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Lung adenocarcinoma is the most common histological subtype of lung cancer which
causes the largest number of deaths worldwide. Exploring reliable prognostic
biomarkers based on biological behaviors and molecular mechanisms is essential
for predicting prognosis and individualized treatment strategies. Ferroptosis is a
recently discovered type of regulated cell death. We downloaded ferroptosis-
related genes from the literature and collected transcriptome profiles of lung
adenocarcinoma from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) to construct ferroptosis-related gene-pair matrixes. Then, we
performed the least absolute shrinkage and selection operator regression to build
our prognostic ferroptosis-related gene-pair index (FRGPI) in TCGA training matrix.
Our study validated FRGPI through ROC curves, Kaplan–Meier methods, and Cox
hazard analyses in TCGA and GEO cohorts. The optimal cut-off 0.081 stratified
patients into low- and high-FRGPI groups. Also, the low-FRGPI group had a
significantly better prognosis than the high-FRGPI group. For further study, we
analyzed differentially expressed ferroptosis-related genes between high- and low-
FRGPI groups. Gene set enrichment analysis (GSEA) enrichment maps indicated that
“cell cycle,” “DNA replication,” “proteasome,” and “the p53 signaling pathway” were
significantly enriched in the high-FRGPI group. The high-FRGPI group also presented
higher infiltration of M1 macrophages. Meanwhile, there were few differences in
adaptive immune responses between high- and low-FRGPI groups. In conclusion,
FRGPI was an independent prognostic biomarker which might be beneficial for guiding
individualized tumor therapy.
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INTRODUCTION

Lung cancer is the second most frequent cancer and causes the largest number of deaths
worldwide, acccounting to 11.4 percent of new cases and 18 percent of cancer-related deaths
in 2020 (Ferlay et al., 2020). Among the subtypes of lung cancer, non-small-cell lung cancer
(NSCLC) accounts for the largest part and occupies 85 percent of lung cancer cases. Specifically,
lung adenocarcinoma of NSCLC, representing 60 percent, is the most common histological
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subtype (Arbour and Riely, 2019). Smoking is the acknowledged
main risk factor for lung cancer, nevertheless, more possibly
leading to squamous carcinoma than adenocarcinoma.

On the basis of histological types, clinical stages, and genetic
alterations, integrative treatments are essential for NSCLC.
Surgery is the first choice for localized stage I/II/IIIA/IIIB
(T3N2M0) NSCLC. Radiotherapy achieves curative intents for
people who are not eligible for surgery and is helpful for
symptomatic relief in smaller doses. Platinum-based
chemotherapy, a traditional non-surgical treatment, is still a
choice of first line in advanced NSCLC. Due to increasing
molecular targets investigated, targeted therapy is a preferred
treatment for stage IV NSCLC, especially adenocarcinoma.
Meanwhile, immune checkpoint inhibitors are newly regarded
as second-line therapy in advanced NSCLC (Zhai et al., 2020).

Localized, regional, and metastatic NSCLC, respectively,
represent 63%, 35%, and 7% 5-year survival rate (Howlader
et al., 2020, based on November 2019 SEER data submission,
posted on the SEER website, April 2020). More accurate and
noninvasive prognostic biomarkers are needed. Exploring
prognostic biomarkers based on biological and molecular
mechanisms is essential for individualized treatment strategies.

Ferroptosis is a newly found type of regulated cell death
(RCD), distinct from apoptosis, necroptosis, and pyroptosis
(Dixon et al., 2012). Ferroptosis is a reactive oxygen species
(ROS)-inducing cell death form and exhibits two main
biochemical processes, ferrous iron accumulation and lipid
peroxidation (Homma et al., 2019). Excessive ferrous iron
(Fe2+), with hydrogen peroxide, generates hydroxyl radicals
through the Fenton reaction and then reacts with
polyunsaturated fatty acids (PUFAs) to induce lipid
peroxidation. Lipid peroxidation ultimately causes membrane
oxidative damage to accomplish ferroptosis.

Ferroptosis occurs through two typical pathways, the
transporter-dependent pathway and the enzyme-regulated
pathway (Tang et al., 2021). System Xc

-, composed of solute
carrier family 7 member 11 (SLC7A11) and solute carrier family 3
member 2 (SLC3A2), uptakes cystine to sustain glutathione
(GSH) production. Glutathione peroxidase 4 (GPX4) acts as a
ferroptosis repressor and reduces lipid peroxidation while
converting GSH to oxidized glutathione (GSSG).

Recently, there is growing evidence that oncology patients
benefit from triggering ferroptosis of cancer cells during
traditional treatments (Dixon et al., 2012; Wu et al., 2020).
Classic ferroptosis inducers (FINs), such as erastin, sorafenib,
cisplatin, RSL3, and FIN56, inhibit SLC7A11 activity, deplete
GSH, or inhibit GPX4 activity to promote ferroptosis. Triggering
ferroptosis in cancer shows the drug-resistance reversal effect and
the synergistic sensitization effect with chemotherapy, target
therapy, radiotherapy, and immunotherapy (Wu et al., 2020).

Several ferroptosis-related gene prognostic models were
detected in multiple types of cancer. In our research, based on
patients with lung adenocarcinoma, we focused on molecular
mechanisms and signaling pathways of ferroptosis. Utilizing
ferroptosis-related genes to build ferroptosis-related gene pairs
(FRGPs) instead of single genes, we finally constructed an
individualized prognostic signature biomarker of lung

adenocarcinoma. On this basis, we stratified the risk of lung
adenocarcinoma patients to predict prognoses and explore
therapies.

MATERIALS AND METHODS

Data Acquisition and Processing
We collected transcriptome profiles of lung adenocarcinoma
(LUAD) available in the TCGA database (https://portal.gdc.
cancer.gov/) on 6 July 2021.

Preprocessed and aligned RNA-Seq samples were downloaded
by selecting HTSeq-Counts as the workflow type on the portal.
Clinical and pathological information related to the
TCGA–LUAD cohort was retrieved from the cBioportal
website (https://www.cbioportal.org) with the “cdgsr” package
(Cerami et al., 2012; Jacobsen, 2015).

Meanwhile, we collected two microarray datasets and
corresponding clinical information, including GSE68465 and
GSE72094, from Gene Expression Omnibus using the
“GEOquery” package (https://www.ncbi.nlm.nih.gov/geo/)
(Davis and Meltzer, 2007). These two affymetrix microarrays
were preprocessed using the RMA method (R package “affy”)
(Gautier et al., 2004).

Removing samples without overall survival (OS) information
or with an OS time of 0 and converting the TNM stage to AJCC
staging groups, the TCGA–LUAD cohort (N = 306) was used as
the training cohort, whereas GSE68465 (N = 441) and GSE72094
(N = 398) were used as the validation cohorts (Supplementary
Table S1).

The specific data processing and research flow are shown in
Figure 1.

Construction of the Training Matrix
One ferroptosis-related gene set was downloaded from FerrDb
(http://www.zhounan.org/ferrdb/index.html), the world’s first
database of ferroptosis regulators, markers, and associations
(Zhou and Bao, 2020). There were 108 drivers annotated as
genes that promoted ferroptosis, 69 suppressors that prevented
ferroptosis, and 111 markers that indicated the occurrence of
ferroptosis. Removing multi-annotated genes and selecting
ferroptosis-related genes measured by using all the three
cohorts, 209 genes were included in the ferroptosis-related
gene set (Supplementary Figure S1).

The mean expression value of replicated genes was
calculated. We defined the combination of two ferroptosis-
related genes (FRG-1 and FRG-2) as a ferroptosis-related
gene pair (FRGP). In every specific sample, 209 FRGs were
compared by the gene expression level with each other to build
21736 FRGPs and generate a score for each FRGP. An FRGP
score of 1 was assigned if FRG-1 was less than FRG-2.
Otherwise, the FRGP score was 0. This gene-pair-based
approach calculated the FRGP score based totally on the
gene expression value of each individual sample and could be
applied without normalization.

To reduce biases and be meaningful for subsequent analyses,
some FRGPs counting 0s or 1s in more than 80% samples were
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filtered out. Finally, we got 6374 FRGPs as columns and 306
samples as rows to form the training matrix.

Prognostic Ferroptosis-Related Gene-Pair
Index Signature Construction
The least absolute shrinkage and selection operator (LASSO) is a
statistical method to reduce data dimensionality. We applied the
LASSO regression operation with the R package “glmnet” and
“survival” in the TCGA FRGP matrix to construct a prognostic
ferroptosis-related gene-pair index (FRGPI)(Simon et al., 2011).
Insignificant variables whose coefficients became zero and any
collinear variables were removed. 10-fold cross validation (CV)
divided data into ten equal parts, nine parts as the training set and
the remaining one part as the validation part. When partial
likelihood deviance was the smallest, we got the minimum of
lambda and nine gene pairs as our best FRGPI model. The
prognostic index signature is expressed as FRGPI risk score =
∑ni (FRGPi *coefi) (i = 1,2,3 . . . . . . 9, n = 9, where n is the number
of FRGPs, FRGPi is the score (0 or 1) of the ith FRGP, and coefi is
the regression coefficient of the ith FRGP).

Validation of FRGPI as a Prognostic
Biomarker
First, we used the R package “survivalROC” to draw ROC curves
and calculated the AUC values in the training and validation

cohorts. AUC values greater than 0.5 and closer to 1 indicated the
prognostic ability of FRGPI.

Second, we used the Kaplan–Meier method to compare
survival outcomes between high- and low-FRGPI risk score
groups in training and validation cohorts. The optimal cut-off
value, determined based on the best balance of sensitivity and
specificity to achieve the best AUC in the training cohort, was
investigated using the ROC curves with the R package
“survivalROC,” and “survminer” (Weiss et al., 2003).

Validation of FRGPI as an Independent
Prognostic Factor
After verification of the FRGPI significantly stratifying patients
into low- and high-risk groups, we performed univariate and
multivariate Cox hazard analyses to validate FRGPI as an
independent prognostic factor. The hazard ratio (HR) in
survival analyses less than 1 meant that the presence of the
factor was protective, whereas the hazard ratio more than 1
was harmful.

Analysis of Differentially Expressed
Ferroptosis-Related Genes and MKI67
Between High- and Low-FRGPI Groups
After constructing and validating FRGPI, we compared the
expression of ferroptosis-related genes between high- and low-

FIGURE 1 | Data processing and research process.
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FRGPI groups in the TCGA cohort and GEO validation cohorts,
using the Wilcoxon rank-sum test and the reshape2 package
(Wickham, 2007). Meanwhile, we drew the boxplots for
visualization using the ggplot2 package (Wickham, 2009).In
addition, we compared MKI67 expression between high- and
low-FRGPI groups in the three cohorts.MKI67 encodes a nuclear
protein Ki-67, which is a commonly used marker for cell
proliferation.

Gene Set Enrichment Analysis for Kyoto
Encyclopedia of Genes and Genomes
Gene set enrichment analysis (GSEA) determines whether the
gene sets, not single genes, present differences between different
biological status groups and verifies that the gene sets are
enriched in one specific clinical group (Subramanian et al.,
2005). The gene sets are predefined by previous experiments
and function annotations.

We chose gene sets from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway which is a collection of pathwaymaps
representing molecular interactions, reactions, and relation
networks (Kanehisa et al., 2016).

We performed GSEA–KEGG analyses and drew enrichment
plots in the TCGA cohort and GEO validation cohorts, using
“c2.cp.kegg.v7.4.entrez.gmt” and the R package “clusterProfiler,”
and “ggplot2,” defining p value < 0.05 and q value < 0.05 as the
filtering criteria (Yu et al., 2012).

Calculation of the Infiltration Level of 22
Kinds of Immune Cells
Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT) is a deconvolution method for
characterizing the cell composition of complex tissues from
gene expression profiles (Newman et al., 2015). We made 22
kinds of immune cells as the target characterizing composition.
We operated the “CIBERSORT” algorithm with the “Leukocyte
signature matrix” (Newman et al., 2015). Based on the
composition of 22 kinds of immune cells, we screened out
what kind of immune cells differently infiltrated between high-
and low-FRGPI groups.

Statistical Analysis
All statistical analyses were based on R Programming Language
software (Rx64 3.3.3). The online website “www.genome.jp/kegg/
” was used for GSEA–KEGG gene sets. The website “cibersortx”
offered thoughts for CIBERSORT analyses in R software.

RESULTS

Prognostic Ferroptosis-Related Gene-Pair
Index Construction
First, we downloaded one ferroptosis-related gene set including
209 genes. Two genes as one couple, any couple of the 209 genes
could be created. So, 209 genes formed 21736 FRGPs in every
individual sample. To calculate each FRGP in every sample, if the

FRG-1 value was less than the FRG-2 value, the FRGP score was
1. Otherwise, the FRGP score was 0. Then, we filtered out FRGPs
with constant values (0 or 1) in TCGA or GEO datasets. Finally,
we got 6374 FRGPs in every individual sample. In TCGA training
cohort, we used 306 samples as rows and 6374 FRGP scores as
columns to make up the training FRGP matrix.

The training FRGP matrix was used for evaluating the
relationship between FRGPs and overall survival rates
applied using the LASSO regression operation. The lambda
and coef diagrams of FRGPs (Figure 2A) were plotted using the
LASSO algorithm. With the increase in the lambda value, the
coefficients of some FRGPs decreased to zero, which meant
that the scores of these FRGPs did not affect the model. We
then used 10-fold CV to calculate the partial likelihood
deviance of the model (Figure 2B). The minimum deviance
exported the best model. The best model included nine gene
pairs. Finally, we constructed a prognostic FRGPI signature
with nine FRGPs and the corresponding coef values
(Figure 2C).

Verification of FRGPI as a Prognostic
Biomarker
The time-dependent ROC curves with AUC values of the training
and validation cohorts are all presented in Figures 2D,F,G. All
the AUC values were more than 0.5 and even greater than 0.7 in
training and validation cohorts, indicating that FRGPI had a
favorable prognostic ability.

In the training cohort, the AUC value reached 0.773 for
1606 days. We defined the optimal cut-off 0.081 in the curve
with the best AUC and “1606” as the time point (Figure 2E).
0.081 was used as a cut-off for FRGPI to stratify patients into the
low- or high-FRGPI risk score group.

We then performed Kaplan–Meier curves between high- and
low-FRGPI groups. All three curves showed that the low-FRGPI
group had a significantly better prognosis than the high-FRGPI
group (p < 0.01, Figures 3A–C).

To further validate FRGPI as a prognostic biomarker, the low-
FRGPI group also had significantly better prognoses than the
high-FRGPI group for 2 and 5 years (p < 0.05, Supplementary
Figures S2A–F). In the early-stage LUAD, all the Kaplan–Meier
curves showed that the low-FRGPI group had a significantly
better prognosis (p < 0.01, Supplementary Figures S2G–I).
Additionally, ever-smokers with low FRGPI scores owned a
better prognosis (p < 0.05, Supplementary Figure S3).
Overall, FRGPI successfully stratified the risk of LUAD
patients in all the training and validation sets.

Validation of FRGPI as an Independent
Prognostic Factor
Univariate regression results showed that FRGPI was statistically
significant in the training and validation cohorts (p < 0.01,
Figures 3D–F). The multivariate regression results showed
that FRGPI was an independent prognostic factor in all three
cohorts (p < 0.05, Figures 3G–I). All univariate and multivariate
results revealed that the high-FRGPI group matched with a worse
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prognosis, with the HR and 95% confidence interval HR of
FRGPI more than 1.

In the multivariate regression, it was shown that our FRGPI
could be as good as stage III vs. stage I in stratifying patients.
Patients whose cancer has progressed to stage III, especially stage
IIIB, could hardly get radical surgical therapy. The median PFS of
these patients is about 10 months (Ryan et al., 2019).

Analysis of Differentially Expressed
Ferroptosis-Related Genes and MKI67
Between High- and Low-FRGPI Groups
Our FRGPI included 16 ferroptosis-related genes. In addition,
SLC7A11 as the main target of FINs was added. We compared
the expression of 17 ferroptosis-related genes and MKI67 between
high- and low-FRGPI groups (p < 0.05, Figures 4A–C). In training
and validation cohorts at the same time, solute carrier family 2
member 1 (SLC2A1), gelsolin-like actin-capping protein (CAPG),
ribonucleotide reductase regulatory subunit M2 (RRM2), SLC7A11,
andMKI67were significantly up-regulated in the high-FRGPI group.
On the contrary, we found GLS2 and phosphatidylethanolamine-
binding protein 1 (PEBP1) were down-regulated in the high-FRGPI
group in all three cohorts. The high-FRGPI group was marked with

significantly higher MKI67 expression and exhibited higher cancer
proliferation potential.

GSEA Based on High- and Low-FRGPI
Groups
FRGPI separated patients into high and low groups. The
differences of enriched GSEA–KEGG pathways between the two
groups are shown in Figures 4D–F. There was no enriched KEGG
pathway in the low-FRGPI group in the training and validation
cohorts at the same time. Conversely, we found that “KEGG CELL
CYCLE,” “KEGG DNA REPLICATION,” “KEGG
PROTEASOME,” and “KEGG P53 SIGNALING PATHWAY”
were significantly enriched in the high-FRGPI group in all three
cohorts (p < 0.05, Figures 4D–F). We inferred that the consistently
enriched pathways in the high-FRGPI group in part played
important roles in the worse prognosis.

High-FRGPI Group Presented Higher M1
Macrophage Infiltration
The differences of infiltration levels of 22 kinds of immune cells
are shown in Figures 4G–I. We found thatM1macrophages were

FIGURE 2 |Building a ferroptosis-related gene-pair index (FRGPI) in the training set and verifying FRGPI in the ROC curves. (A) The diagram of lambda and coef. (B)
Performing 10-fold CV to calculate the partial likelihood deviance corresponding to different models. The deviance was the smallest when nine gene pairs were included.
Theminimum of lambdawas 0.1115. (C)Our prognostic FRGPI wasmade up of nine FRGPs and corresponding coef values. (D) The time-dependent ROC curves of the
training set. (E)We defined the optimal cut-off 0.081 in the training set curve with the best AUC and “1606” as the time point. (F,G) Time-dependent ROC curves of
validation cohorts.
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significantly up-regulated in the high-FRGPI group in all three
cohorts; however, activated CD4+ cells, CD8+ cells, dendritic cells,
plasma cells, and natural killer cells did not present different
infiltration levels. There were few differences in adaptive immune
responses between high- and low-FRGPI groups.

DISCUSSION

We built one prognostic model in lung adenocarcinoma
consisting of nine ferroptosis-related gene pairs. The 9 gene
pairs include 16 individual genes which participate in multiple
crucial molecular mechanisms of ferroptosis and tumorigenesis.
Then, we found that SLC2A1, PEBP1, CAPG, RRM2, SLC7A11,
and GLS2 differentially expressed between high- and low-FRGPI
groups in all three datasets. Down-regulation of SLC2A1 can
suppress the progression of lung adenocarcinoma (Wang et al.,
2017). PEBP1 binds to ALOX15, which is essential for ferroptosis,
to promote lipid peroxidation and induce ferroptosis (Wenzel
et al., 2017). CAPG and RRM2, could inhibit ferroptosis after
stimulation of erastin (Zhang et al., 2019).

Both glutaminase 1 (GLS1, kidney type) and glutaminase 2
(GLS2, liver type) catalyze the conversion of glutamine into
glutamate. Nevertheless, only GLS2 is involved in the up-
regulation of ferroptosis by inhibiting the production of GPX4

and promoting downstream lipid ROS manufacture (Lukey et al.,
2019; Tang et al., 2021). Meanwhile, increased nuclear
translocation of GLS2 has been reported to stop the cell cycle
at the G2/M stage to prevent proliferation (El-Deiry, 2016).
Overexpression of GLS2 in human lung, liver, and colon
cancer cells has been proved to induce significant inhibitions
in tumor growth and proliferation (Suzuki et al., 2010).
Therefore, as shown in our KEGG results, “KEGG CELL
CYCLE” was not enriched in the group in which GLS2 was
up-regulated. Overall, up-regulation of GLS2 in the low-FRGPI
group might be associated with promoting cancer ferroptosis and
preventing tumor proliferation.

The GSEA–KEGG results revealed that the four pathways,
“KEGG CELL CYCLE,” “KEGG DNA REPLICATION,” “KEGG
PROTEASOME,” and “KEGG P53 SIGNALING PATHWAY,”
were enriched in the high-FRGPI group. “Cell cycle” and “DNA
replication” gene sets were associated with cell proliferation and
cancer aggressiveness. At the same time, the high-FRGPI group
was also marked with higherMKI67 expression. The high-FRGPI
group suffered more risk of tumor progression and might have a
worse prognosis.

As previously observed, a high infiltration level of M1
macrophages might be associated with a better survival
outcome in NSCLC patients (Ma et al., 2010). Contradictorily,
in our study, the high-M1/FRGPI group demonstrated a worse

FIGURE 3 | Verification of FRGPI as an independent prognostic biomarker. (A–C) Kaplan–Meier curves between high- and low-risk FRGPI groups in training and
validation sets. (D–F) Univariate Cox analyses of the three cohorts. (G–I) Multivariate Cox analyses of the three cohorts.
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outcome in all three datasets. This, at least, was not a coincidence.
Recent reports in breast cancer showed that “M1” high tumors
were definitely associated with more aggressive clinical features
(Lu and Ma, 2020; Oshi et al., 2020). In our research, we also
detected that the high-M1/FRGPI group presented a higher
MKI67 expression and enriched “cell cycle” and “DNA
replication” gene sets, which meant that the high-M1/FRGPI
group might have more aggressive cancer cells and advanced cell
proliferation. Meanwhile, our CIBERSORT results revealed that
the high-M1/FRGPI group did not present favorable immune
activities to fight with aggressive cancer cells. Overall, the anti-
cancer tumor immune microenvironment could not
counterbalance the biologically aggressive features of the high-
M1/FRGPI group, possibly leading to the worse survival outcome
of the high-M1/FRGPI group.

We detected that SLC7A11 was up-regulated in the high-
FRGPI group. Cystine transporter xCT encoded by SLC7A11
exports intracellular glutamate and imports extracellular cystine
for glutathione biosynthesis and downstream GPX4 to reduce
lipid peroxidation. Class I FINs aim at inhibiting SLC7A11
activity to trigger ferroptosis in cancer cells. In addition, class
I FINs, such as erastin, synergistically enhance the anti-tumor

effect of classical cisplatin chemotherapy in NSCLC (Guo et al.,
2018). Superabundant antioxidants in cancer build a huge
obstacle to radiotherapy. Class I FINs deplete GPX4 to
promote lipid peroxidation and enhance radio sensitivity. In
treating lung adenocarcinoma, erastin and x-ray irradiation
reinforce each other (Shibata et al., 2019). In brief, the up-
regulation of SLC7A11 in the high-FRGPI group with a worse
prognosis indicated one treatment strategy to particularly inhibit
SLC7A11 and activate ferroptosis. The strategy focused on using
class I FINs to inhibit SLC7A11, induce ferroptosis, and
synergistically work together with traditional chemotherapy
and radiotherapy for the high-FRGPI group to gain a better
prognosis.

In conclusion, we built a robust gene-pair prognostic model of
lung adenocarcinoma on the basis of ferroptosis mechanisms. We
applied this model to stratify patients into low- and high-FRGPI
groups. Moreover, we explored the differences of the biological
pathways and tumor immune microenvironment between high-
and low-FRGPI groups. Previously, based on candidate
prognostic genes, Li et al. (2019), Al-Dherasi et al. (2021), and
Liu et al. (2021) identified prognostic signatures in lung
adenocarcinoma. These models included 16 genes, 7 genes,

FIGURE 4 | Differences of biological characteristics between high- and low-FRGPI groups. We used the following convention for symbols indicating statistical
significance: *: p < 0.05, **: p < 0.01, ***: p < 0.001, and ****: p < 0.0001. (A–C) ferroptosis-related genes andMKI67 for the expression level comparisons in the three
cohorts. (D–F) Enriched GSEA–KEGG pathways in the three cohorts. (G–I) Infiltration levels of 22 kinds of immune cells in the three cohorts.
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and 4 genes, respectively. Liu et al. (2020) identified a 14-gene
signature in lung adenocarcinoma based on differentially
expressed genes between tumor and normal tissues. However,
this signature was short of validations in independent datasets.
Liang et al. (2021) also established one 7-gene prognostic model
based on ferroptosis-related genes in lung adenocarcinoma. The
AUC of 5-year survival was 0.709 in Liang et al.’s training cohort.
Our signature utilized gene pairs to overcome technical problems
regarding the comparison between different datasets. The AUC of
our signature was 0.773 in the training cohort. In addition to the
KEGG pathway enrichment analysis in Liang et al.’s model, we
focused on the differentially expressed genes and tumor immune
microenvironment. We supposed SLC7A11 as the target of FINs
might have something to do with outcomes and guide us to
trigger ferroptosis during traditional treatments for better
prognoses.

Although we verified FRGPI as an independent prognostic
biomarker, our study exposed limitations. Our FRGPI was based
on large-scale network datasets and lacked additional local
patient data. We used ferroptosis-related gene pairs as
FRGPI’s components to avoid normalization, but still faced
complex intrinsic and extrinsic interference factors which
might affect FRGPI accuracy. Meanwhile, the specific
functions and biological pathways of genes and gene pairs in
FRGPI need further investigation. Moreover, prospective studies
and experiments are required for further validations of FRGPI
and careful considerations of FRGPI for individual therapies.
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