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Abstract: Advances in single-cell RNA sequencing (scRNA-Seq) have allowed for comprehensive
analyses of single cell data. However, current analyses of scRNA-Seq data usually start from
unsupervised clustering or visualization. These methods ignore prior knowledge of transcriptomes
and the probable structures of the data. Moreover, cell identification heavily relies on subjective
and possibly inaccurate human inspection afterwards. To address these analytical challenges, we
developed SCINA (Semi-supervised Category Identification and Assignment), a semi-supervised
model that exploits previously established gene signatures using an expectation–maximization
(EM) algorithm. SCINA is applicable to scRNA-Seq and flow cytometry/CyTOF data, as well as
other data of similar format. We applied SCINA to a wide range of datasets, and showed its
accuracy, stability and efficiency, which exceeded most popular unsupervised approaches. SCINA
discovered an intermediate stage of oligodendrocytes from mouse brain scRNA-Seq data. SCINA also
detected immune cell population changes in cytometry data in a genetically-engineered mouse model.
Furthermore, SCINA performed well with bulk gene expression data. Specifically, we identified a
new kidney tumor clade with similarity to FH-deficient tumors (FHD), which we refer to as FHD-like
tumors (FHDL). Overall, SCINA provides both methodological advances and biological insights from
perspectives different from traditional analytical methods.

Keywords: single-cell RNA-seq; CyTOF; SCINA; HLRCC; RCC; renal cell carcinoma; fumarase;
fumarate hydratase

Genes 2019, 10, 531; doi:10.3390/genes10070531 www.mdpi.com/journal/genes

http://www.mdpi.com/journal/genes
http://www.mdpi.com
https://orcid.org/0000-0003-2717-0256
http://dx.doi.org/10.3390/genes10070531
http://www.mdpi.com/journal/genes
https://www.mdpi.com/2073-4425/10/7/531?type=check_update&version=2


Genes 2019, 10, 531 2 of 17

1. Introduction

Single cell profiling techniques such as single cell sequencing and cytometry are powerful tools
for comprehensive and high-resolution characterization of cellular heterogeneities observed in tumors,
brain, and other tissues. Single cell RNA-Seq (scRNA-Seq) measures the mRNA expression of several
thousand genes from cells numbering a few hundred up to about 1 million, depending on the
particular scRNA-Seq protocol, such as Smart-Seq [1] or the 10× Genomics Chromium [2]. Cytometry
experiments such as FACS and the recent variation, CyTOF [3], can measure the expression of about
10–50 protein markers of up to 1 million cells. Many successful statistical methods, for example,
Seurat [4], SINCERA [5], PhenoGraph [6] and SNN-Cliq [7] have been developed to identify cell
types from these high-dimensional profiling data with dimension reduction algorithms, unsupervised
clustering and visualization techniques.

However, there are several major issues associated with unsupervised approaches.
(i) Unsupervised algorithms such as K-means clustering (KC), t-SNE, etc., only cluster the cells
into groups. These cell groups are then assigned to specific cell types based on human inspection of
signature genes’ expression, which is often labor-intensive and subjective, especially on borderline
cases (Figure 1a). For example, Rosenberg et al.’s SPLiT-seq paper manually merge 73 clusters into 9
cell types via visual examination of the expression of cell markers [8]. (ii) Furthermore, many cell types
are identified by more than one gene (Figure 1b). For example, CD4 + T cells need to be identified
by the expression of both CD3 and CD4. These signature genes need to be manually weighed when
assigning cell types, leading to even more bias and obscurity. (iii) Thirdly, cell type clustering and
assignment are split into two stages, where unsupervised cell clustering in the first stage of analysis
ignores prior knowledge of major existing cell populations and their transcriptional features. This leads
to suboptimal performance especially when new cell types and subtypes are present in the sequenced
cell pool, as they cannot be readily differentiated in the results of unsupervised clustering. (iv) Lastly,
in addition to studying one experimental condition, researchers often need to assess changes between
conditions in terms of the population abundances of different types of cells. Such analyses are less
amenable to unsupervised approaches, as the cell groups and cell types are defined ad hoc each time,
without justification of the reproducibility of their definitions between conditions.

With the advancements made in high-throughput biomedical research, prior knowledge of cell
types and their transcriptomic features has become widely available in many cases. For example, a
number of cell type-specific signature sets have been published, such as Immunome [9] and eTME [10].
Large amounts of RNA-Seq datasets of sorted cell populations are also available from databases like the
Expression Atlas (https://www.ebi.ac.uk/gxa/home), which could be analyzed to define gene signatures.
Alternatively, signatures could also be flexibly defined from researchers’ own pilot or cross-validation
experiments. These resources could be leveraged by an automated algorithm for both cluster detection
and cell type assignment of single cell profiling data in a supervised manner (Figure 1c).

In this study, we developed the Semi-supervised Category Identification and Assignment
(SCINA) algorithm. The pseudo-code of SCINA is shown in Figure S1. Implemented by an
expectation-maximization model, SCINA leverages prior reference information and simultaneously
performs cell type clustering and assignment for known cell types in a targeted manner. The prior
knowledge includes a group of signature genes that are characteristically highly expressed in one type
of cell, but not in other cell types. With the prior reference, SCINA searches for a segregation of the
pool of profiled cells. Each subpopulation of cells highly expresses signature gene(s) specified by the
researcher. The SCINA algorithm implements this by using a bi-modal distribution assumption of the
expression of the signature genes. The subpopulation of cells that do not highly express the marker
genes for any of the specified cell types will be designated as a novel cell type, whose exact identities
can be determined in follow-up studies. SCINA is also general and can be applied to patient-level
data for disease subtyping. Overall, SCINA addresses a critical research need for targeted cell type
and subtype dissection in different scenarios of single cell profiling applications, which has been
previously neglected.

https://www.ebi.ac.uk/gxa/home
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Figure 1. The Semi-supervised Category Identification and Assignment (SCINA) algorithm. (a) An 
illustrated t-SNE plot showing the problems often associated with discerning cell types based on 
clustering effect of t-SNE plots. (b) An illustrated heatmap showing the difficulties of manually 
assigning cell types based on signature genes when multiple signature genes are known for each cell 
type. (c) The rationale of SCINA. SCINA represent a supervised and automated approach for 
assigning cell types based on prior knowledge of signature genes and can directly arrive at detected 
cell types. The gene signatures could come from a variety of sources.  

2. Materials and Methods 

2.1. The SCINA Algorithm 

SCINA is regarded as semi-supervised because the prior knowledge of signature genes is built 
into the unsupervised estimation process. This is different from supervised learning, where the goal 
is to minimize a loss function to approximate the known labels of instances. But it is also different 
from un-supervised machine learning methods, as SCINA is carried out under a weak degree of 
supervision: which genes (signature genes) should be highly expressed in which types of cells is 
known. SCINA accepts a list of signature gene sets for a variety of cell types, and an expression 
matrix, which is assumed to have been pre-processed by the user with logarithmic transformation 
and/or any appropriate method of normalization if necessary. For each cell type, the signature can 
have one or more genes. The signature genes, by default, should be highly expressed in one particular 
cell type compared to all other cell types. Expression of genes that are characteristically lowly 
expressed in one cell type compared to the other cell types can be inverted so that the pseudo 
expression of this gene is high in that cell type. For example, let’s assume we have a group of cells 
with their cell types being (A, A, A, B), and their expression of a certain gene X being (5, 6, 4, 0). Let’s 
assume we know this gene X should be a low expression marker gene for cell type B. Therefore, 
SCINA will automatically calculate a pseudo expression of X, as low_X, which is (−5, −6, −4, 0). And 
the gene low_X is now a regular marker gene, whose high expression identifies the B cell type. The 
SCINA model assumes that there is a bimodal distribution for each signature gene, with the higher 
mode corresponding to the cell type(s), in which this gene is designated as a signature, and the lower 
mode corresponding to all the other cell types. In the pool of cells being analyzed by SCINA, the cells 

Figure 1. The Semi-supervised Category Identification and Assignment (SCINA) algorithm. (a) An
illustrated t-SNE plot showing the problems often associated with discerning cell types based on
clustering effect of t-SNE plots. (b) An illustrated heatmap showing the difficulties of manually
assigning cell types based on signature genes when multiple signature genes are known for each cell
type. (c) The rationale of SCINA. SCINA represent a supervised and automated approach for assigning
cell types based on prior knowledge of signature genes and can directly arrive at detected cell types.
The gene signatures could come from a variety of sources.

2. Materials and Methods

2.1. The SCINA Algorithm

SCINA is regarded as semi-supervised because the prior knowledge of signature genes is built
into the unsupervised estimation process. This is different from supervised learning, where the goal
is to minimize a loss function to approximate the known labels of instances. But it is also different
from un-supervised machine learning methods, as SCINA is carried out under a weak degree of
supervision: which genes (signature genes) should be highly expressed in which types of cells is
known. SCINA accepts a list of signature gene sets for a variety of cell types, and an expression matrix,
which is assumed to have been pre-processed by the user with logarithmic transformation and/or any
appropriate method of normalization if necessary. For each cell type, the signature can have one or
more genes. The signature genes, by default, should be highly expressed in one particular cell type
compared to all other cell types. Expression of genes that are characteristically lowly expressed in
one cell type compared to the other cell types can be inverted so that the pseudo expression of this
gene is high in that cell type. For example, let’s assume we have a group of cells with their cell types
being (A, A, A, B), and their expression of a certain gene X being (5, 6, 4, 0). Let’s assume we know this
gene X should be a low expression marker gene for cell type B. Therefore, SCINA will automatically
calculate a pseudo expression of X, as low_X, which is (−5, −6, −4, 0). And the gene low_X is now a
regular marker gene, whose high expression identifies the B cell type. The SCINA model assumes
that there is a bimodal distribution for each signature gene, with the higher mode corresponding to
the cell type(s), in which this gene is designated as a signature, and the lower mode corresponding
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to all the other cell types. In the pool of cells being analyzed by SCINA, the cells with overall low
signature expression (all signatures) are designated as “unknown” (default mode). However, SCINA
also implements a switch that turns off the searching of “unknown” cells. The technical details of
SCINA are specified in File S1.

2.2. Simulation Data Generation and Adding Noise to the Prior Information

We simulated 30 lists of signature genes, with the size of each list being an integer drawn from a
uniform distribution from 2 to 10. We assigned the number of cells to each simulated cell type, with
the number generated according to the following weighting distributions: (1) For the 30 (R) cell types,
we assigned weights

W(w1, w2, . . . , wR) (1)

generated randomly from a uniform distribution from 1 to 50. (2) For the 0th signature (the ‘unknown’
cell type) we assigned the weight.

w0 (2)

generated randomly from a uniform distribution from 5 to 15. We generated a total of N cells according
to this weighting distribution (N was either 4000 or 10,000 under different simulation conditions, details
described in the Results section). For each gene, the gene expression in the set of cells with this gene
being designated as a signature was simulated from a normal distribution, whose mean was drawn
from a uniform distribution between 3 and 5, and standard deviation drawn from another uniform
distribution between 10−5 and 3. For the expression of this gene in other cell types, the expression was
drawn from a normal distribution with mean drawn from a uniform distribution between 10−6 and
0.001, and standard deviation drawn from a uniform distribution between 10−5 and 3. Expression of
genes in the ‘unknown’ class of cells was also simulated from the second distribution.

Next we challenged the SCINA algorithm by adding noise to the signatures with four methods:
(1) When constructing the expression matrix, only R-n signatures were really used, while the other n
signatures were assigned with weights W as 0, thus they were not used and became “additional” gene
signatures for non-existing cell types. R is 30 and n is from 1 to 29; (2) We simulated the expression
matrix with all signatures but removed signatures of n cell types from the full list from the input of
signature lists. The goal is to test whether these cell types will be correctly assigned as ‘unknown’ or
incorrectly assigned to other known cell types. R is 30 and n is from 1 to 15, considering that researchers
should have an overall understanding of the major cell types in their experiments; (3) For each of n cell
types, we added noise genes randomly selected from non-signature genes into that signature to double
the size of the signature. The noise genes were not used to generate expression data matrix, yet they
were input as noise signature genes to obscure the valid signatures. We increased n from 1 to 29 in
29 tests in this scenario. (4) Simulation of dropouts. In the expression simulation of each signature
gene for each cell, we randomly performed dropout (expression is simulated from the ‘non-signature
gene’ mode with mean values close to 0) with a chance of n x 3.33% (n is from 1 to 10). The empirical
drop-out rates of single cell RNA-Seq data are typically 5% to 15%.

2.3. Stk4 KO Mouse Related Experiments

The generation of Stk4 KO mice and the flow cytometry experiments follow the protocols that we
have described elsewhere [11]. For the Complete Blood Count (CBC) analysis, blood was collected into
EDTA-coated MiniCollect blood collection tubes (Greiner Bio-One, Kremsmünster, Austria, catalog
#VG-450474) via submandibular vein puncture from unanesthetized mice. 40 µL of blood from each
mouse were aliquoted and analyzed by a Hemavet 950FS (Drew Scientific, Oxford, CT, USA). Using an
electrical impedance and focused flow cell system, the Hemavet quantified the total number of white
blood cells, eosinophils, neutrophils, basophils, and lymphocytes.
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2.4. UTSW FHD/FHD-Like Patient Cohort

RNA-seq and exome-seq samples of RCC patients from our University of Texas Southwestern
Medical Center (UTSW) Kidney Cancer Program (KCP) database including those mentioned in
Durinck et al. [12] were pre-processed and analyzed. FH-deficient tumors (FHD) and FHD-like RCCs
from 9 patients (XP108, XP515, UTSW85, UTSW86, UTSW87, XP878, XP552, UTSW88, and XP790)
were reviewed by two expert genitourinary pathologists at UTSW (P.K.) and Memorial Sloan Kettering
Cancer Center (V.R.). DNA and RNA were extracted and sequenced from their frozen tissue (5 patients)
or FFPE blocks (4 patients) as available.

These studies were performed under a protocol approved by the Institutional Review Board (IRB)
of the University of Texas Southwestern Medical Center that involves analyses of kidney cancer (or
control) samples donated by patients. Approval numbers: 012011-190 and STU-22013-052. The studies
were conducted in accordance with the Belmont Report and U.S. Common Rule guidelines.

2.5. Genomics Analysis Pipelines

9 RNA-seq libraries for the 9 UTSW FHD/FHDL patient tumors (one replicate per patient) were
prepared using the TruSeq RNA Sample Preparation kit (Illumina, San Diego, CA, USA). The libraries
were multiplexed three per lane and sequenced on the HiSeq 2500 platform to obtain, on average,
~100 million paired-end (2 × 75-bp) reads per sample. Tophat2 with parameters “–num-threads 12 -g
10 –library-type fr-unstranded” was used to align the RNA-seq reads to the human genome (hg19).
FeatureCounts [13] with parameters “-t exon -g gene_id -s 0 -T 12 –largestOverlap –minOverlap 3 -M
–fraction –ignoreDup -p -P -B -C” was used to count gene expression levels.

Exome capture was performed using the Agilent SureSelect Human All Exon kit (50 Mb) (Agilent
Technologies, Santa Clara, CA, USA). Exome capture libraries were sequenced on the HiSeq 2500
platform (Illumina) to generate 2 × 75-bp paired-end data. For each patient, we sequenced both the
malignant tissue and also the normal tissue as control. Quality of exome-seq data was examined by
NGS-QC-Toolkit [14]. Exome-seq reads were aligned to the hg19 genome by BWA-MEM [15]. Picard
was used to add read group information and mark PCR duplicates. A GATK toolkit [16–18] was used to
perform base quality score recalibration and local realignment around Indels. GATK HaplotypeCaller
with SNP and Indel recalibration, MuTect [19], and VarScan [20] were used to call SNPs and Indels.
Annovar was used to annotate SNPs and Indels [21]. Non-silent missense mutations predicted to be
deleterious by either SIFT or Polyphen2 as well as other loss-of-function mutations were kept. Somatic
mutations and germline mutations were annotated according to the mutation allele frequencies in the
tumor and normal samples. Mutations that had a background mutation frequency > 1% in any of
ExAC, Esp6500, 1000 Genome, HRC, or Kaviar were eliminated.

2.6. Statistical Analyses

All computations and statistical analyses were carried out in the R computing environment [22].
K-means clustering was carried out using the CellRanger software suite [2] (version 2.2.0). Reanalysis
functions provided by the package, including run_pca and run_kmeans_clustering, were applied with
default parameters, except for the enforcing of two clusters for the k-means clustering. For running
t-SNE, we used the Rtsne R package (version 0.13). We set dims = 2 and theta = 1, and used
default values for all other parameters. Seurat analysis was performed with the Seurat R toolkit
(version 3.0.0), the functions and parameters setting followed the tutorial provided on the Seurat
website [23]. SINCERA analysis was applied with the SINCERA R package (version 0.99.0), following
the vignette from the Xu Lab [24]. PhenoGraph analysis was applied with the Rphenograph R package
(version 0.99.1). The parameters were adjusted according to the dataset sizes to achieve the best
performances. FACS/CyTOF data were downloaded or generated as fcs files and converted to numerical
matrices with the R package cytofkit [25] (version 1.6.5). Gene ontology analyses were carried out
using the GOrilla server [26,27]. Principal Component Analysis (PCA) of RCC gene expression data
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was conducted with scaling. All statistical tests are two-tailed. For all boxplots appearing in this study,
box boundaries represent interquartile ranges, whiskers extend to the most extreme data point which
is no more than 1.5 times the interquartile range, and the line in the middle of the box represents
the median.

2.7. Availability of Data and Material

UTSW RCC patients were asked if they would specifically consent to placement of their raw
genomic data in a protected publicly accessible database. The RNA-Seq and exome-seq data of 5
consented UTSW FHD/FHD-like patients can be downloaded from the European Genome-phenome
Archive with accession number EGAS00001002646 through controlled access.

3. Results

3.1. Validation of the SCINA Model by Simulation Data

We first created a simulation dataset, by simulating 10,000 cells of 30 cell types and one additional
subset of cells as the novel cell type (Figure 2a). On this dataset, SCINA yielded a classification accuracy
(ACC) of 99.70%. Adjusted random index (ARI) is another metric for scoring the accuracy of categorical
classifications [28], with 100% representing perfect agreement and ~0% representing random guess.
Our result showed a 99.57% ARI between the true labels and the SCINA classifications. On the same
dataset, K-means clustering yielded an ACC of 54.60%, and an ARI of 59.25% (Figure S2a), and Seurat
provided an ACC of 82.30%, and an ARI of 62.13% (Figure S2b). SINCERA provided an ACC of
72.90%, an ARI of 57.74%, and for PhenoGraph the ACC was 84.93% and the ARI was 69.97%. We
created variations of the simulation settings, where high ACCs and ARIs for SCINA were consistently
observed (Table S1). As SCINA highly depends on prior information, we carefully investigated the
sensitivity on the prior information by adding noise with four methods including: (1) “additional”
gene signatures for non-existing cell types (Figure 2b, top panel, and Figure S4a,e); (2) simulated
expression matrix with all signatures but removal of a certain number of signatures from the input
signature gene lists (Figure 2b, upper middle panel, and Figure S4b,f); (3) ‘noise’ genes randomly
selected from non-signature genes into each signature (Figure 2b, lower middle panel, and Figure
S4c,g). (4) dropouts of reads in expression values of signature genes (Figure 2b, bottom panel, and
Figure S4d,h). Details of generation of noise were described in the method section. To our satisfaction,
the ACC and ARI of SCINA remained reasonably stable across all disturbances. In particular for
dropout, as SCINA relies on signature genes that are abundantly expressed, the real dropout rate is
likely to be much smaller than the range covered by this simulation. To further increase the difficulty
of the simulation, we carried out more analyses where we added two or three of these types of noises
simultaneously to the signatures, with the range of the total ‘obscured’ signature proportions being
from 0% to 50% (Figure S3). We found that even in these complicated simulation scenarios, SCINA still
achieved accurate performance. To compare the performance between SCINA and other benchmarking
algorithms, we applied K-means clustering (KC), Seurat, SINCERA and PhenoGraph to the simulated
datasets with the same noise in Figure 2b. The performance of SCINA and benchmarking software all
decreased with the increased proportion of noise (Figure S4). However, within all the noise challenges,
the performance of SCINA was better and more stable than the performance of other software.
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3.2. Validation of the SCINA Model by Real Data 

We applied SCINA to a pool of 1155 FACS-sorted CD45+ cells extracted from 6 clear RCC tumors 
(Figure S6). We employed our eTME gene signatures [10] for SCINA, which are highly specific for 
immune cells in RCCs. In this single cell experiment, the lymphoid and myeloid cells were enriched 
and sequenced separately, so that the lymphoid/myeloid identity of the cells was known. We scored 
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Figure 2. Performance of SCINA on simulated data. (a) Heatmap showing the overlap between the
simulated cell types and the detected cell types by SCINA. (b) Challenging the SCINA algorithm by
adding different types of noise: additional signatures for non-existent cell types, lack of true signatures
for existing cell types, extra irrelevant genes in signatures, and simulated gene expression dropouts.
Each scenario was repeated 10 times, and each repeat was performed on a newly-simulated matrix of
4000 cells. Performance is judged by Adjusted Random Index (ARI) and percentage of cells correctly
assigned (ACC).

We also created synthetic data based on combinations of real data, and evaluated the performance
of SCINA. For this purpose, two clean populations of cells, Jurkat T cells and HEK293 [2] were mixed.
Independent expression data of these two cell lines from Dilworth et al. [29] and GSE69511 were
used to define signature genes. The mixing ratios ranged from 1:99 to 99:1, with a total of 2000 cells
in each simulation. During cell type assignment, SCINA demonstrated accurate performance with
near-perfect ARI Figure S5a) and ACC (Figure S5b) across all ranges of mixing ratios. In contrast,
K-means clustering (KC), Seurat, SINCERA and PhenoGraph yielded unstable performance on these
data, especially with unbalanced mixing ratios. Furthermore, we repeatedly simulated expression
data 100 times with the same approaches as Figure 2a and calculated the probability of each cell being
correctly assigned to its true cell type. The average correct assignment probability of the total of
4000 cells was 99.57% for SCINA, 54.31% for KC, 72.90% for SINCERA and 15.11% for PhenoGraph
(Figure S5c, P < 10−5), which indicated that SCINA achieved a much more stable performance than
unsupervised clustering. Most importantly, all the unsupervised approaches we applied could not
assign the clusters of cells to the exact cell types, which was done manually by us.

3.2. Validation of the SCINA Model by Real Data

We applied SCINA to a pool of 1155 FACS-sorted CD45+ cells extracted from 6 clear RCC tumors
(Figure S6). We employed our eTME gene signatures [10] for SCINA, which are highly specific for
immune cells in RCCs. In this single cell experiment, the lymphoid and myeloid cells were enriched
and sequenced separately, so that the lymphoid/myeloid identity of the cells was known. We scored
whether each type of detected immune cells indeed belonged to the correct sub-pool of lymphoid
and myeloid cells. Dendritic cells were left out of this analysis, as they could be of either lymphoid
or myeloid lineage [30]. Overall, there was an accuracy (ACC) rate of 89.68% (Figure 3a). In sharp
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contrast, KC yielded two clusters of cells with poor concordance with the true lymphoid/myeloid labels
(ACC of 64.50%). The more advanced unsupervised methods had a moderate better performance, with
Seurat yielded and ACC of 60.10%, SINCERA of 81.03% and PhenoGraph of 69.00%. Furthermore, we
conjectured that if at the pilot stage of one single cell project, the different types of cells could be sorted
and sequenced to define de novo signatures, an even higher accuracy in subsequent experiments could
be achieved. To mimic this process, we sampled 500 cells from the B cell, monocyte, and NK cell pools
respectively from Zheng et al. and defined a set of de novo gene signatures [2]. Then the rest of these
types of cells (n = 29,345) from the same study were mixed, along with CD4 T helper cells as the pseudo
“unknown” cell type. As we expected, SCINA achieved a 97.3% ACC on this dataset (Figure 3b).
Meanwhile, KC yielded an ACC of only 50.2%, Seurat provided a prediction ACC of 64.44%. The mixed
dataset exceeded the optimized data scale of SINCERA and PhenoGraph, so we randomly select a
subset containing 10% of the cells. The ACC performance of SINCERA and PhenoGraph on the subset
was 54.44%, and 56.26%. Next, we downloaded the CyTOF data from Hawley et al. [31]. In this study,
the mouse lacrimal gland was acutely injured via intraglandular injection of IL-1α, and the lacrimal
gland single cell suspensions from day 1 to day 7 following injury were collected and subjected to
CyTOF analysis. SCINA was applied on this dataset with established protein surface markers and
discovered that neutrophil contents peaked at day 1 following injury and monocyte contents peaked at
days 2 and 3 (Figure 3c), which is consistent with the overall conclusion of the original publication.
In comparison, t-SNE was applied to cluster and visualize the single cells. The t-SNE plot (Figure 3d)
shows that cells of the same type, assigned by SCINA, indeed cluster together, confirming the accurate
performance of SCINA. However, there is a lack of clear boundaries between different types of cells on
the t-SNE plane, making it impossible to use t-SNE as the sole methodology for assigning cell types in
CyTOF data.
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Figure 3. Validation of SCINA on real data (a) SCINA identified the cell types of CD45+ single cells
enriched from Renal Cell Carcinomas (RCCs). Dendritic cells were left out of this analysis, as they
could be of either lymphoid or myeloid lineage. (b) SCINA identified the cell types in a pool of cells
comprised of B cells, monocytes, NK cells, and a “pseudo” unknown cell type. (c) SCINA was used to
analyze the mouse CyTOF data collected each day following gland injury, which profiled an average
of 389,777 cells at each time point. (d) t-SNE was used to analyze the same mouse CyTOF dataset.
The cells were colored by cell types assigned by SCINA.
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3.3. Discovery of a New Stage of Oligodendrocyte Development in Mouse Brain

To demonstrate the capability of SCINA to derive novel biological discoveries, we applied SCINA
on the mouse brain scRNA-Seq data from Rosenberg et al. [8]. The original publication performed
a cell type assignment based on painstaking manual inspection of unsupervised clustering results.
In contrast, SCINA automatically generated cell type predictions for the 27,096 non-neuronal cells with
the same markers used by Rosenberg et al., but expanded to also include the most positively correlated
genes (as the original publication only identified one single gene as the marker for each cell type, which
is too few for SCINA to operate). Overall, the SCINA-assigned cell types for most cells were consistent
with those by the manual inspection method (Figure 4a). However, the manual method leads to
the intertwined boundaries of the oligodendrocytes and oligodendrocyte precursor cells (OPCs) (the
circles in Figure 4a). In comparison, SCINA divided the cells in this region into oligodendrocytes,
OPCs and an unknown cell type. The density plots of cell type assignment probabilities (Figure 4b)
demonstrate confident and clear separations between these three types of cells. We examined the
expression of Mbp, marker for oligodendrocytes; and Pdgfra, marker for OPCs, which were used by
Rosenberg et al. The findings also supported the grouping of these cells into an independent type
(Figure 4c). In fact, these cells indeed seem to possess a unique transcriptomic program. We identified
genes that were up-regulated in the unknown cells but down-regulated in both oligodendrocytes and
OPCs. One of the top genes was Tmem108, which has been previously linked with schizophrenia
and alcoholism [32,33] (p-values < 10−5 for comparing these cells with OPCs and oligodendrocytes,
Figure 4d). Gene ontology analysis also confirmed the existence of differentially enriched pathways
related to cell projection regulation in these cells (Table S2). Overall, the unknown cell type marked by
SCINA could likely represent a newly-defined intermediate stage between OPC and oligodendrocyte
development in mouse.
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Figure 4. Discovery of a new stage of oligodendrocyte development in mouse brain. (a) t-SNE
plot showing the clusters of cells detected by the manual inspection method employed in the
original publication (left) and the cell types assigned by SCINA (right). (b) Density plots of cell
type assignment probabilities generated by SCINA. (c) Violin plots showing the expression of Mbp
and Pdgfra and (d) violin plot showing the expression of Tmem108 in oligodendrocyte precursor cells
(OPCs), oligodendrocytes, and the intermediate stage of cells.
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3.4. SCINA Detected Immune Cell Population Alterations in Stk4 Knock-Out Mice

Next, we evaluated SCINA on cytometry data. We generated a pedigree of CRISPR knock-out
(KO) mice in Stk4, which is a key regulator of the Hippo pathway [34]. The blood sample of each
mouse was run through a standard FACS pipeline as previously reported [11]. We had established a
manual serial gating schema to sort and identify the populations of each type of immune cell from the
FACS data using FlowJo (https://www.flowjo.com/). These FACS data were also analyzed by SCINA
based on commonly used cell surface markers. We investigated the abundances of T cells, B cells, NK
cells, macrophages, and neutrophils from all mice in the context of the Stk4 genotype. Both the SCINA
and manual gating methods detected lower T cell levels (P < 10−5 for both SCINA and serial gating),
and elevated B cell levels (P = 3.93 × 10−4 for SCINA, P = 1.87 × 10−3 for serial gating) and NK cell
levels (P = 0.008 for SCINA, P < 10−5 for serial gating) (Figure 5a). The T cell phenotype is consistent
with previous reports in both human and mouse models that observed a correlation between Stk4
deficiency and a paucity in T cells [35,36]. However, the manual gating method concluded that Stk4
KO led to a significant increase in both neutrophils (Figure 5b, P < 10−5) and monocytes (Figure 5c,
P < 10−5), while the neutrophil and monocyte counts are not significantly different between wild
type and KO mice according to SCINA (P = 0.976 and P = 0.577). To resolve this conflict, we carried
out a Complete Blood Count (CBC) analysis using blood from this pedigree of mice. We confirmed
the insignificant changes of neutrophil and monocyte counts after knocking out Stk4 (P = 0.496 for
neutrophils and P = 0.209 for monocytes), which were in concordance with the SCINA results. Overall,
these experiments demonstrated the ability of SCINA to yield biological discoveries while pruning
spurious errors of manual cytometry analytical methods.
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Figure 5. SCINA detects immune cell alterations in Stk4 KO mice. The pedigree contained a total of
12 wild-type (WT) mice, 15 heterozygous (HET) mice, and 5 homozygous (HOM) mice. The relative
levels of immune cell populations are detected by SCINA from FACS data (left), the serial gating method
from FACS data (middle), and CBC (right). (a) Lymphocytes, (b) Neutrophils, and (c) Macrophages.
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3.5. SCINA Identified a Novel Tumor Clade Based on Patient Bulk RNA-Seq Profiles

SCINA also solves a general supervised classification problem, for example, for patient-level
sequencing data. Renal cell carcinomas (RCCs) are mainly comprised of clear cell RCC (ccRCC),
papillary RCC (pRCC), and chromophobe RCC (chRCC). One minor but aggressive subtype of RCC
has been recently identified: hereditary leiomyomatosis and renal cell cancer (HLRCC), which bears
morphological similarities to high-grade pRCC and is characterized by germline mutations of the
Fumarate Hydratase (FH) gene [37]. We collected TCGA pan-RCC RNA-Seq data from the Broad
GDAC Firehose (n = 922) and also from the Kidney Cancer Program (KCP) at UT Southwestern Medical
Center (n = 146) [12]. Preliminary pathological reviews determined that these RCCs were comprised
of 528 ccRCCs, 323 pRCCs, 45 chRCCs, and 11 FH-deficient (FHD) samples (9 with germline mutations
and 2 with somatic mutations in FH), along with 163 adjacent normal kidney samples (Table 1).
Assuming most of these pathological classifications were correct, we defined gene signatures for each
tumor type and for the normal kidney tissue based on differential expression analyses. The selected
gene signatures consist of the top 20 genes most up-regulated in each tissue type (Table S3). SCINA was
then applied using these gene signatures to the transcriptomic data to re-classify the patient subtypes,
which resulted in a 91.9% concordance rate when comparing with the original pathological review
(Table 1). However, there were 16 TCGA ccRCCs by pathological standards that were reclassified as
chRCCs by SCINA. Interestingly, a recent second pathological review of the TCGA cohort suggested
that 11 of these 16 RCCs could indeed be chRCCs [38].

Table 1. Overlapping RCC subtypes assigned by pathological reviews and subtypes assigned by SCINA.

SCINA-predicted Tumor Subtypes

Chromophobe Clear Cell FHD Normal Papillary Unknown Sum

Pathologic review Chromophobe 44 0 0 1 0 0 45

Clear cell 16 492 0 3 7 10 528

FHD 0 0 11 0 0 0 11

Normal 0 1 1 156 2 1 161

Papillary 3 8 8 3 278 23 323

Sum 63 501 20 163 287 34 1068

Most interestingly, SCINA classified 8 pRCCs tumors as FHDs, which inspired us to carry out
in-depth analyses to resolve this conflict. First, PCA based on the whole transcriptome (Figure 6a)
confirmed that these 8 tumors clustered closely with the 11 FHDs. Pathological review by a GU
pathologist (PK) revealed morphology features indistinguishable between FHDs and these 8 tumors
(Figure 6b). However, these 8 tumors did not have any FH mutations and are not FHD tumors by
definition (Figure 6c). Furthermore, for 3 tumors, where samples were available (UTSW cohort),
immunohistochemistry showed preserved FH protein expression. We speculated that these tumors
could represent a closely related tumor clade discovered by SCINA analysis of RNA-Seq data. We
named them “FHD-like” and examined whether FHD and FHD-like tumors share convergent molecular
perturbations. Interestingly, both FHDs and FHD-like tumors were enriched for mutations in NF2,
which is in the Hippo pathway, and had frequent loss of p16 expression (UTSW cohort) (Figure 6c).
Furthermore, the TCGA analysis demonstrated hypermethylation of CDKN2A (p16) in the 5 FHD-like
tumors [39]. Overall, these analyses attest to the capability of SCINAto discover new tumor subtypes.
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Figure 6. SCINA identified a novel RCC tumor clade based on gene expression profiling. (a) 3D
Principal Component Analysis (PCA) plot showing clustering of UTSW KCP and TCGA RCC and
normal kidney samples by expression (n = 1068). (b) H&E stained sections showing that both
FH-deficient (FHD) and FHD-like tumors had features characteristic of hereditary leiomyomatosis and
renal cell cancer (HLRCC), including papillary architecture, large nuclei, and prominent eosinophilic
macronucleoli, with perinucleolar clearing. (c) Somatic/germline mutations and IHC results for FHD
and FHD-like tumors.

3.6. The SCINA R Package and SCINA on the Cloud

For convenience of biologists and bioinformaticians who wish to apply SCINA in their research,
we have created an R package [40,41] and also a web server (Figure 7a, [42]) to host SCINA on the cloud.
Importantly, the R package/webserver has provided a functionality (the heatmap) for users to visually
assess the degree of bi-modal distribution of each signature gene in the particular application. SCINA
is extremely computationally efficient. On the same datasets, SCINA is 20 times to over 100 times
faster than Seurat, t-SNE, and Cell Ranger, and 200 to 400 times faster than SINCERA and PhenoGraph
(Figure 7b).
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Figure 7. The SCINA R package and web server. (a) Screenshot of the SCINA web server. (b) Runtime
comparison for SCINA, Cell Ranger (K-means clustering mode with graph-based fine-tuning), t-SNE,
Seurat, SINCERA, and PhenoGraph. Runtime tests were performed on 10 datasets, constructed with
280n randomly selected HEK293 cells (out of 2885 total cells) and 320n randomly selected Jurkat cells
(out of 3258 total cells), where n was an integer ranging from 1 to 10. Both HEK293 cell and Jurkat cell
sets were publicly available from Zheng et al. [2].

4. Discussion

SCINA is a novel methodology for cell type classifications in scRNA-Seq, CyTOF/FACS data, or
even bulk RNA-Seq. Compared with unsupervised approaches, SCINA accepts the signatures of any
number of marker genes, and weighing of the genes for each cell type is determined automatically by
the algorithm. It is also generally applicable as a classification algorithm when data of similar formats
are available. In our study, the performance of SCINA was comprehensively validated on a variety of
datasets, which showed the accurate performance of SCINA and its superiority to other unsupervised
software packages. This superiority is likely to be more pronounced as complexity increases, such
as with the difficult problem of dealing with 30 cell types in Figure 2 and the unbalanced mixing
proportions in Figure S5a,b. Nevertheless, the performance of SCINA is slightly influenced by the
size of datasets, the total numbers of the cell types in the datasets, and the signature gene numbers for
every cell type. As shown in Table S1 and in Figures S3–S4, incomplete signature genes for any cell
types could decrease the performance of SCINA, so inclusion of more signature genes, in addition
to the most well-established ones, is encouraged for more stable performance. Despite being built
upon the bi-modality assumption, SCINA does not necessarily require each gene to have a clear and
wide separation into two expression ranges. Some signature genes may have gradual changes along a
differential or functional trajectory. Instead, SCINA relies on the separation of clusters of cells in a
high-dimensional space formed by the contribution from all the signature genes. Therefore, SCINA
requires less manual intervention and is more robust and objective.

Nevertheless, SCINA is synergistic and complementary to the other unsupervised methods. One
project may start by applying unsupervised methods like t-SNE and ad hoc analyses for visualization
to identify new cell types or subtypes. Researchers may then use SCINA and the de novo signatures
to validate and refine their findings to detect these newly defined cell populations in subsequent
experiments and understand how they change with different perturbations.

Prior knowledge of signature genes is available to the researchers in many biomedical research
settings, which could come from several sources: (i) previously published signatures, (ii) pre-existing
sequencing data of sorted cells, and (iii) pilot or cross-validation experiments where de novo signatures
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are defined. The third option is also a completely novel but very useful application of SCINA that
cannot be afforded by unsupervised methods, which allows the researchers to assess the reproducibility
of their biological phenomenon of interest across experimental conditions and replicates. As researchers
will only need to apply signatures identified in one condition to another, rather than directly compare
the expression data, batch effects are minimized. On the other hand, SCINA could also be regarded
as a discovery tool for novel cell type-specific signatures. For example, cell types in the single cell
profiling data can be defined using a smaller pre-defined set, based on which one may define additional
marker genes. This process can be conducted iteratively and monitored by other analyses to verify the
biological significance of the findings. Finally, when signature genes of multiple sources are available,
the user has the flexibility of either merging some of these signatures, or choosing one of them for
carrying out the SCINA analysis. One of the strengths of SCINA is that it provides users with flexibility
to choose the optimal signatures, based on experimenting with different approaches to signature
selection on the real data. To help with this process, we provide users with a function named plot.heat
SCINA in the R package (and on the webserver) to generate a gene expression heatmap of signature
genes for visual assessment.

One limitation of our approach is that it only considers genes which are signature genes, without
considering the fact that some genes are stronger markers of a cell type. This limitation could be
addressed by specifying a particular variance structure in the estimation process of SCINA to enforce
differential weighting of genes.

Overall, SCINA, the first semi-supervised “signature-to-category” cell type classification algorithm
for single cell profiling data, addresses a critical research need that has been previously neglected.
When coupled with other “category-to-signature” methods, SCINA could greatly enhance the flexibility
and power of single cell profiling to propel biological discoveries. With more reference single cell
datasets, such as those from the Tabula Muris project, supervised analyses of single cells, such as
SCINA, will quickly become more feasible, useful and relevant.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4425/10/7/531/s1,
Figure S1, The pseudo-code of SCINA algorithm. Figure S2, Comparison of SCINA and other algorithms on
simulation data. KC (a) and Seurat (b) analyses were performed on the same simulated dataset as in Figure S2a.
The heatmap showed the overlap between the simulated cell types and the detected cell types by KC/Seurat.
Each cluster detected by KC/Seurat was assigned to the simulated cell type with the largest overlap. Figure S3
Combination of two (a) or three (b) types of noises to the signature genes in the simulation data. Noise type 1 to
4 corresponded to the 4 noise types in Figure S2b and details were described in the method section. For each
combination, the proportions of signatures with denoted noise were increased from 0% to 50%. Different types of
noises were added to signatures randomly and evenly. Figure S4, SCINA, KC, Seurat, SINCERA and PhenoGraph
were applied to simulated datasets with different types of noise. The noise types were the same as in Figure S2b.
Each scenario was repeated for 10 times, and each repeat was performed on a newly-simulated matrix of 4000
cells. Performance is judged by percentage of cells correctly assigned (ACC) (a–d) and by Adjusted Random Index
(ARI) (e–h). The average ACCs or ARIs of 10 repeats were plotted. Figure S5, SCINA, KC, Seurat, SINCERA and
PhenoGraph were used to identify Jurkat T cells and HEK293 cells. Accuracy is measured by Adjusted Random
Index (ARI) (a) and the percentage of cells correctly assigned (ACC) (b). (c) Violin plot showing probabilities of
all simulated cells being assigned to their ‘true’ cell types. Analysis were performed on 100 datasets, each with
4000 cells simulated with the same approaches as in Figure S2a. Figure S6, Analysis of the CD45+ single cells
enriched from the RCC tumor microenvironment. (a) SCINA identified cell types based on eTME signatures
containing signature genes of 25 immune cell types. Performance is measured by percentage of cells correctly
assigned (ACC). Bars are colored differently according to the gold standard of the lymphoid and myeloid pool
labels. (b–e) K-means, Seurat, SINCERA and PhenoGraph coupled with manual assignment of detected clusters to
the lymphoid/myeloid cell pools. File S1, Full technical details of the SCINA model. Table S1, Accuracy of SCINA
in simulated datasets of varying parameter settings. These datasets are all variants of the simulation dataset in Fig.
2a, but have different number of genes, cell types, cells, and signature genes for each cell type. Table S2, Enriched
Biological Process ontology terms in OPCs, oligodendrocytes, and the intermediate stage of cells. The top 10 Gene
Ontology terms are shown for each cell type. Table S3, Gene signatures used for the RCC bulk tumor analysis.
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