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Abstract: Acute myocardial infarction (AMI) is the most critical event in the disease spectrum of
coronary artery disease. To rescue cardiomyocytes in AMI, it is important to restore blood sup-
ply as soon as possible to reduce ischemia-induced injury. However, worse damage can occur
during the reperfusion phase, called the reperfusion injury. Under ischemia/reperfusion (I/R)
injury, elevated oxidative stress plays a critical role in regulation of apoptosis, inflammation and
remodeling of myocardium. Our previous study has demonstrated that interleukin (IL)-20 is in-
creased during hypoxia/reoxygenation stimulation and promotes apoptosis in cardiomyocytes. This
study was, therefore, designed to investigate whether IL-20 antibody could reduce I/R-induced
myocardial dysfunction. Results from this study revealed that IL-20 antibody treatment significantly
suppressed I/R-induced nicotinamide adenine dinucleotide phosphate oxidase, oxidative stress,
apoptosis, proinflammatory responses, cardiac fibrosis, and expression of cardiac remodeling markers
in Sprague-Dawley rats. Plasma B-type natriuretic peptide level was also reduced by IL-20 antibody
injection. IL-20 antibody treatment appeared to restore cardiac function under the I/R injury in terms
of greater values of ejection fraction and fractional shortening compared to the control group. Two
commonly used indicators of cardiac injury, lactate dehydrogenase and creatine kinase-MB, were
also lower in the IL-20 antibody injection group. Taken together, our results suggested that IL-20
antibody holds the potential to reduce the I/R-elicited cardiac dysfunction by preventing cardiac
remodeling.

Keywords: acute myocardial infarction (AMI); ischemia/reperfusion (I/R) injury; oxidative stress;
cardiac remodeling

1. Introduction

Acute myocardial infarction (AMI) is a life-threatening disease. Patients may die
before hospital arrival. Even though patients can survive till hospital admission, mortality
and morbidity are still high [1]. AMI may lead to impaired cardiac contractility and
congestive heart failure (CHF) [2]. Patients with CHF have higher mortality and morbidity
as well as worse quality of life than the normal population [3]. AMI is the most critical
event in the disease spectrum of coronary artery disease, distinguished by endothelial
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damage, lipid aggregation, and the generation of atherosclerotic plaques in the vessel
wall of coronary artery [4]. Atherosclerosis-caused coronary artery luminal obstruction
and plaque rupture are the most common issues in the setting of AMI [5]. In order to
rescue cardiomyocytes in AMI, it is important to restore blood supply as soon as possible.
However, reperfusion can provoke additional damage to ischemic tissue, the so-called
ischemia/reperfusion (I/R) injury [6].

The return of blood flow to the ischemic areas causes high amount of reactive oxygen
species (ROS) production to trigger rapid and critical injury to cardiomyocytes [7]. Origins
of ROS in myocardial reperfusion comprise the superior activation of nicotinamide adenine
dinucleotide phosphate (NADPH) oxidases, which are expressed in different cell types in
myocardial tissue [8]. NADPH oxidase-2 (NOX-2) is one of the major regulators of O2

−

and H2O2 formation in the heart. In addition, NOX-2 plays a critical role in the modulation
of growth and death in cardiomyocytes. In response to I/R injuries, NOX-2 is activated to
induce ROS generation and consequently myocardial damage [9].

NADPH oxidases that catalyze the generation of free radicals are the main origins
of ROS in cardiomyocytes during I/R [10]. The activation of NADPH oxidases causes
oxidative injuries and left ventricular dysfunction in part because of mitochondrial in-
sufficiency induced by elevated O2

− generation, mitochondrial dysfunction, and cardiac
apoptosis [11]. Apoptosis and necrosis of cardiomyocytes with subsequent extravagant
inflammation are the main causes of cardiomyocyte damage in AMI [12]. Cell death during
AMI induces a multiphase reparative response in which the damaged tissues are replaced
with fibrotic scars. This is followed by remodeling of the surrounding myocardium, and
eventually impaired cardiac function and resultant CHF develop [13].

Proinflammatory cytokines secreted from cardiomyocytes after hypoxia or ischemia
stimulation can elicit additional cellular inflammatory responses, and subsequent cytotoxic
injury [14]. For example, interleukin (IL)-6 and IL-6 related proinflammatory cytokines
released by cardiomyocytes are critical in the modulation of cardiac apoptosis and hyper-
trophy [15]. In addition, in the circumstances of I/R, signaling transduction pathways of
cardiomyocytes converge on the activation of mitogen-activated protein kinases (MAPKs)
and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), thereby trigger-
ing proinflammatory responses and transforming growth factor beta (TGF-β) signaling.
TGF-β1 had been reported as a critical switch controlling the transformation from inflam-
mation to fibrosis in the late phase of myocardial infarction [16]. Thus, taken together,
the strategies designed to protect cardiomyocytes from death and manage unsuitable
proinflammatory response are required for clinical improvement in patients with AMI.

IL-20, a member of the IL-10 family of cytokines, was discovered in 2001. IL-20 acts on
multiple cell types by activating a heterodimer receptor complex of either IL-20R1–IL-20R2
or IL-22R1–IL-20R2. There have been several lines of evidence indicating that the interac-
tion of IL-20 with its receptors might have proinflammatory effects on chronic inflammatory
diseases, particularly rheumatoid arthritis, osteoporosis, and breast cancer [17]. Our previ-
ous study had concluded that IL-20 is responsive to hypoxia/reoxygenation stimulation
in vitro and in rat hearts undergoing I/R injury. We reported that IL-20 elicited an increase
in Ca2+ and activation of the protein kinase C and NADPH oxidase pathway, leading to
the elevation of oxidase stress and downregulation of protein kinase B, also known as
AKT [18]. In this study, we hypothesized that IL-20 antibody is an effective treatment
option for reducing I/R-induced oxidative stress, apoptosis and inflammation, thereby
mitigating cardiac fibrosis and cardiac dysfunction.

2. Materials and Methods
2.1. Cell Culture and Reagents

H9C2 cells, which are myoblast cells from rat myocardium, were purchased from
the American Type Culture Collection(Manassas, VA, USA). H9C2 cells were cultured in
Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10% fetal bovine serum
(FBS) and penicillin (50 IU/mL)/streptomycin (50 µg/mL). A 0.25% (w/v) Trypsin-0.53 mM
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ethylenediaminetetraacetic acid (EDTA) solution was used to passage cells. Cells were
cultured in humidified air with 5% CO2 at 37 ◦C. FBS and EDTA were purchased from
Thermo Fisher Scientific (Waltham, MA, USA). Diphenyleneiodonium chloride (DPI),
SB203580, Glutathione (GSH), and JSH-23, were purchased from MilliporeSigma (St. Louis,
MO, USA). The cell-permeant 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) was
obtained from Thermo Fisher Scientific (Waltham, MA, USA).

2.2. Hypoxia/Reoxygenation (H/R)

H9C2 cells were washed two times with PBS to remove glucose and serum in the
culture medium. In control cells, the medium was replaced with glucose-free DMEM; in
IL-20 antibody-treated or inhibitor-coincubated cells, the medium was replaced with IL-20
antibody or relevant inhibitors containing glucose-free DMEM. The cells were transferred
to a hypoxia chamber containing of 95% N2 and 5% CO2 for 1 h. After hypoxia exposure,
the cells were placed in a 5% CO2 and 95% O2 incubator for 4 h reoxygenation with high-
glucose DMEM containing of 10% FBS. In IL-20 silencing cells, cells were transfected with
IL-20 siRNA for 48 h before exposure to H/R.

2.3. Antibody Preparation

Anti-IL-20 monoclonal antibody was generated with standard protocols as described
in our previous study [19]. Our anti-IL-20 monoclonal antibody has been well demon-
strated to specifically repress and neutralize the biological function of IL-20 in vitro and
in vivo [20,21].

2.4. Animal Model for Ischemia-Reperfusion (I/R) Injury

The animals in this study received humane treatment. In agreement with the 3Rs
principle of reduction, the experimental animals were already scheduled for investigations
on I/R injury. A total of 18 healthy male Sprague-Dawley (SD) rats (200–250 g, 8–9 weeks
old) were bought from BioLASCO Taiwan. Animals were housed in the temperature-
controlled room (21–22 ◦C) and fed with regular food in the Laboratory Animal Center,
College of Medicine, National Cheng Kung University. The animals were kept in groups
of 2–3 animals in cages in the laboratory animal center for at least 7 days after arrival.
The diurnal rhythm was regulated with 12 h light and 12 h dark. The SD rats were
randomly numbered and assigned to three groups. For ischemia induction in animals, the
rats were anesthetized intramuscularly using the mixture of 10:1 tiletamine/zolazepam
(Zoletil) (Virbac, Carros, France) and xylazine (Rompun) (Bayer, Pittsburgh, PA, USA).
The dosage of anesthesia was 0.1 mL Zoletil/100 g body weight. Next, the heart was
accessed by left thoracotomy, and the pericardium was removed. Ischemia was induced
via the ligation of the left anterior descending coronary artery (LAD) with a 6-0 silk suture.
After 1 h, ligation of LAD was released to allow reperfusion. For the IL-20 antibody
treatment group, IL-20 antibody (5 mg/kg) was injected at the moment of reperfusion
via intraperitoneal injection. This dosage was based on our previous study [20]. The
animals in the control group underwent the same surgical procedures but without LAD
ligation. At the time of closure, the antibiotic (neomycin powder) was applied onto the
surgical wound. The Bactermin Ointment was applied on the skin for preventing infection.
The wound of thoracotomy was dressed daily to prevent any infection and to monitor
for any dehiscence of the suture area. Two analgesic drugs were used after thoracotomy
(Nalbuphine, 6 mg/kg, every 4–6 h; Ketoprofen, 2 mg/kg, every 24 h). For reducing
anxiety or stress after operation, the cages were enriched with paper. The food pellets were
put on the bottom the cages to promote access. Seven days after surgery, the animals were
sacrificed for further experiments. The sacrifice was conducted by injection of overdose
Zoletil and Rompun intramuscularly and then inhalation of overdose isoflurane. This
animal study was approved by the Institutional Animal Care and Use Committee (IACUC)
of National Cheng Kung University (IACUC No. 107179).
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2.5. Extraction of Proteins from Tissues, Western Blotting Assay, and Plasma Preparation

Protein expression levels were investigated by Western blotting. Total protein was iso-
lated from cells of the left ventricle. After sacrifice, the hearts of the animals were collected.
The tissue of the left ventricle was washed two times with phosphate-buffered saline (PBS),
and then 100 mg of tissue was cut for homogenization with radioimmunoprecipitation
assay (RIPA) lysis buffer. The homogenates were centrifuged at 13,000× g for 30 min,
and the supernatant was collected and placed at −80 ◦C until use. For Western blotting,
proteins were transferred to a polyvinylidene difluoride membrane after separation by
electrophoresis on sodium dodecyl sulfate polyacrylamide gels. The membranes were
blocked by the blocking buffer for 1 h at 37 ◦C and incubated with primary antibodies for
18 h at 4 ◦C followed by hybridization with horseradish peroxidase-conjugated secondary
antibodies for 1 h. The intensities of protein bands were quantified by densitometric
analysis. Plasma was obtained, on the day of sacrifice, through blood collection for the
measurement of malondialdehyde (MDA), IL-8, superoxide dismutase (SOD) activity,
lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) assay, and B-type natriuretic
peptide (BNP). For in vitro investigations, cells were collected in tubes, RIPA lysis buffer
was used for protein isolation. NF-κB p65 Transcription Factor Assay Kit (ab133112) and
NADP/NADPH Assay Kit (ab65349) were obtained from Abcam (Cambridge, MA, USA).

2.6. Antibodies

Anti-NOX-2, anti-Rac-1, anti-p47phox, anti-p-53, anti-Bax, anti-Bcl-2, anti-cytochrome
c, anti-β-actin, anti-p-I-κBα, anti-p-p38, anti-p-NF-κB, anti-COX-2, anti-IL-8, anti-TGFβ1,
anti-p-ERK, anti-Sp1, anti-CTGF, anti-FGF2, anti-uPA, anti-MMP-2, anti-MMP-9, and anti-
α-SMA were purchased from Thermo Fisher Scientific (Waltham, MA, USA). Secondary
antibodies were obtained from Cell Signaling (Danvers, MA, USA).

2.7. Isolation of mRNA and Quantitative Real-Time Polymerase Chain Reaction (PCR)

Total RNA was isolated from H9C2 cells using the RNeasy kit (Qiagen, Valencia,
CA, USA). Oligonucleotides were designed using the computer software package Primer
Express 2.0 (Applied Biosystems, Foster City, CA, USA). All of the oligonucleotides were
synthesized by Invitrogen (Breda, The Netherlands). Oligonucleotide specificity was
determined by a homology search within the genome (BLAST, National Center for Biotech-
nology Information, Bethesda, MD, USA) and confirmed by dissociation curve analysis.
The oligonucleotide sequences are provided in the Supplementary Table. PCR was per-
formed with SYBR Green in an ABI 7000 sequence detection system (Applied Biosystems)
according to the manufacturer’s guidelines.

2.8. Enzyme-Linked Immunosorbent Assay (ELISA) and Antioxidant Enzyme Activity Assay

ELISA was performed using commercial kits according to the manufacturer’s in-
structions. In brief, the antibody in the coating buffer was added to individual wells
and incubated for 2 h at 37 ◦C. After incubation, the coating solution was removed, and
wells were washed with PBS-0.05% Tween-20 twice. Then, 100 µL blocking buffer was
loaded in each well for 1 h at 37 ◦C. After blocking, wells were washed with PBS-0.05%
Tween-20 twice. An aliquot of 50 µL of diluted antibody was added to each well for 1 h
of incubation. Next, 50 µL of conjugated secondary antibody was added to each well for
1 h of incubation. The absorbance wavelength was set at 450 nm. The IL-8 kit was bought
from R&D (Minneapolis, MN, USA). The BNP and MDA kits were bought from Abcam
(Cambridge, MA, USA). The kits for CK-MB, LDH, and SOD activity were purchased from
Biovision (San Francisco, CA, USA).

2.9. Determination of Cardiac Functional Parameters

Four days after operation, echocardiography was performed to evaluate cardiac func-
tion. Isoflurane-anesthetized animals were placed in a supine position. Echocardiographic
data were collected by a Vevo 770 microimaging system with a 25-MHz probe (VisualSon-
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ics, Toronto, ON, Canada). Parameter values were collected based on the M-mode and
two-dimensional images obtained in the parasternal long and short axis views at the level
of the papillary muscles.

2.10. Apoptotic Assay

For investigating apoptosis in animal cardiac tissues, the terminal deoxynucleotidyl
transferase dUTP nick end labeling (TUNEL) assay was performed. Tissues were soaked
in 4% paraformaldehyde. Then, paraffin-embedded myocardium was cut into 2-µm-thick
sections. These tissue sections were deparaffinized in xylene, rehydrated through a graded
alcohol series (100%, 90%, 85%, and 75%), and then rinsed in PBS (pH 7.2). TUNEL-based
DNA fragmentation detection kit (FragEL; Calbiochem, San Diego, CA, USA) was used
to detect apoptotic cells in cardiac tissue sections. Apoptosis positive cells in H9C2 were
studied by the flow cytometry.

2.11. Masson’s Trichrome Staining

Masson’s trichrome staining was used for the investigation of histologically fibrotic
changes using a Trichrome Stain (Masson) Kit from MilliporeSigma (St. Louis, MO, USA).
All procedures were performed according to the manufacturer’s instructions. The total
ventricular area and the area of fibrotic changes were assigned numerical values, and the
fibrotic changes were normalized by the left ventricle.

2.12. Measurement of ROS Production

The production of ROS in H9C2 cells was determined by H2DCFDA. Confluent H9C2
cells (104 cells/well) in 96-well plates were exposed to H/R. After removing medium
from the wells, the cells were incubated with 10 µM H2DCFDA for 1 h. The fluorescence
intensity was measured with the Fluoroskan™ microplate fluorometer from Thermo Fisher
Scientific (Waltham, MA, USA) calibrated with excitation at 540 nm and emission at
590 nm. The percentage increase in fluorescence per well was calculated by the formula
[(Ft2 − Ft0)/Ft0] × 100.

2.13. Statistical Analysis

Statistical analysis was performed with Statistical Product and Service Solutions
(SPSS) software version 11.0 (SPSS, Inc., Chicago, IL, USA). Results are expressed as the
means ± standard deviation (SD). Two-group comparisons were analyzed by a two-sided
Student’s t-test. One-way analysis of variance was used to compare data among groups in
experiments including three or more groups. A p-value < 0.05 was considered statistically
significant.

3. Results
3.1. IL-20 Antibody Reduces I/R-Induced Oxidative Damages by Modulating Expression of
NADPH Oxidase Subunits

NADPH oxidase plays a critical role in causing oxidative stress and myocardial dam-
age after I/R. Inhibition the activity of NADPH oxidase can effectively repress excessive
formation of ROS [22]. We found that I/R enhanced NOX-2, Rac-1 and p47phox lev-
els in cardiac tissues, whereas this effect could be blocked by IL-20 antibody (5 mg/kg)
(Figure 1A–D). In order to examine whether IL-20 antibody treatment can reduce I/R-
induced oxidative stress, we measured MDA level, a marker of cardiac oxidative damage,
and SOD activity from plasma. Injection of IL-20 antibody after reperfusion significantly
reversed the level of MDA (Figure 1E) and upregulated the activity of SOD compared to
that of control I/R animals (Figure 1F). Results from Figure 1A–F indicated that IL-20 anti-
body protects against I/R-induced oxidative stress, which might be through modulation of
NADPH oxidase activity. In order to confirm this issue, we conducted in vitro investiga-
tions using H/R intervention in H9C2 cells. We found that both silencing IL-20 expression
and IL-20 antibody coincubation reduced H/R-caused elevation of NAPDH/NADP+ ratio
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(Figure 1G) and ROS concentrations (Figure 1H). GSH (an antioxidant) coincubation miti-
gated H/R-caused elevation of NAPDH/NADP+ ratio and ROS level (Figure 1G,H). DPI
(an inhibitor of NADPH oxidase) coincubation also inhibited H/R-increased ROS level
(Figure 1H).
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Figure 1. Interleukin (IL)-20 antibody reduces ischemia/reperfusion (I/R)-induced oxidative stress through nicotinamide
adenine dinucleotide phosphate (NADPH) oxidase inhibition. Sprague Dawley rats receiving sham operation or is-
chemia/reperfusion (I/R) treatment were studied. In the IL-20 antibody treatment group, animals were injected with
5 mg/kg IL-20 antibody at the phase of reperfusion. The left ventricular tissues were collected for Western blotting assay.
Representatives of Western blot (A), and the densitometric analysis of NADPH oxidase-2 (NOX-2) (B), p47phox (C), and
Rac-1 (D) were shown. Plasma malondialdehyde (MDA) concentration (E) and superoxide dismutase (SOD) activity (F)
were checked. The data were presented as the mean ± standard deviation (SD) of six animals in each group. (G) NADPH
oxidase activity in H9C2 cells after hypoxia/reoxygenation (H/R) was presented by NAPDH/NADP+ ratio. H9C2 cells
that had been first exposed to hypoxia chamber with oxygen-glucose deprivation (OGD) for 1 h were moved into the
normoxia chamber with high glucose medium for further 4 h, a condition abbreviated as H1R4. In some cases, cells
were transfected with si-Control or si-IL-20 for 48 h before OGD. In the IL-20 antibody treatment group, 10 µg/mL IL-20
antibody was added to medium during H/R. Glutathione (GSH), an antioxidant, was used for mitigating oxidative stress.
(H) Reactive oxygen species (ROS) concentration was investigated by the cell-permeant 2′,7′-dichlorodihydrofluorescein
diacetate. Diphenyleneiodonium chloride (DPI), an inhibitor of NADPH oxidase, was used to inhibit H/R-induced NADPH
oxidase activation. Data were presented as the mean ± SD of three different experiments. (* indicating p < 0.05 compared
to the sham group or normoxia control cells; # indicating p < 0.05 compared to the I/R group or H/R cells). Sham:
thoracotomy without ischemia/reperfusion; I/R: thoracotomy with ischemia/reperfusion; I/R + IL-20 ab: thora-cotomy
with ischemia/reperfusion plus IL-20 antibody injection. “−” indicated cells were exposed to normoxia cham-ber; “+”
indicated cells were exposed to hypoxia chamber for 1 h followed by 4 h reoxygenation.

3.2. IL-20 Antibody Mitigates I/R-Caused Cardiac Apoptosis via Modulation of the
Mitochondria-Dependent Pathway

Increased apoptosis is reported in the heart tissue of subjects with myocardial infarc-
tion [23]. We found that IL-20 antibody reduced I/R-caused cardiac damage by hematoxylin
and eosin staining (Figure 2A). Moreover, the tumor suppressor p53 plays a central role in
cellular responses to DNA damage. The activation of p53 results in cell cycle arrest as well
as apoptosis [24]. We observed that I/R upregulated the expression of p53 (Figure 2B,C),
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whereas IL-20 antibody intervention reversed this phenomenon. Mitochondria have a
critical role in the execution of apoptosis in cardiac tissues. These organelles are the main
target for ROS-induced oxidative injuries [25]. Previous reports have shown increased
cardiac apoptosis after myocardial I/R [26]. Hence, we investigated whether IL-20 anti-
body protects against I/R-caused apoptosis. Our results revealed that I/R decreased Bcl-2
expression and increased Bax and cytochrome c levels. This effect could be reversed by
IL-20 antibody injection at reperfusion (Figure 2B,D–F). It has been previously reported
that DNA fragmentation, a well-known marker of apoptosis, was not found in the my-
ocardium subjected to ischemia only, but occurred during ischemia plus reperfusion [27].
The TUNEL assay results confirmed that IL-20 antibody injection at reperfusion phase
reduces I/R-induced apoptosis in the myocardium (Figure 2G). IL-20 silencing, IL-20 an-
tibody coincubation, DPI, and GSH all reduced H/R-facilitated apoptosis in H9C2 cells
(Figure 2H).

3.3. IL-20 Antibody Reduces I/R-Mediated Activation of Proinflammatory Responses

I/R upregulates the MAPK cascade and also induces the phosphorylation of I-κB
kinase, thereby promoting NF-κB p65 and p50 nuclear translocation and triggering proin-
flammatory events [16]. We found that I/R enhanced the phosphorylation of p38, I-κBα,
and NF-κB, which could be abrogated by IL-20 antibody intervention (Figure 3A–D). In
addition, we also observed that I/R increased the plasma level of IL-8, an important
molecule associated with cardiac ischemia injuries [28]. IL-20 antibody injection effectively
attenuated I/R-mediated upregulation of IL-8 (Figure 3E). In order to confirm whether
IL-20 antibody reduces I/R-promoted proinflammatory responses through inhibition of
p38MAPK and NF-κB pathway, we exposed H9C2 cells to H/R and checked the activity of
NF-κB and IL-8 levels with IL-20 silencing, IL-20 antibody and relevant inhibitors treatment.
In H/R-treated cells, the activity of NF-κB was reduced by IL-20 silencing, IL-20 antibody
treatment, DPI, GSH, and SB203580 (an inhibitor of p38MAPK) (Figure 3F). Moreover,
inhibition of IL-20, NADPH oxidase, p38MAPK, and NF-κB mitigated H/R-increased IL-8
levels (Figure 3G).

3.4. IL-20 Antibody Attenuates Activation of I/R-Associated Fibrotic Factors

Fibrosis that ensues tissue damage is a critical part of restoration and is often asso-
ciated with inflammation. Advanced fibrosis is considered a pathological feature and
leads to organ dysfunction [29]. TGF-β is an important profibrotic cytokine and plays an
integral role in regulating hypertrophic cardiomyocyte growth after AMI [30]. A previ-
ous study suggested that TGF-β1 is able to increase the phosphorylation of extracellular
signal-regulated kinase (ERK) in fibroblasts and that phosphorylation of ERK is necessary
for TGF-β1-related epithelial-to-mesenchymal transformation, a critical step for pathologic
fibrosis [31]. Our data revealed that I/R enhanced the expression of TGF-β1 and phosphory-
lation of ERK and that IL-20 antibody injection prevented this phenomenon (Figure 4A–C).
Since the transcription factor specificity protein 1 (Sp1) is involved in TGF-β1-stimulated
alpha 2(I)-collagen transcription, and connective tissue growth factor (CTGF) participates
in the regulation of cardiac fibrosis and heart failure [32], we examined the induction
of SP1 and CTGF by I/R injury. The results show that expression levels of these two
factors were increased after I/R, but the induction could be attenuated by IL-20 antibody
injection (Figure 4A,D,E). Moreover, we examined the expression levels of fibrosis factors
in anterior ventricular wall (ischemic area) and posterior ventricular wall (nonischemic
area). We found that the expression levels of fibrosis factors were upregulated in anterior
ventricular wall and IL-20 antibody treatment reduced the expression levels of fibrosis fac-
tors compared to I/R animals without IL-20 antibody treatment (Figure 4F). Furthermore,
IL-20 silencing, IL-20 antibody treatment, DPI, and GSH mitigated H/R-promoted mRNA
expression levels of TGFβ1, Sp1, and CTGF in H9C2 cells (Figure 4G–I).
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chondria-dependent apoptosis pathways. Sprague Dawley rats receiving sham operation or I/R treatment were studied. 
In the IL-20 antibody treatment group, animals were injected with 5 mg/kg IL-20 antibody at the phase of reperfusion. (A) 
Histological assessment of infarct area after I/R was shown. Tissue sections were obtained from formalin-fixed heart slices 
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Figure 2. Interleukin (IL)-20 antibody reduces ischemia/reperfusion (I/R)-induced apoptosis by modulation of the
mitochondria-dependent apoptosis pathways. Sprague Dawley rats receiving sham operation or I/R treatment were
studied. In the IL-20 antibody treatment group, animals were injected with 5 mg/kg IL-20 antibody at the phase of
reperfusion. (A) Histological assessment of infarct area after I/R was shown. Tissue sections were obtained from formalin-
fixed heart slices that were treated with hematoxylin and eosin staining. The left ventricular tissues were collected for
Western blotting assay. Representatives of Western blot (B), and the densitometric analysis of p-53 (C), Bax (D), Bcl-2 (E), and
cytochrome c (F) were shown. (G) Apoptosis in tissue was analyzed by terminal deoxynucleotidyl transferase dUTP nick end
labeling (TUNEL) assay. (H) Apoptosis in H9C2 cells after hypoxia/reoxygenation (H/R) was presented by TUNEL assay
using flow cytometry. H9C2 cells that had been first exposed to hypoxia chamber with oxygen-glucose deprivation (OGD)
for 1 h were moved into the normoxia chamber with high glucose medium for further 4 h, a condition abbreviated as H1R4.
In some cases, cells were transfected with si-Control or si-IL-20 for 48 h before OGD. In the IL-20 antibody treatment group,
10 µg/mL IL-20 antibody was added to medium during H/R. Glutathione (GSH), an antioxidant, was used for mitigating
oxidative stress. Diphenyleneiodonium chloride (DPI), an inhibitor of nicotinamide adenine dinucleotide phosphate
(NADPH) oxidase, was used to inhibit H/R-induced NADPH oxidase activation. Data were presented as the mean ±
standard deviation of three different experiments. (* indicating p < 0.05 compared to the sham group or normoxia control
cells; # indicating p < 0.05 compared to the I/R group or H/R cells). Sham: thoracotomy without ischemia/reperfusion;
I/R: thoracotomy with ischemia/reperfusion; I/R + IL-20 ab: thora-cotomy with ischemia/reperfusion plus IL-20 antibody
injection. “−” indicated cells were exposed to normoxia cham-ber; “+” indicated cells were exposed to hypoxia chamber for
1 h followed by 4 h reoxygenation.

3.5. IL-20 Antibody Diminishes the I/R-Caused Myocardial Remodeling-Associated Molecule
Expression and Cardiac Fibrosis

To further study the protective effect of IL-20 antibody on I/R-induced cardiac re-
modeling, we assessed levels of molecules involved in the progress of cardiac remodeling.
Fibroblast growth factor 2 (FGF-2), the proteolytic enzymes urokinase-type plasminogen
activator (uPA), and matrix metalloproteinases (MMPs) have been reported to play an im-
portant role in adverse cardiac remodeling [33,34]. Our results show that I/R enhanced the
expression levels of FGF-2, uPA, MMP-2, and MMP-9. IL-20 antibody injection hampered
the induction of FGF-2, uPA, MMP-2, and MMP-9 (Figure 5A–E). It is well known that the
most critical step in fibrotic scar formation is trans-differentiation of cardiac fibroblasts into
myofibroblasts, we then examined and revealed that expression levels of alpha smooth
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muscle actin (α-SMA), a marker of myofibroblasts, were upregulated in I/R heart. IL-20
antibody treatment could reverse this phenomenon (Figure 5A,F). Besides determining the
molecular changes, we further investigated the histological alterations in the ventricular
tissues following I/R. Results from Masson’s Trichrome staining revealed excess accumu-
lation of collagen in the ventricular tissues after I/R, and the injection of IL-20 antibody
reduced collagen deposition (Figure 5G,H). In addition, we confirmed the expression levels
of cardiac remodeling gene were elevated in anterior ventricular wall and IL-20 antibody
treatment mitigated the expression levels of cardiac remodeling gene (Figure 5I). Moreover,
we also revealed that the inhibition of IL-20, IL-20 antibody, DPI, and GSH attenuated
H/R-upregulated mRNA expression level of FGF2, uPA, MMP-2, MMP-9, and α-SMA in
H9C2 cells (Figure 5J–N).
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Figure 3. Interleukin (IL)-20 antibody mitigates ischemia/reperfusion (I/R)-induced inflammation by modulating nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity. Sprague Dawley rats receiving sham operation or
I/R treatment were studied. In the IL-20 antibody treatment group, animals were injected with 5 mg/kg IL-20 antibody at
the phase of reperfusion. The left ventricular tissues were collected for Western blotting assay. Representatives of Western
blot (A), and the densitometric analysis of p-p38 (B), p-inhibitor of NF-κB (I-κB) (C), and p-NF-κB (D) were shown. The
enzyme-linked immunosorbent assay was used for the investigation of IL-8 concentration in plasma (E). The data were
presented as the mean ± standard deviation (SD) of six animals in each group. NF-κB activity (F) and IL-8 release (G)
in H9C2 cells after hypoxia/reoxygenation (H/R) intervention were checked. H9C2 cells that had been first exposed to
hypoxia chamber with oxygen-glucose deprivation (OGD) for 1 h were moved into the normoxia chamber with high glucose
medium for further 4 h, a condition abbreviated as H1R4. In some cases, cells were transfected with si-Control or si-IL-20
for 48 h before OGD. In the IL-20 antibody treatment group, 10 µg/mL IL-20 antibody was added to medium during H/R.
Glutathione (GSH), an antioxidant, was used for mitigating oxidative stress. In some cases, diphenyleneiodonium chloride
(DPI, a nicotinamide adenine dinucleotide phosphate oxidase inhibitor), SB203580 (a p38 inhibitor), or JSH-23 (a NF-κB
inhibitor) was coincubated during H/R. Data were presented as the mean ± SD of three different experiments. (* indicating
p < 0.05 compared to the sham group or normoxia control cells; # indicating p < 0.05 compared to the I/R group or H/R
cells). Sham: thoracotomy without ischemia/reperfusion; I/R: thoracotomy with ischemia/reperfusion; I/R + IL-20 ab:
thora-cotomy with ischemia/reperfusion plus IL-20 antibody injection. “−” indicated cells were exposed to normoxia
cham-ber; “+” indicated cells were exposed to hypoxia chamber for 1 h followed by 4 h reoxygenation.
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Sprague Dawley rats receiving sham operation or I/R treatment were studied. In the IL-20 antibody treatment group,
animals were injected with 5 mg/kg IL-20 antibody at the phase of reperfusion. The left ventricular tissues were collected
for Western blotting assay. Representatives of Western blot (A), and the densitometric analysis of transforming growth
factor beta 1 (TGFβ1) (B), p-extracellular regulated protein kinases (ERK) (C), transcription factor specificity protein 1 (Sp1)
(D), and connective tissue growth factor (CTGF) (E) were shown. (F) The mRNA levels of fibrosis factors in ischemic area
(anterior ventricular wall) and nonischemic area (posterior ventricular wall) were investigated by quantitative real-time
polymerase chain reaction assays. The data were presented as the mean ± standard deviation (SD) of six animals in each
group. (G–I) The mRNA expression of fibrosis factors in H9C2 cells after hypoxia/reoxygenation (H/R) was examined.
H9C2 cells that had been first exposed to hypoxia chamber with oxygen-glucose deprivation (OGD) for 1 h were moved
into the normoxia chamber with high glucose medium for further 4 h, a condition abbreviated as H1R4. In some cases, cells
were transfected with si-Control or si-IL-20 for 48 h before OGD. In the IL-20 antibody treatment group, 10 µg/mL IL-20
antibody was added to medium during H/R. Glutathione (GSH), an antioxidant, was used for mitigating oxidative stress.
Diphenyleneiodonium chloride (DPI), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, was used
to inhibit H/R-induced NADPH oxidase activation. Data were presented as the mean ± SD of three different experiments.
(* indicating p < 0.05 compared to the sham group or normoxia control cells; # indicating p < 0.05 compared to the I/R group
or H/R cells). Sham: thoracotomy without ischemia/reperfusion; I/R: thoracotomy with ischemia/reperfusion; I/R + IL-20
ab: thora-cotomy with ischemia/reperfusion plus IL-20 antibody injection. “−” indicated cells were exposed to normoxia
cham-ber; “+” indicated cells were exposed to hypoxia chamber for 1 h followed by 4 h reoxygenation.

3.6. Treatment with Anti-IL-20 Antibody Reduces Myocardial Infarction-Caused Heart
Function Impairment

Next, to evaluate the therapeutic effect of IL-20 antibody in myocardial infarction,
we used echocardiography to monitor cardiac function. The left ventricular ejection
fraction (Figure 6A) and fractional shortening (Figure 6B) were decreased in the setting of
I/R, indicating that the contractive function of left ventricle was reduced by myocardial
injury. Treatment with IL-20 antibody could improve the left ventricular contractive
function in terms of ejection fraction (Figure 6A) and fractional shortening (Figure 6B).
Myocardial injury caused dilatation of left ventricle, represented by the increased volume
of left ventricle at either end systole (Figure 6C) or end diastole (Figure 6D) as well as
increased internal dimension of left ventricle at both end systole (Figure 6E) and end
diastole (Figure 6F). Injection of IL-20 antibody could reverse the effects of I/R injury on
chamber dilatation of the left ventricle (Figure 6C–F). There was no significant difference in
the thickness of the left ventricular posterior wall at end systole (Figure 6G) and end diastole
(Figure 6H) among sham group, I/R group, and I/R plus IL-20 antibody treatment group,
suggesting that the ligation of LAD coronary artery was successful without interfering
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other coronary artery flow. The function of the anterior wall of left ventricle was impaired
whereas the posterior wall was unaffected. In addition, compared to control animals
(Figure 6I, upper panel), the motion of the anterior wall of left ventricle (red arrows) in
M-mode echocardiography was decreased under I/R injury (Figure 6I, middle panel).
Treatment with IL-20 antibody improved the impaired motion of anterior wall (Figure 6I,
lower panel). Impaired left ventricular contraction and dilatation of left ventricle are
important features of CHF. Our data imply that IL-20 antibody has the ability to protect
heart function from I/R injury. This finding was supported by plasma BNP concentration
examination. The increase in plasma levels of BNP after I/R insult was attenuated by
IL-20 antibody injection (Figure 6J). Moreover, in compliance with our previous results,
we further proved that the concentrations of LDH and CK-MB in plasma were increased
after I/R intervention. These two factors are commonly used to determine the severity
of myocardial injury [35]. As expected, we confirmed that IL-20 antibody injection at
reperfusion is an effective way to mitigate the I/R-induced myocardial injury (Figure 7A,B).
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Figure 5. The effect of interleukin (IL)-20 antibody on ischemia/reperfusion (I/R)-induced upregulation of cardiac
remodeling-related factors and fibrosis. Sprague Dawley rats receiving sham operation or I/R treatment were studied. In
the IL-20 antibody treatment group, animals were injected with 5 mg/kg IL-20 antibody at the phase of reperfusion. The
left ventricular tissues were collected for Western blotting assay. Representatives of Western blot (A), and the densitometric
analysis of fibroblast growth factor 2 (FGF2) (B), urokinase-type plasminogen activator (uPA) (C), matrix metallopoateinase-2
(MMP-2) (D), matrix metallopoateinase-9 (MMP-9) (E), and α-smooth muscle actin (α-SMA) (F) were shown. Masson’s
trichrome staining was done to detect fibrotic tissue. Representative images of Masson’s Trichrome staining (G) and
quantification (H) of fibrosis areas were shown. (I) The mRNA levels of remodeling-related factors in ischemic area (anterior
ventricular wall) and nonischemic area (posterior ventricular wall) were investigated by quantitative real-time polymerase
chain reaction assays. The data were presented as the mean ± standard deviation (SD) of six animals in each group.
(J–N) The mRNA expression of fibrosis factors in H9C2 cells after H/R was examined. H9C2 cells that had been first
exposed to hypoxia chamber with oxygen-glucose deprivation (OGD) for 1 h were moved into the normoxia chamber
with high glucose medium for further 4 h, a condition abbreviated as H1R4. In some cases, cells were transfected with
si-Control or si-IL-20 for 48 h before OGD. In the IL-20 antibody treatment group, 10 µg/mL IL-20 antibody was added to
medium during hypoxia/reoxygenation (H/R). Glutathione (GSH), an antioxidant, was used for mitigating oxidative stress.
Diphenyleneiodonium chloride (DPI), a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor, was used
to inhibit H/R-induced NADPH oxidase activation. Data were presented as the mean ± SD of three different experiments.
(* indicating p < 0.05 compared to the sham group or normoxia control cells; # indicating p < 0.05 compared to the I/R group
or H/R cells). Sham: thoracotomy without ischemia/reperfusion; I/R: thoracotomy with ischemia/reperfusion; I/R + IL-20
ab: thora-cotomy with ischemia/reperfusion plus IL-20 antibody injection. “−” indicated cells were exposed to normoxia
cham-ber; “+” indicated cells were exposed to hypoxia chamber for 1 h followed by 4 h reoxygenation.
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Figure 6. Examination of cardiac function using echocardiography. The parameters of the left ventricular function were
measured using M-mode echocardiography. The ejection fraction (EF) (A) and fractional shortening (FS) (B) of left ventricle
were measured to determine the left ventricular contraction ability. The volume of the left ventricle at end systole (C)
and at end diastole (D), the internal dimension of left ventricle at end systole (E) and at end diastole (F), as well as
the left ventricular posterior wall thickness at end systole (G) and at end diastole (H) were measured to determine the
dilatation of left ventricle. Representative images of M-mode echocardiography were shown to demonstrate the rescue of
ischemia/reperfusion (I/R)-induced cardiac dysfunction by interleukin (IL)-20 antibody treatment. Red arrows indicate the
anterior wall of left ventricle (I). The concentrations of plasma B-type natriuretic peptide (BNP) were checked to determine
the degree of cardiac dysfunction (J). The data were presented as the mean ± standard deviation of six animals in each
group (* indicating p < 0.05 compared to the sham group; # indicating p < 0.05 compared to the I/R group).
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Figure 7. The effect of interleukin (IL)-20 antibody on the concentration of biomarkers for cardiac
damage. The concentrations of creatine kinase-MB (CK-MB) (A) and lactate dehydrogenase (LDH) (B)
were checked to determine the extent of myocardial infarction after ischemia/reperfusion (I/R) and
the protective effect of IL-20 antibody treatment. The data were presented as the mean ± standard
deviation of six animals in each group (* indicating p < 0.05 compared to the sham group; # indicating
p < 0.05 compared to the I/R group).

4. Discussion

Attenuating the ischemic period in the setting of AMI has attracted a considerable deal
of attention owing to the strong relationship between the period of ischemia and the severity
of myocardial damage. However, as soon as occlusion of the coronary artery is rebuilt,
the myocardium is influenced by reperfusion injury [36]. Thus, it is important to develop
new strategies to lessen I/R injury. The molecular mechanisms and biological signaling
pathways regarding I/R damage are complex. The oxidative stress-induced myocardial
injury is considered a critical regulator in the initiation of I/R damage [37]. The critical
roles of oxidative injuries in I/R-caused myocardial remodeling have been determined
by the investigation of extracellular matrix deposition, myocardial inflammation, fibrosis,
and apoptosis. All of these events lead to development of CHF [38]. We previously
demonstrated that IL-20 plays a key role in modulation of cardiac damage following
myocardial infarction. In this study, we showed that IL-20 antibody injection at the moment
of reperfusion reduces I/R-caused oxidative injuries, apoptosis, inflammation, as well as the
elevation in markers of cardiac fibrosis and remodeling (Figure 8). We also demonstrated
that IL-20 antibody injection attenuates cardiac functional impairment, including the
repressed EF and FS, the increased left ventricular end-diastolic and end-systolic volumes,
and downregulation of plasma markers of cardiac injury and heart failure. This study
provides convincing evidence that IL-20 antibody is favorable in lessening reperfusion
injury for treating AMI.

NADPH oxidase has been recognized as one of the main sources for ROS production
in cardiomyocytes by transferring one electron to oxygen from NADPH [39]. A growing
body of research has suggested that NADPH oxidase plays a critical role in controlling
myocardial damage in I/R injury model. For example, a previous study revealed that
the expression of NOX-2 was increased in rat ventricle after myocardial infarction [40].
This finding was further confirmed in human myocardial tissue. Krijnen et al. found a
massive upregulation of NOX-2 expression in both viable and jeopardized cardiomyocytes
in infarcted myocardial tissue [41]. The inhibition of NADPH oxidase activity decreased
apoptosis in cardiomyocytes, prevented ventricular dysfunction, and increased survival
rate in NOX-2 knockout animals following ischemic surgery [42]. In addition, NADPH oxi-
dase has been suggested to be an important origin of mitochondrial superoxide. NADPH
oxidase could be activated by ATP, indicating that NADPH oxidase can team mitochondrial
oxidative stress-related signaling pathways [43]. Results from cardiac-specific NADPH
oxidase-4 knockout animals have proved that NADPH oxidase contributes to mitochon-
drial impairment, myocardial apoptosis, and myocardial dysfunction by upregulating
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ROS [44]. In this study, we revealed that IL-20 antibody injection at the moment of reper-
fusion reduced the I/R-induced expression of NOX-2, Rac-1, and p47phox in myocardial
tissue and elevation of oxidative stress. Moreover, IL-20 antibody treatment diminished
I/R-induced expression of p-53, Bax, and cytochrome c, as well as restored the expres-
sion of Bcl-2. These results suggest that IL-20 antibody repressed I/R-caused myocardial
apoptosis through modulation of oxidative stress and mitochondria-dependent apoptosis
pathway.
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The proinflammatory responses caused by I/R injury are one of the most important
effects on the progression of myocardial impairment [45]. It has been reported that ROS
overgeneration is responsible for the activation of the NF-κB signal pathway. Increased ROS
can stimulate expression of NF-κB p65 subunit and its upstream signaling molecule IKK,
both of which modulate the proinflammatory events [46]. In addition, a previous study
suggested that early upregulation of NF-κB activity by I/R injury may be responsible for
the regulation of immediate-early gene expression, providing an effective protection against
myocardial ischemic injury [47]. In this study, we showed that IL-20 antibody suppressed
the NF-κB pathway and IL-8 release, supporting the attenuation of I/R myocardial injury
by IL-20 antibody is through blockade of inflammation.

Upregulation of TGF-β isoforms has been comprehensively confirmed in both animals
with I/R injury and patients suffering from myocardial infarction [48]. Under the reperfu-
sion of myocardial infarction, TGF-β1 has an early peak of mRNA expression at the time
period of 6–72 h after reperfusion. In contrast, TGF-β3 mRNA expression is continually
increased 7 days after reperfusion [49]. TGF-β is an upstream regulator of the MAPK
pathway and essentially participated in the progression of myocardial repair and cardiac re-
modeling [30]. Moreover, repression of the MAPK pathway mitigated the pathological and
molecular damage caused by I/R injury and ameliorated clinical outcomes in preclinical
studies [50]. Here we showed that IL-20 antibody reduced the expression levels of TGF-β1
and p-ERK in rats experiencing I/R injury. Moreover, the I/R-mediated upregulation of
Sp1, a critical regulator in controlling the expression of TGF-β family [51], was inhibited by
IL-20 antibody injection. Since CTGF has also been involved in TGF-β1-triggered collagen
synthesis in fibroblasts [52], we observed that CTGF expression was increased by I/R injury
and IL-20 antibody injection impeded this upregulation as expected.

The cardiac remodeling is an advancing procedure affecting changes in cardiac hyper-
trophy, apoptosis of cardiomyocytes, proinflammatory responses, as well as cardiac fibrosis.
Different remodeling responses may eventually cause impairment of cardiac function,
thereby leading to heart failure [53]. FGF2, uPA, and MMPs all have been reported to be
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major regulators in the progression of cardiac repair and remodeling [34]. MMP-2 and
MMP-9 are obviously expressed after AMI. In addition, MMP-9 knockout animals with
I/R injury have less collagen accumulation in the infarcted area [32,54]. Our data showed
that IL-20 antibody injection reduced the elevated expression of FGF2, uPA, MMP-2, and
MMP-9 after I/R, which may ameliorate myocardial remodeling and cardiac functions.

This study has several limitations. First, the fibrotic scar formation and the cardiac
remodeling process should take much more time to be completed. We did not test the
long-term protective effects of IL-20 antibody in I/R model. Secondly, we did not quantify
the amount of IL-20 antibody effectively reaching the cardiac tissue. Thirdly, we did not
conduct double-stain with Evan’s blue and triphenyl tetrazolium chloride to detect the
area of myocardium at ischemic risk caused by ligation of coronary artery in this study.
These issues will be our major direction for further study.

5. Conclusions

In conclusion, this study uncovered that the profound protective effects of IL-20 anti-
body may be attributed to repression of NADPH oxidase-mediated oxidative stress and
apoptosis of myocardium in I/R rats. Treatment with IL-20 antibody resulted in salutary
effects on I/R-induced cardiac inflammation, fibrosis, and remodeling, thereby restoring
cardiac function. Thus, the administration of IL-20 antibody in myocardial reperfusion,
either by thrombolytic medication or using percutaneous coronary intervention, to re-
press myocardial ischemia-reperfusion injury could be a promising novel strategy for the
improvement of AMI treatment.
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