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Visual object recognition occurs easily despite differences in position, size, and rotation of
the object, but the neural mechanisms responsible for this invariance are not known. We
have found a set of transforms that achieve invariance in a neurally plausible way. We find
that a transform based on local spatial frequency analysis of oriented segments and on
logarithmic mapping, when applied twice in an iterative fashion, produces an output image
that is unique to the object and that remains constant as the input image is shifted, scaled,
or rotated.
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INTRODUCTION
Objects are easily recognized by our visual system despite variation
in the size of the object, its position in the environment, or even its
rotation (as in television viewing while lying on the couch). Phys-
iological analysis of regions high in the cortical hierarchy show
cells having substantial invariance (Gross et al., 1969; Perrett et al.,
1982; Logothetis et al., 1994; Tanaka, 1996; Hung et al., 2005).
Prominent models (Olshausen et al., 1993; Salinas and Abbott,
1997; Riesenhuber and Poggio, 2000; Elliffe et al., 2002; Shams
and von der Malsburg, 2002; Wiskott and Sejnowski, 2002; Serre
et al., 2007; Li et al., 2009; Rodrigues and Hans du Buf, 2009) show
how some aspects of invariance could be achieved.

Existing models fall into several classes (reviewed in Wiskott
and Sejnowski, 2002). One class of solutions routes information
between regions in a way that changes the position and mag-
nification of the image. The particular routing is selected by a
controller and results in the image reaching a canonical form in
some unspecified higher visual region (Olshausen et al., 1993). In
this way, position and scale invariance can be achieved. A second
class of solutions involves combining outputs of sets of identically
oriented filters that vary in scale and position using a MAX func-
tion to create complex cells (Riesenhuber and Poggio, 1999). The
output of these cells has some invariance to position and scale
while still being selective to features. The output of differently ori-
ented complex cells can be combined to create composite feature
detectors (e.g., angle detectors). Such cells can again be generalized
using a MAX function, leading eventually to high-level networks
that detect a pattern in a way that shows scale and position invari-
ance. Two-D rotation invariance refers to rotation of the object in
the plane of the object. Neither of the solutions provides a basis
for achieving such invariance. Thus, for the system to recognize
different rotated versions of the same object, each rotation must
be separately learned. However, several lines of experiments show
that a component of the visual system achieves complete rota-
tion invariance (Guyonneau et al., 2006; Knowlton et al., 2009)

and does so without learning. Another class of solutions (SIFT)
does achieve complete invariance (Lowe, 1999, 2004). Input pat-
tern features that are likely to be resistant to changes in scale are
isolated and given invariant descriptors. The combined set of fea-
tures of the input pattern, however, is not invariant to the same
transformations. Recognition, therefore, needs to be a multi-step
process where individual features are first matched without regard
to object identity and are then polled to see if they give consistent
values for input pattern identity, as well as its rotation, scale, and
position.

Work in machine vision has shown that general solutions to
translation, scaling, and rotation invariance exist. These can func-
tion without learning (Casasent and Psaltis, 1976a,b; Yatagai et al.,
1981). These, however, use Fourier analysis of the full field, an
operation that is not biologically plausible. Here, building on ideas
developed by (Cavanagh, 1984, 1985), we show how sequential
application of a biologically plausible transform can produce an
output pattern that remains constant as the input pattern is shifted,
scaled, and rotated. This is achieved without learning. Importantly,
the proposed mechanism utilizes a form of local spatial frequency
analysis, a process for which there is both psychophysical and
physiological evidence (see Discussion).

MATERIAL AND METHODS
FIRST STAGE
Formally, the output map of the first stage of the transformation
T can be reduced to a chained application of an edge detector E
and an interval detector S to an input image M :

Tθ,I (M ) = S (θ,I ;E(θ,I ;M )) (1)

where θ is the orientation of the edge detector and I is the inter-
val of the interval detector. For most of the data shown, the input
image was 1000 × 1000 pixels, and the output image was 100 × 100
[i.e., 10,000 distinct (I, θ) pairs]. For these images, the range of I
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was 100–700 pixels. The range of θ was 0–180˚. This 7-fold range
of spatial frequency is realistic, given the greater than 10-fold range
in visual cortex (Issa et al., 2000).

EDGE DETECTOR
We constructed a collection of filters at different orientations (θ)
and scales. The filter F was a 1 × 3 pixel white bar and an adjacent
1 × 3 black bar, rotated by angle θ and scaled by convolution with
a box filter. Bilinear interpolation was used for both operations.
The width of the filter (w) was related to the width of the interval
detector in the second step by w = 0.1·I. The orientation selectivity
of this filter was quite broad (FWHM = 120˚); similar results were
obtained with a narrower filter (data not shown), but its execu-
tion time was prohibitively slow in our implementation. The edge
detector output was then produced by convolving the filter with
the entire input image to yield a map:

E (θ,I ;M ) = M ∗ F (θ,I ) (2)

INTERVAL DETECTOR
The interval detector S was designed to give an output if the edge
detector output map E for a given θ had two edges separated by
an interval, I. This was computed as follows:

S (θ,I ;E) = H

⎛
⎝∑

i,j

Ei,j Ei−I cos(θ+90),j−I sin(θ+90)

/ ⎛
⎝∑

i,j

Ei,j

⎞
⎠

2⎞
⎠

(3)

For a given interval I and angle θ, the edge detector output image
was shifted by I at angle θ + 90 and multiplied pixelwise by the
unshifted image. Bilinear interpolation was used when generating
the shifted image. This multiplication insured that there was no
output if only a single edge was present. All pixels in the filtered
image were then summed. The sum was normalized by the squared
sum of the input and then rectified using the Heaviside function
H. A plot was made of these sums for all I and θ.

SECOND STAGE
The second stage of the transformation was carried out identi-
cally to the first, except that the output of the first stage was given
periodic boundary conditions on the θ axis by duplicating the
right-hand portion of the image to the left of the image (and
similarly for the left-hand portion). The input images were now
100 × 100, and the range of I was typically 15–85 pixels.

IMAGE CLASSIFICATION
Rotated and scaled versions of the letters were classified by the
Euclidian nearest neighbor method (Cover and Hart, 1967). In this
method, the 10,000-dimensional output for rotated and scaled let-
ters was compared to the 26 unrotated and unscaled parent letters.
Images were classified as the closest parent letter.

MULTIDIMENSIONAL SCALING
For visualization purposes, all 33,670 of the 10,000-dimensional
pairwise distances between the 26 parent and the 234 rotated and
scaled letters were plotted in two dimensions using non-classical

multidimensional scaling (MDS), as implemented in the Matlab
Statistics Toolbox. Non-classical MDS iteratively attempts to find
the best arrangement of points by minimizing a goodness-of-fit
criterion (in this case, Kruskal’s normalized stress1 criterion).

RESULTS
What we term the transform is itself composed of several steps.
In the first step, oriented edges are detected by a family of edge
detectors. Each detector has a given scale and orientation, defined
by angle θ. These detectors tile a subregion of the visual scene
(an attentional window; see Discussion) that is large enough to
include the object to be detected (e.g., a letter; Figure 1A). The
output of the edge detection process for a given orientation and
scale is shown in Figure 1B. The second step of the transform
is related to standard spatial frequency analysis but is simpler;
rather than looking for highly repeated periodicities, our inter-
val detector looks for pairs of oriented edges that have a given
distance between them (Figure 1C,D). The interval detector is
applied to all positions in the subregion, and the outputs over
this subregion are summed. Such sums, for a range of orienta-
tions and intervals, are plotted as a function of orientation and
log interval (Figure 1E). The summing over space is noteworthy
because the sum is invariant to the position of the object within
the window.

Examination of how such plots change as the image is rotated
and scaled (Figure 2, first and second columns) reveals a strat-
egy for obtaining complete invariance: as the object is rotated, the
output image of the first stage moves along the orientation axis
(θ) but does not change its shape. Similarly, as the object is scaled,
the output image moves along the log interval axis but does not
change its shape. Thus, total invariance would be achieved if the
output image was processed by a second stage that was invariant
to the position of the first-stage output. As we noted above, the
summing operation in our transform makes the output invariant
to position. Therefore, total invariance can be achieved by taking
the output of the first transform and applying the same transform
again (Figure 1F). As can be seen in Figure 2 (third column), the
output of the second stage is insensitive to position, scale, and
rotation of the original input.

This two-stage transform has elegant invariance properties, but
perhaps so much information is thrown away (e.g., by the sum-
ming operation) that more than one object could have the same
output. To examine this possibility, we conducted two tests. First,
we picked a very simple object consisting of a line and a dot. We
then asked whether moving the dot to any other position could
produce an output transform confusable with that of the orig-
inal image. Figure 3 shows that the only confusable position is
a rotation of the original image. In a second test, we applied the
two-stage transform to the complete set of capital letters (examples
shown in Figure 4A) and to rotated and scaled versions of the“par-
ent” letters. The outputs of the rotated and scaled versions were
then classified according to which parent letter they were closest.
Figure 4B shows that these letters produced outputs that, as judged
by the pattern classifier, were closer to the corresponding parent
letter than to any other letter (i.e., 100% were classified correctly).
Thus, the two-stage transform retains sufficient information to
differentiate all of these letters.
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FIGURE 1 |The two-stage transformation. (A,B) In the first step of the
first stage, edge detection is performed, illustrated for an orientation of 45˚
in (B) (red, positive values; blue, negative). (C,D) The second step of the
transform is a spatial interval detector looking for edges separated by
interval I at the same angle as the interval detector. To achieve this, the
image is shifted (C), and the pixel values are multiplied, with negative values
set to zero (D). (E) The image in (D) is summed over all positions to yield a

single point in the log interval vs. orientation map (and similarly for other
orientations and intervals; orientation range 0–180; interval range
100–700 pixels). Color code is at far right; this is linear with dark blue as
zero. (F) In the second stage, the same transform is applied again, yielding a
map whose coordinates are log I ′ and θ′ (defined relative to the axes of the
stage 1 output; interval range 15–85 pixels). Color code is at right; this is
linear with dark blue as zero.

FIGURE 2 |The two-stage transform produces an output invariant to

translation, scale, and rotation. First column: the letter W is translated
(second row), scaled (third row), or rotated (fourth row). Second column:
first-stage output. Third column: second-stage output. Axes and color code
are as in Figure 1E,F respectively.

FIGURE 3 |The two-stage transform provides a unique description of

the object. The object in the left panel (line and dot) was varied by moving
the dot exhaustively to all positions in the panel. For each position, the
two-stage transform was applied. The difference in output from the pattern
at left was computed as a Euclidian distance and color coded (red, most
different; blue, most similar). The only similar output (blue region at bottom
left) is produced by a rotation of the original image.

We next analyzed the robustness of our algorithm. Real-world
vision involves difficulties posed by occlusion, distortion, crowd-
ing by other objects, and figure/ground separation. There are likely
to be multiple mechanisms that aid recognition in the presence
of such difficulties, including attractor properties and top-down
contextual information, neither of which is incorporated into our
model. Nevertheless, one would want an initial transform that was
not brittle. If brittle, minor variations in the letter appearance,
including the addition of a non-uniform background, would pro-
duce large differences in the output of the first- and second-stage
transforms due to non-linear effects of interval detection, and this
would lead to misclassification of the affected letter. We therefore
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FIGURE 4 | Output of the two-stage transform is sufficient for object

recognition. (A) First- and second-stage transforms for various letters.
Axes and color code as in Figure 1E,F. (B) To test recognition, the
transform of nine rotated and scaled versions of each letter was compared
to the transform of the parent letter. The distances between the 26 parent
letters (black letters) and 234 rotated and scaled versions (red dots) are
approximately rendered in two dimensions by multidimensional scaling
(see Materials and Methods).

examined whether the letter was correctly identfied as various
graded perturbations of the image were made. We graded the
perturbation until misidentification occurred. This, then, allowed
determination of the maximum perturbation that still allowed
correct identification. The result is shown in Figure 5A for letter
distortions, in Figure 5B for superposition of an additional spatial
frequency, and in Figure 5C for the addition of noise or a nat-
ural scene background. It can be seen that our transform does not
catastrophically amplify variations in the input images, allowing a
significant range of perturbation over which correct identification
still occurs.

DISCUSSION
We describe a set of biologically plausible transforms that achieves
position, size, and rotation invariance. The mechanisms involved
are simple to understand. In an early step, a spatial interval detec-
tor is applied over the entire region and the results summed,
producing position invariance. The resulting sums (for all spa-
tial frequencies and edges) are plotted as a function of angle and
log spatial frequency. In this coordinate system, rotation shifts the

image along the angle axis, whereas scaling shifts the image along
the log frequency axis. Thus, invariance to position, scale, and
rotation could be achieved by an additional transform that was
insensitive to these shifts. The early step discussed above meets
this requirement. We show that although information is lost by
applying this set of transforms (e.g., spatial information is lost by
summing), enough information is retained by the set of spatial
frequency analyzers to enable letter recognition. While it is not yet
possible to directly map the operations of our model onto partic-
ular parts of the visual system, each of the operations that we have
utilized in our transforms is biologically plausible.

Unlike previous models in which spatial frequency either had
no function or served only for edge detection (e.g., Riesenhu-
ber and Poggio, 1999), our model depends on spatial frequency
analysis (our interval detector) in a way that is fundamental to the
recognition process. This makes the model consistent with the spa-
tial frequency tuning of cells in V1 and higher-order visual areas
(Andrews and Pollen, 1979; De Valois et al., 1982; De Valois and
Tootell, 1983; Shapley and Lennie, 1985; Issa et al., 2000; Pollen
et al., 2002). Our spatial frequency detector involves two bars, sep-
arated by a given interval. There are families of such detectors
at different orientation and spatial frequency. This corresponds
to the property of V1 cells that have orientation preference and
that have either linear or non-linear dependence on the num-
ber of repeating bars (Movshon et al., 1978; von der Heydt et al.,
1992). Hubel and Wiesel (1962) reported that a substantial frac-
tion of V1 simple cells is strongly excited by two parallel bars
(but only weakly by one bar), consistent with the multiplication
step of our interval detector. There are several neural mechanisms
that can produce multiplication (Gabbiani et al., 2004; Kepecs
and Raghavachari, 2007). In our case, exact multiplication is not
required; a strong non-linearity will suffice (data not shown). The
importance of spatial frequency in vision is strongly supported by
psychophysical experiments demonstrating independent spatial
frequency channels: notably, the adaptation of detection produced
by presenting one spatial frequency does not affect the detectabil-
ity of other spatial frequencies (Sachs et al., 1971; Arditi et al.,
1981).

Additional elements of the model are also biologically plau-
sible. We assume that cortical mapping can be logarithmic, and
there is precedent for such mapping (Tootell et al., 1982; Adams
and Horton, 2003). Also, we have used the same transform serially
to obtain invariance. This is consistent with the observation that
different levels of the cortical hierarchy have similar cellular struc-
ture and network properties (Mountcastle, 1997; Buxhoeveden
and Casanova, 2002), as if they perform similar computations.

There are several limitations of the model that warrant discus-
sion. One objection is that the model is too good: after all, one can
recognize that a letter is upside down. Thus, recognition cannot
depend solely on a system that has complete rotation invariance.
However, many lines of evidence indicate that the visual system
is not unitary but is rather composed of many visual processing
streams that operate either serially or in parallel (Felleman and
Van Essen, 1991). It thus seems reasonable to suppose that some
cortical regions encode invariant representations produced by the
mechanism that we propose,while others retain information about
position, scale, and rotation.
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FIGURE 5 | Letter identification is resistant to perturbations of the

image. Different perturbations were gradually applied to the letter A until
the resulting image was not correctly recognized by the linear classifier.
Panels depict the maximum amount of perturbation before misidentification
occurred. (A) Distortion of the letter shape. Insets illustrate the effect of the
distortion on an outlined square. Top: horizontal shear. Bottom:
foreshortening due to perspective. (B) Texture superposition. The images

were generated by linearly mixing the source image and an image
composed of horizontal (top) or randomly oriented (bottom) bars. (C) Whole
image manipulation. Top: White noise was added to every pixel of the
source image, followed by normalization of the image pixel intensity to span
the range 0–1. The blending of the source image and the noise was varied.
Bottom: The black background of the source image was replaced by an
image of a natural scene with different levels of mean intensity.

A further objection is that some psychophysical measurements
(Copper, 1975; Hamm and McMullen, 1998) show that invariance
occurs only over a limited range of rotation. Our model achieves
complete invariance by using a wrap-around map of orientation
(zero is next to 360, as in cortical pinwheels Bonhoeffer and Grin-
vald, 1993). Abandonment of this assumption would reduce the
rotation invariance of our system. However, other psychophysical
experiments show that under some conditions, vision is com-
pletely rotation invariant (Guyonneau et al., 2006; Knowlton et al.,
2009). Our model shows how such complete rotation invariance
could be achieved. It should be emphasized that some models pro-
mote rotation invariance by training at all rotations. In contrast,
our model achieves complete rotation invariance after training at
only a single rotation. We stress that the rotation invariance in
our model is for rotation in the plane. The most explicit model
for rotation out of the plane (3D) posits that the system learns
several views and interpolates between views (Riesenhuber and
Poggio, 2000). Our model could be similarly adapted to solve the
3D problem.

A final difficulty has to do with how the size of the computa-
tional subregion affects recognition. We adopted the concept of a
subregion so that spatial frequency analysis would not be global,
there being no evidence for the kind of global spatial frequency
processes that underlie Fourier analysis. We envision that the size
of the subregion is controlled by selective attention. Such a process,
for which there is psychophysical evidence, creates a window
around an object, minimizing interference from nearby objects
(Sagi and Julesz, 1986; Sperling and Weichselgartner, 1995). The
covert movement of an attentional window (not involving sac-
cades) as objects are serially searched has recently been observed

electrophysiologically (Buschman and Miller, 2009). Indeed, the
reason for an attentional window may be to allow recognition
of objects without interference from nearby objects. It remains
possible, however, that subregions might be hard-wired and that
attention is not required; in this case, the problem of interference
has be dealt with by brute force, i.e., by having subregions of dif-
ferent size so that, by chance, a given subregion would frame the
object to be recognized.

An important issue in any recognition process is tolerance
to noise and distortion. Attractor networks (Hopfield, 1982) are
generally seen as a solution to this problem but suffer from a lim-
itation: scaled and rotated inputs produce different patterns for
which there must be separate attractors. Given the limited mem-
ory capacity of such networks, treating each variant as a different
pattern is problematic. Thus, the capability of attractor networks
will be greatly enhanced if they work upon the invariant output of
our two-stage transform. Additional processes that are important
for recognition use top-down contextual processes. A theoretical
model has been formulated that shows how the interactions of
top-down and bottom-up processes can account for fundamental
properties of recognition: the logarithmic dependence of recogni-
tion time of set size and the speeding of recognition by contextual
cues (Graboi and Lisman, 2003). However, that model assumes
that letters are in a canonical form and thus requires a front end
to make them so. The model proposed here (modified to include
attractors) could serve as such a front end.

Our model leads to a testable prediction. Consider the simple
case of an input pattern with two spatial frequencies. The first-
stage transform will produce output at these frequencies. Because
the output pattern is logarithmic, the distance between the regions
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of high output will be proportional to the ratio of the frequencies.
In the brain region that encodes the second-stage transform, cells
will be excited that represent this distance. These cells will thus be
tuned to the ratio of spatial frequencies in the input pattern and
will be unaffected by changing the input frequencies, so long as
they are changed proportionally. The discovery of such cells would
directly link the computations that produce invariance to spatial
frequency analysis.

CONCLUSION
The algorithm we describe provides a principled solution to
the invariance problem based on spatial frequency analysis, log-
polar mapping, and sequential use of the same transform. In
spirit, the algorithm is similar to the Fourier-Mellin transform
used in machine vision, but unlike that transform does not
require a biologically unrealistic 2-D Fourier transform of the
entire image. This is replaced in our algorithm by orientation-
sensitive cells similar to those in V1 that produce a form of
local spatial frequency analysis (interval detection). Unlike the

Fourier transform, which is based on analysis in only x and
y, our algorithm makes use of information at all orientations.
The existence of a simple, biologically plausible solution to
the invariance problem will, we hope, inspire efforts to test
this class of models. Give the multitude of visual areas in the
visual system and the different requirements for vision, it seems
unlikely that any one analysis strategy will be used on a system-
wide basis. Thus an important step would be to identify those
parts of the visual system that compute and/or utilize invariant
representations.
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