes DJ. Nonrigid registration using free-form defor-
mations: application to breast MR images. IEEE Trans Med Imaging. 1999;18(8):712–21.

	 30.	Wang L, Hayes S, Paskalev K, et al. Dosimetric comparison of stereotactic body radiotherapy using 4D CT and 
multiphase CT images for treatment planning of lung cancer: evaluation of the impact on daily dose coverage. 
Radiother Oncol. 2009;91(3):314–24.

	 31.	Sonke JJ, Rossi M, Wolthaus J, van Herk M, Damen E, Belderbos J. Frameless stereotactic body radiotherapy for lung 
cancer using four-dimensional cone beam CT guidance. Int J Radiat Oncol Biol Phys. 2009;74(2):567–74.


