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Abstract
The genus Desulfoluna comprises two anaerobic sulfate-reducing strains, D. spongiiphila AA1T and D. butyratoxydans
MSL71T, of which only the former was shown to perform organohalide respiration (OHR). Here we isolated a third strain,
designated D. spongiiphila strain DBB, from marine intertidal sediment using 1,4-dibromobenzene and sulfate as the
electron acceptors and lactate as the electron donor. Each strain harbors three reductive dehalogenase gene clusters (rdhABC)
and corrinoid biosynthesis genes in their genomes, and dehalogenated brominated but not chlorinated organohalogens. The
Desulfoluna strains maintained OHR in the presence of 20 mM sulfate or 20 mM sulfide, which often negatively affect other
organohalide-respiring bacteria. Strain DBB sustained OHR with 2% oxygen in the gas phase, in line with its genetic
potential for reactive oxygen species detoxification. Reverse transcription-quantitative PCR revealed differential induction of
rdhA genes in strain DBB in response to 1,4-dibromobenzene or 2,6-dibromophenol. Proteomic analysis confirmed
expression of rdhA1 with 1,4-dibromobenzene, and revealed a partially shared electron transport chain from lactate to
1,4-dibromobenzene and sulfate, which may explain accelerated OHR during concurrent sulfate reduction. Versatility in
using electron donors, de novo corrinoid biosynthesis, resistance to sulfate, sulfide and oxygen, and concurrent sulfate
reduction and OHR may confer an advantage to marine Desulfoluna strains.

Introduction

More than 5000 naturally produced organohalides have
been identified, some of which have already been present in
a variety of environments for millions of years [1]. In
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particular, marine environments are a rich source of
chlorinated, brominated and iodinated organohalides pro-
duced by marine algae, seaweeds, sponges, and bacteria [2],
Fenton-like [3] and photochemical reactions, as well as
volcanic activities [4, 5]. Such a natural and ancient pre-
sence of organohalogens in marine environments may have
primed development of various types of microbial dehalo-
genation [6]. Furthermore, marine environments and coastal
regions in particular are also commonly reported to be
contaminated with organohalogens from anthropogenic
sources [7].

During organohalide respiration (OHR) organohalogens
are used as terminal electron acceptors, and their reductive
dehalogenation is coupled to energy conservation [8–10].
This process is mediated by reductive dehalogenases
(RDases), which are membrane-associated, corrinoid-
dependent, and oxygen-sensitive proteins [9–11]. The cor-
responding rdh gene clusters usually consist of rdhA
encoding the catalytic subunit, rdhB encoding a putative
membrane anchor protein [10], and a variable set of
accessory genes encoding RdhC and other proteins likely
involved in regulation, maturation and/or electron transport
[12, 13]. The electron transport chain from electron donors
to RDases has been classified into quinone-dependent
(relying on menaquinones as electron shuttles between
electron donors and RDases) and quinone-independent
pathways [9, 10, 14]. Recent studies suggested that RdhC
may serve as electron carrier during OHR in Firmicutes
[15, 16].

OHR is mediated by organohalide-respiring bacteria
(OHRB), which belong to a broad range of phylogenetically
distinct bacterial genera. OHRB belonging to Chloroflexi or
the genus Dehalobacter (Firmicutes, e.g., Dehalobacter
restrictus) are specialists restricted to OHR, whereas pro-
teobacterial OHRB and members of the genus Desulfito-
bacterium (Firmicutes, e.g., Desulfitobacterium hafniense)
are generalists with a versatile metabolism [17, 18].
Numerous studies have reported OHR activity and occur-
rence of OHRB and rdhA genes in marine environments
[6, 19–21]. Recent genomic [22–24] and single-cell geno-
mic [25] analyses revealed widespread occurrence of rdh
gene clusters in marine Deltaproteobacteria, indicting
untapped potential for OHR. Accordingly, OHR metabo-
lism was experimentally verified in three Deltaproteo-
bacteria strains, not previously known as OHRB [23].

OHRB, and in particular members of the Chloroflexi, are
fastidious microbes, and lack the ability to synthesize cor-
rinoid co-factors de novo [9]. Moreover, many OHRB are
susceptible to inhibition by oxygen [26], sulfate [27] or
sulfide [28, 29]. For example, in the presence of both 3-
chlorobenzoate and either sulfate, sulfite or thiosulfate,
Desulfomonile tiedjei isolated from sewage sludge pre-
ferentially performed sulfur oxyanion reduction [30], and

OHR inhibition was suggested to be caused by down-
regulation of rdh gene expression [30]. In contrast, con-
current sulfate reduction and OHR was observed in
Desulfoluna spongiiphila AA1T isolated from the marine
sponge Aplysina aerophoba [20], and three newly char-
acterized organohalide-respiring marine deltaproteobacterial
strains [23]. Thus, sulfate- and sulfide-rich marine envir-
onments may have exerted a selective pressure resulting in
development of sulfate- and sulfide-tolerant OHRB.

The genus Desulfoluna comprises two anaerobic sulfate-
reducing strains, D. spongiiphila AA1T isolated from the
bromophenol-producing marine sponge Aplysina aero-
phoba [20, 31], and D. butyratoxydans MSL71T isolated
from estuarine sediments [32]. Strain AA1T can reductively
dehalogenate various bromophenols but not chlorophenols.
The genome of strain AA1T harbors three rdhA genes, one
of which was shown to be induced by 2,6-dibromophenol
(2,6-DBP) [21]. The OHR potential and the genome of
strain MSL71T have not been studied before. In this study, a
third member of the genus Desulfoluna, designated
D. spongiiphila strain DBB, was isolated from a marine
intertidal sediment. The OHR metabolism of strains DBB
and MSL71T was verified in this study, providing further
evidence for widespread OHR potential in marine Delta-
proteobacteria [22–25]. Using in depth physiological,
genomic and proteomic analyses, we aimed to unravel
metabolic traits of these three strains, such as de novo
corrinoid biosynthesis, resistance to sulfate, sulfide and
oxygen, and versatility in using electron donors. Our results
showed that resistance of Desulfoluna strains to sulfide was
remarkable among the reported sulfate-reducing bacteria,
and concurrent reduction of sulfate and organohalogens as
terminal electron acceptors was unique among the currently
known OHRB. Moreover, inability to dehalogenate orga-
nochlorines indicated niche specialization of the members
of the genus Desulfoluna as chemoorganotrophic facultative
OHRB in marine environments rich in sulfate and
organobromines.

Materials and methods

Chemicals

Brominated, iodinated and chlorinated benzenes and phe-
nols were purchased from Sigma-Aldrich. Other organic
and inorganic chemicals used in this study were of
analytical grade.

Bacterial strains

D. spongiiphila AA1T (DSM 17682T) and D. butyratox-
ydans MSL71T (DSM 19427T) were obtained from the
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German Collection of Microorganisms and Cell Cultures
(DSMZ, Braunschweig, Germany), and were cultivated as
described previously [20, 32].

Enrichment, isolation and cultivation of strain DBB

Surface sediment of an intertidal zone, predominantly
composed of shore sediment, was collected at the shore in
L’Escala, Spain (42°7'35.27"N, 3°8'6.99"E). Five grams of
sediment was transferred into 120-ml bottles containing
50 ml of anoxic medium [33] with lactate and 1,4-dibro-
mobenzene (1,4-DBB) as the electron donor and acceptor,
respectively. Vitamin (without vitamin B12) and trace ele-
ment solution was prepared as described previously [34].
The medium contained 10–30 g/L NaCl. Resazurin
(0.005 g/L) and Na2S·9H2O (0.48 g/L) were added as redox
indicator and reducing reagent, respectively. Sediment-free
cultures were obtained by transferring the suspensions of
the enrichment culture to fresh medium. A pure culture of a
1,4-DBB debrominating strain, designated as D. spongii-
phila strain DBB, was obtained from a dilution series on
solid medium with 0.8% low gelling agarose (congealing
temperature 26–30 °C, Sigma-Aldrich, product number:
A9414). A detailed description of enrichment, isolation and
physiological characterization of strain DBB is provided in
the Supplementary Information.

DNA extraction and bacterial community analysis

DNA of the intertidal sediment (5 g) and the 1,4-DBB-
respiring enrichment culture (10 ml) was extracted using the
DNeasy PowerSoil Kit (MO-BIO, CA, USA). A 2-step
PCR strategy was applied to generate barcoded amplicons
from the V1—V2 region of bacterial 16S rRNA genes as
described previously [35]. Primers for PCR amplification of
the 16S rRNA genes are listed in Table S1. Sequence
analysis was performed using NG-Tax [36]. Operational
taxonomic units (OTUs) were assigned taxonomy using
uclust [37] in an open reference approach against the
SILVA 16S rRNA gene reference database (LTPs128_SSU)
[38]. Finally, a biological observation matrix (biom) file
was generated and sequence data were further analyzed
using Quantitative Insights Into Microbial Ecology
(QIIME) v1.2 [39].

Genome sequencing and annotation

Genomic DNA of strains DBB and MSL71T cells was
extracted using the MasterPure™ Gram Positive DNA
Purification Kit (Epicentre, WI, USA). The genomes were
sequenced using the Illumina HiSeq2000 paired-end
sequencing platform (GATC Biotech, Konstanz, Germany;
now part of Eurofins Genomics Germany GmbH). The

genome of strain DBB was further sequenced by PacBio
sequencing (PacBio RS) to obtain longer read lengths.
Optimal assembly kmer size for strain DBB was detected
using kmergenie (v.1.7039) [40]. A de novo assembly with
Illumina HiSeq2000 paired-reads was made with assembler
Ray (v2.3.1) [40] using a kmer size of 81. A hybrid
assembly for strain DBB with both the PacBio and the
Illumina HiSeq reads was performed with SPAdes (v3.7.1,
kmer size: 81) [41]. The two assemblies were merged using
the tool QuickMerge (v1) [42]. Duplicated scaffolds were
identified with BLASTN [43] and removed from the
assembly. Assembly polishing was performed with Pilon
(v1.21) [44] using the Illumina HiSeq reads. Optimal
assembly kmer size for strain MSL71T was also identified
using kmergenie (v.1.7039), and a de novo assembly with
Illumina HiSeq2000 paired-end reads was performed with
SPAdes (v3.11.1) with a kmer-size setting of 79,101,117.
FastQC and Trimmomatic (v0.36) [45] was used for read
inspection and trimming using the trimmomatic parameters:
TRAILING:20 LEADING:20 SLIDINGWINDOW:4:20
MINLEN:50. Trimmed reads were mapped with Bowtie2
v2.3.3.1 [46]. Samtools (v1.3.1) [47] was used for con-
verting the bowtie output to a sorted and indexed bam file.
The assembly was polished with Pilon (v1.21).

Transcriptional analysis of the rdhA genes of D.
spongiiphila DBB

Transcriptional analysis was performed using DBB cells
grown with lactate (20 mM), sulfate (10 mM) and either
1,4-DBB (1 mM) or 2,6-DBP (0.2 mM). DBB cells grown
with lactate and sulfate but without any organohalogens
were used as control. Ten replicate microcosms were pre-
pared for each experimental condition, and at each sampling
time point, two microcosms were randomly selected and
sacrificed for RNA isolation as described previously [48].
RNA was purified using RNeasy columns (Qiagen, Venlo,
The Netherlands) followed by DNase I (Roche, Almere,
The Netherlands) treatment. cDNA was synthesized from
200 ng total RNA using SuperScript™ III Reverse Tran-
scriptase (Invitrogen, CA, USA) following manufacturer’s
instructions. Primers for RT-qPCR assays were listed in
Table S1. RT-qPCR assays were performed as outlined
in Supplementary Information.

Protein extraction and proteomic analysis

Triplicate 100 ml cultures of strain DBB grown with lactate
(20 mM) and sulfate (10 mM) (LS condition) or with lactate
(20 mM), sulfate (10 mM), and 1,4-DBB (100 µM) (LSD
condition) were used for proteomic analysis. Cells were
collected by centrifugation at 4500 × g for 20 min at 4 °C.
The cells were then re-suspended in 1 ml 100 mM Tris-HCl
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buffer (pH 7.5) containing 10 µl protease inhibitor (Halt
Protease Inhibitor Cocktail; Thermo Fisher Scientific,
Rockford, USA). Cells were lysed by sonication using a
Branson sonifier (Branson, CT, USA) equipped with a 3
mm tip by six pulses of 30 s with 30 s rest in between of
each pulse. Cell debris was removed by centrifugation at
10,000 × g for 10 min at 4 °C. The protein concentration of
the cell-free extracts (CFE) was determined using
the Bradford assay [49]. The total-proteomics samples were
purified by SDS-PAGE (see below) and the analyses were
done as described by Burrichter et al. [50]. For total protein
analysis, CFE corresponding to 200 µg of protein was
mixed with SDS-PAGE loading dye (Roti-Load 1, Carl
Roth, Karlsruhe, Germany) and loaded onto an SDS gel
(4% acrylamide in the stacking and 12% in the resolving
gel) until the proteins had just entered the resolving
gel (without any separation); the Coomassie-stained total-
protein bands were excised and then subjected to
peptide fingerprinting-mass spectrometry (see below). For
analysis of proteins associated to the membrane, the mem-
brane fragments in the CFE were separated by ultra-
centrifugation at 104,000 × g for 35 min at 4 °C; the
membrane pellet was solubilized in SDS-PAGE loading dye
(Roti-Load 1, Carl Roth, Karlsruhe, Germany) and purified
by SDS-PAGE as described above. The unresolved protein
bands excised from SDS-PAGE gels were subjected to
peptide fingerprinting-mass spectrometry with Dr.
Andreas Marquardt at the Proteomics Centre of the
University of Konstanz (https://www.biologie.uni-konstanz.
de/proteomics-centre/) [50]. The samples were processed by
in-gel reduction with dithiothreitol, alkylation with chlor-
oacetamide and tryptic digest. Each sample was analyzed
twice on a Orbitrap Fusion with EASY-nLC 1200 (Thermo
Fisher Scientific) and tandem mass spectra were searched
against an appropriate protein database (see below) of strain
DBB using Mascot (Matrix Science, London, UK) and
Proteome Discoverer V1.3 (Thermo Fisher Scientific) with
“Trypsin” enzyme cleavage, static cysteine alkylation by
chloroacetamide, and variable methionine oxidation [50].
The protein database was constructed from the annotated
genome of strain DBB by in vitro translation of genes.
Statistical analysis was performed using prostar proteomics
[51]. Top three peptide area values were log2-transformed
and normalized against all columns (column sums function
from prostar proteomics). The values of proteins detected in
at least two of the three replicates were differentially com-
pared and tested for statistical significance. Missing values
were imputed using the SLSA function of prostar, and
hypothesis testing with a student’s t test was performed for
LSD vs LS growth conditions. The p values were
Benjamini–Hochberg corrected and proteins with p values
below 0.05 and a log2 value of 1 or larger were considered
statistically significantly up- or downregulated.

Analytical methods

Halogenated benzenes and benzene were analyzed on a GC
equipped with an Rxi-5Sil capillary column (Retek, PA,
USA) and a flame ionization detector (GC-FID, Shimadzu
2010). Halogenated phenols and phenol were analyzed on a
Thermo Scientific Accela HPLC System equipped with an
Agilent Poroshell 120 EC-C18 column and a UV/Vis
detector. Organic acids and sugars were analyzed using a
ThermoFisher Scientific SpectraSYSTEM™ HPLC equip-
ped with an Agilent Metacarb 67H column and RI/UV
detectors. Sulfate, sulfite and thiosulfate were analyzed
using a ThermoFisher Scientific Dionex™ ICS-2100 Ion
Chromatography System equipped with a DionexTM Ion-
pacTM AS17 IC column and a suppressed conductivity
detector. Cell growth under sulfate-reducing conditions was
determined by measuring OD600 using a WPA CO8000 cell
density meter (Biochrom, Cambridge, UK). Cell growth of
strain DBB during OHR and in absence of sulfate was
determined by quantifying the 16S rRNA gene copy num-
ber using qPCR. Sulfide was measured by a photometric
method using methylene blue as described previously [52].

Strain and data availability

D. spongiiphila strain DBB was deposited at DSMZ under
accession number DSM 104433. The 16S rRNA gene
sequences of strain DBB were deposited in GenBank
(accession numbers: MK881098—MK881099). The gen-
ome sequences of strains DBB and MSL71 were deposited
in the European Bioinformatics Institute (accession number:
GCA_902498735 (DBB), GCA_900699765 (MSL71T)). A
list of proteins detected from strain DBB under LS and LSD
growth conditions is available in Dataset S1.

Results and discussion

Enrichment of 1,4-DBB debrominating cultures and
isolation of strain DBB

Reductive debromination of 1,4-DBB to bromobenzene
(BB) and benzene was observed in the original cultures
containing intertidal sediment (Fig. 1a, b). Debromination
of 1,4-DBB was maintained in the subsequent sediment-free
transfer cultures (Fig. 1c). However, benzene was no longer
detected and BB was the only debromination product,
indicating loss of the BB-debrominating population. Up to
date, the only known OHRB that can debrominate BB to
benzene is Dehalococcoides mccartyi strain CBDB1 [53].
1,4-DBB debromination to BB was stably maintained dur-
ing subsequent transfers (data not shown) and after serial
dilution (Fig. 1d). Bacterial community analysis showed an
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increase in the relative abundance of Deltaproteobacteria
from ~2% in the intertidal sediment at time zero to ~13%
after 104 days of enrichment (Fig. 1e). The genus Desul-
foluna was highly enriched from below 0.1% relative
abundance in the original sediment to more than 80%
relative abundance in the most diluted culture (107 dilution)
(Fig. 1e).

Single colonies were observed in roll tubes with 0.8%
low-melting agarose after 15 days of incubation. Among the
six single colonies randomly selected and transferred to
liquid media, one showed 1,4-DBB debromination (Fig. 1f)
which was again subjected to the roll tube isolation proce-
dure to ensure purity. The final isolated strain was desig-
nated strain DBB.

Characterization of the Desulfoluna strains

Cells of strain DBB were slightly curved rods with a length
of 1.5–3 µm and a diameter of 0.5 µm as revealed by SEM
(Figs. S1A and S1B), which was similar to strain AA1T

(Fig. S1C) and MSL71T (Fig. S1D). In contrast to strain
AA1T [20], but similar to strain MSL71T [32], strain DBB
was motile when observed by light microscopy, with evi-
dent flagella being observed by SEM (Fig. S1A, B).

The cellular fatty acid profiles of the three strains con-
sisted mainly of even-numbered saturated and mono-
unsaturated fatty acids (Table S2).

Strain DBB used lactate, pyruvate, formate, malate and
butyrate as electron donors for sulfate reduction (Table 1).

Fig. 1 Enrichment and isolation of D. spongiiphila DBB. Intertidal
sediment mainly composed of shore sediment used for isolation (a).
Reductive debromination of 1,4-dibromobenzene (1,4-DBB) by: the
original microcosms containing intertidal sediment (b), the sediment-
free enrichment cultures (c), the most diluted culture (107) in the
dilution series (d). Phylogenetic analysis of bacterial communities in
the microcosms from the shore sediment at time zero (left), the original
1,4-DBB debrominating enrichment culture after 104 days incubation
(middle) and the 107 dilution series culture (right) (e). Reductive

debromination of 1,4-DBB to bromobenzene (BB) by the isolated pure
culture (f). Sediment enrichment culture and sediment-free transfer
cultures (b–d) were prepared in single bottles. Pure cultures (f) were
prepared in duplicate bottles. Points and error bars represent the
average and standard deviation of samples taken from the duplicate
cultures. Phylogenetic data are shown at phylum level, except Delta-
proteobacteria shown at class level and Desulfoluna at genus level.
Taxa comprising less than 1% of the total bacterial community are
categorized as ‘Others’.
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Lactate was degraded to acetate, which accumulated without
further degradation, and sulfate was reduced to sulfide (Fig.
S2A). In addition, sulfite and thiosulfate were utilized as
electron acceptors with lactate as the electron donor (Table 1).
Sulfate and 1,4-DBB could be concurrently utilized as elec-
tron acceptors by strain DBB (Fig. S2). Independent of the
presence of sulfate in the medium, strain DBB stoichiome-
trically debrominated 1,4-DBB to bromobenzene (BB), and 2-
bromophenol (2-BP), 4-bromophenol (4-BP), 2,4-bromophe-
nol (2,4-DBP), 2,6-DBP, 2,4,6-tribromophenol (2,4,6-TBP),
2-iodophenol (2-IP) and 4-iodophenol (4-IP) to phenol
(Table 1) using lactate as the electron donor. In the absence of
sulfate, the growth yield of strain DBB was (8.6 ± 4.4) × 1012

16S rRNA gene copies per mol bromide released from
1,4-DBB indicating energy conservation by reductive debro-
mination. Hydrogen was not used as an electron donor for
1,4-DBB debromination or sulfate reduction (data not
shown). Strain DBB was unable to dehalogenate the tested
chlorinated aromatic compounds and several other bromo-
benzenes listed in Table 1. This is in accordance with the
dehalogenating activity reported for strain AA1T that was
unable to use chlorinated aromatic compounds as electron
acceptors [20]. The majority of the known organohalogens
from marine environments are brominated [1] and hence
marine OHRB may be less exposed to organochlorine com-
pounds in their natural habitats. For instance, strain AA1T was
isolated from the marine sponge Aplysina aerophoba [20] in
which organobromine metabolites can account for over 10%
of the sponge dry weight [54].

Genomic and phylogenetic characterization of the
Desulfoluna strains

The three Desulfoluna strains showed similar overall gen-
ome features (Table 1, Tables S3 and S4). The complete
genome of strain DBB consists of a single chromosome with
a size of 6.68Mbp (Fig. S3). The genomes of strain AA1T

(GenBank accession number: NZ_FMUX01000001.1) and
strain MSL71T (sequenced in this study) are draft genomes
with similar G+C content (Table 1). The average nucleo-
tide identity (ANI) of the DBB genome to AA1T and
MSL71T genomes was 98.5% and 85.9%, respectively. This
indicates that DBB and AA1T strains belong to the same
species of D. spongiiphila [55]. 16S rRNA gene and protein
domain-based phylogenetic analyses with other genera of
the Desulfobacteraceae placed Desulfoluna strains in a
separate branch of the corresponding phylogenetic trees
(Fig. S4). Whole-genome alignment of strains DBB, AA1T

and MSL71T revealed the presence of 11 locally colinear
blocks (LCBs) with several small regions of inversion and
rearrangement (Fig. S5). A site-specific recombinase gene
(DBB_14420) was found in one of the LCBs. The same

Table 1 Physiological and genomic properties of Desulfoluna strains.

Strain DBB AA1T a MSL71T b

Isolation source Marine intertidal
sediment

Marine sponge Estuarine
sediment

Cell morphology Curved rods Curved rods Curved rods

Optimum NaCl
concentration (%)

2.0 2.5 2.0

Temperature optimum/
range (oC)

30/10–30 28/10–36 30/NDc

Utilization of
electron donors

Lactate + + +

Butyrate + − +
Formate + + +

Acetate − − −

Fumarate − − −

Citrate − + −

Glucose − + −

Malate + + +

Pyruvate + + +
Hydrogen −d ND +

Propionate − − −

Succinate − − −

Utilization of electron
acceptors

Sulfate + + +
Sulfite + + +

Thiosulfate + + +
1,4-Dibromobenzene + +e −e

1,2-Dibromobenzene − ND ND

1,3-Dibromobenzene − ND ND

1,2,4-Tribromobenzene − ND ND

Bromobenzene − ND ND

1,2-Dichlorobenzene − ND ND

1,3-Dichlorobenzene − ND ND

1,4-Dichlorobenzene − ND ND

1,2,4-Trichlorobenzene − ND ND

2-Bromophenol + + +e

4-Bromophenol + + −e

2,4-Dibromophenol + + +e, f

2,6-Dibromophenol + + +e

2,4,6-Tribromophenol + + +e, f

2-Iodophenol + +e −e

4-Iodophenol + +e −e

2,4-Dichlorophenol − − −e

2,6-Dichlorophenol − − −e

2,4,6-Trichlorophenol − − −e

Genomic information

Genome size (Mb) 6.68 6.53g 6.05h

G+C content (%) 57.1 57.9g 57.2h

Total genes 5497 5356g 4894h

Total proteins 5301 5203g 4186h

aData from Ahn et al. [20]
bData from Suzuki et al. [32]
cND not determined
dTested with 1,4-dibromobenzene as the electron acceptor
eData from this study
f4-Bromophenol rather than phenol was the debromination product
gData from GenBank (accession number: NZ_FMUX01000001.1)
hPredicted based on draft genome
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gene was also found in the corresponding inversed and
rearranged LCBs in AA1T (AA1_11599) and MSL71T

(MSL71_ 48620), suggesting a role of the encoded recom-
binase in genomic rearrangement in the Desulfoluna strains.

Comparison of the rdh gene region of the
Desulfoluna strains

Similar to strain AA1T [21], the genomes of strains DBB
and MSL71T also harbor three rdhA genes. The amino acid
sequences of the RdhA homologs in DBB share >99%
identity to the corresponding RdhAs in AA1T, and 80–97%
identity with the corresponding RdhAs in MSL71T (Fig. 2).
However, the three distinct RdhA homologs in the Desul-
foluna strains share low identity (20–30%) with each other,
and they form three distant branches in the phylogenetic
tree of RdhAs [18], and cannot be grouped with any of the
currently known RdhA groups (Fig. S6). Therefore, we
propose three new RdhA homolog groups, RdhA1 includ-
ing DBB_38400, AA1_07176 and MSL71_22580; RdhA2
including DBB_36010, AA1_02299 and MSL71_20560,
and RdhA3 including DBB_45880, AA1_11632 and
MSL71_30900 (Fig. 2, Fig. S6).

The rdh gene clusters in DBB and MSL71T show a similar
gene order as the corresponding rdh gene clusters in AA1T

(Fig. 2), except that the rdhA1 gene cluster of MSL71T lacks
rdhB and rdhC. Genes encoding sigma-54-dependent tran-
scriptional regulators in the rdhA1 and rdhA3 gene clusters of
AA1T [21] are also present in the corresponding gene clusters
of DBB and MSL71T (Fig. 2). Likewise, genes encoding the
LuxR and MarR-type regulators are present up- and

downstream of the rdhA2 gene clusters of DBB and MSL71T,
in line with the organization of the rdhA2 gene cluster of
AA1T (Fig. 2). This may indicate similar regulation systems
of the rdh genes in the Desulfoluna strains studied here. The
conserved motifs from known RDases (RR, C1−C5, FeS1,
and FeS2) [56, 57] are also conserved among all the RdhAs of
the Desulfoluna strains, except for RdhA1 of MSL71T, which
lacks the RR motif (Fig. S7). This may indicate a cytoplasmic
localization and a non-respiratory role of RdhA1 in strain
MSL71T [6].

OHR metabolism of D. butyratoxydans MSL71T

Guided by the genomic potential of strain MSL71T for OHR,
physiological experiments in this study confirmed that strain
MSL71T is indeed capable of using 2-BP, 2,4-DBP,
2,6-DBP and 2,4,6-TBP as electron acceptors with lactate as
the electron donor. Similar to DBB and AA1T, chlor-
ophenols such as 2,4-DCP, 2,6-DCP and 2,4,6-TCP were
not dehalogenated by strain MSL71T (Table 1). In contrast
to strains DBB and AA1T, strain MSL71T was unable to
debrominate 1,4-DBB and 4-BP. Hence, debromination of
2,4-DBP and 2,4,6-TBP was incomplete with 4-BP as the
final product rather than phenol (Table 1). Moreover, strain
MSL71T was unable to deiodinate 2-IP and 4-IP, again in
contrast to strains DBB and AA1T (Fig. S8, Table 1).

Induction of rdhA genes during OHR by strain DBB

When strain DBB was grown with sulfate and 1,4-DBB
with concomitant production of BB (Fig. 3a), its rdhA1

Fig. 2 Comparison of the rdh gene clusters in D. spongiiphila DBB, D. spongiiphila AA1T and D. butyratoxydans MSL71T. Numbers indicate
the locus tags of the respective genes.
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gene showed significant up-regulation (60-fold) at 24 h,
reached its highest level (120-fold) at 48–72 h, and then
decreased (Fig. 3b). In contrast, no significant up-regulation
of rdhA2 or rdhA3 was noted, suggesting that RdhA1
mediates 1,4-DBB debromination. Accordingly, RdhA1
was found in the proteome of the LSD growth condition but
not in that of the LS condition (Table S5, Datasets S2, S3).
When strain DBB was grown with sulfate and 2,6-DBP,
both rdhA1 and rdhA3 were significantly up-regulated and
reached their highest level at 4 h (65- and 2000-fold,
respectively, Fig. 3d). However, rdhA3 was the dominant
gene at 8 h (Fig. 3d), after which 2-BP was debrominated to
phenol (Fig. 3c), indicating a role of RdhA3 in 2,6-DBP and
2-BP debromination by strain DBB. A previous transcrip-
tional study of the rdhA genes in strain AA1T during
2,6-DBP debromination also showed a similar induction of
its rdhA3 [21].

Corrinoid biosynthesis in Desulfoluna strains

Most known RDases depend on corrinoid cofactors such as
cyanocobalamin for dehalogenation activity [10]. Both
strains DBB (this study) and AA1T [21] were capable of
OHR in the absence of externally added cobalamin. With
one exception (cbiJ), the genomes of the Desulfoluna
strains studied here harbor all genes necessary for de novo
anaerobic corrinoid biosynthesis starting from glutamate
(Table S6). The genes for cobalamin biosynthesis from
precorrin-2 are arranged in one cluster (DBB_3730–3920,
AA1_12810–12829, MSL71_49290–49480) including an
ABC transporter (btuCDF) for cobalamin import (Fig. 4).
Three of the proteins encoded by DBB_3730–3920 (Cbik:

3730, CbiL: 3790, CbiH: 3850) could be quantified in the
proteome of cells grown under both the LS and LSD con-
ditions, whereas CobH/CbiC (3780) and CobU (3880)
could be quantified for LSD and LS conditions, respectively
(Table S5, Datasets S2, S3). The abundance of the coba-
lamin biosynthesis proteins was not significantly different
between LS and LSD conditions (Table S5, Datasets S2,
S3), except for the tetrapyrrole methylase CbiH encoded by
DBB_3850 that was significantly more abundant in LSD
cells (Table S5, Dataset S3). The detection of cobalamin
biosynthesis proteins in the absence of 1,4-DBB in LS
condition could be due to the synthesis of corrinoid-
dependent enzymes in the absence of an organohalogen.
Accordingly, three corrinoid-dependent methyltransferase
genes (encoded by DBB_7090, 43520, 16050) were
detected in the proteomes, which might be involved in
methionine, methylamine or O-demethylation metabolism.
This might also indicate a constitutive expression of the
corresponding genes, in contrast to the organohalide-
induced cobalamin biosynthesis in Sulfurospirillum multi-
vorans [58].

Sulfur metabolism and impact of sulfate and sulfide
on debromination by Desulfoluna strains

All three strains were capable of using sulfate, sulfite, and
thiosulfate as terminal electron acceptors (Table 1). Among
the four sulfate permeases encoded in the genomes of
the Desulfoluna strains (Table S7), one (DBB_22290)
was detected in DBB cells grown under LS and LSD con-
ditions (Table S5, Dataset, S3). The genes involved in
sulfate reduction, including those encoding sulfate

Fig. 3 Differential induction
of rdhA genes during 1,4-DBB
and 2,6-DBP debromination
by D. spongiiphila DBB.
Debromination of 1,4-DBB (a)
and 2,6-DBP (c) by strain DBB
and RT-qPCR analysis of relative
induction of its three rdhA genes
during debromination of 1,4-
DBB (b) and 2,6-DBP (d). Error
bars in panels a and c indicate the
standard deviation of two random
cultures analyzed out of 10
replicates. The concentration of
1,4-DBB (>0.1 mM) could not be
accurately measured due to large
amount of undissolved
compound and hence was not
plotted. Error bars in panels b and
d indicate standard deviation of
triplicate RT-qPCRs performed
on samples withdrawn from
duplicate cultures at each time
point (n= 2 × 3).
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adenylyltransferase (Sat), APS reductase (AprBA) and
dissimilatory sulfite reductase (DsrAB), were identified in
the genomes of all three strains (Table S7). The corre-
sponding proteins were detected in DBB cells grown under
both LS and LSD conditions (Fig. 5, Table S5) with

AprBA, disulfite reductase (DsrMKJOP) and Sat among
the most abundant proteins in both, soluble and membrane
fractions (Datasets S2, S3). Interestingly, thiosulfate
reductase genes were not found in any of the three genomes,
whereas all strains can use thiosulfate as the electron

Fig. 4 Corrinoid biosynthesis and transporter gene clusters of Desulfoluna strains. Numbers indicate the locus tags of the respective genes.
The corresponding enzymes encoded by the genes and their functions in corrinoid biosynthesis are indicated in Table S4.

Fig. 5 Preliminary electron transport pathway scheme based on
the genomic and proteomic analysis of D. spongiiphila DBB grown
on lactate, sulfate and 1,4-DBB (LSD condition). Corresponding
gene locus tags are given for each protein. Proteins shown in dashed
line square were not detected under the tested conditions. Probable
electron flow path is shown in red arrows, and the dashed red arrows

indicate reverse electron transport. The pmf is built up by ATPase
using ATP generated by substrate-level phosphorylation via Por, Pta
and Ack. Note that the distribution of electrons to the electron trans-
port chains is not equal between sulfate respiration and OHR, but
shifted heavily toward sulfate respiration due to excess sulfate (20 mM
vs. 100 µM 1,4-DBB).
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acceptor (Table 1). Desulfitobacterium metallireducens was
also reported to reduce thiosulfate despite lacking a known
thiosulfate reductase gene [59, 60], suggesting the existence
of a not-yet-identified gene encoding a thiosulfate reductase
[60].

Sulfate and sulfide are known inhibitors for many OHRB
[30, 61, 62]. However, debromination of 2,6-DBP was not
affected in Desulfoluna strains in the presence of up to 20
mM sulfate (Fig. S9B, D, F), and sulfate and 2,6-DBP were
reduced concurrently (Fig. S9). This is similar to some other
Deltaproteobacteria [23], but in contrast to D. tiedjei which
preferentially performs sulfate reduction over OHR with
concomitant downregulation of rdh gene expression [30].
Moreover, sulfide, an RDase inhibitor in D. tiedjei [63] and
Dehalococcoides mccartyi strains [28, 29], did not impact
2,6-DBP debromination by Desulfoluna strains even at a
concentration of 10 mM (Fig. S10A–F). However, debro-
mination was delayed in the presence of 20 mM sulfide, and
no debromination was noted in the presence of 30 mM
sulfide (Fig. S10G–L). This high resistance to sulfide was
not reported before for the known OHRB, and is also rare
among sulfate-reducing bacteria [64], and may confer an
ecological advantage to these sulfate-reducing OHRB.

Electron transport chains of strain DBB

Based on previous studies with Desulfovibrio vulgaris Hil-
denborough and Desulfovibrio alaskensis G20 that are phy-
logenetically related to Desulfoluna (Fig. S4), the following
electron transport pathway in strain DBB with lactate and
sulfate can be proposed (Fig. 5): the two Ldhs either reduce
menaquinone directly, or transfer electrons via their HdrD-
like subunit LdhB and DsrC (a high redox potential electron
carrier with disulfide/dithiol (RSS/R(SH)2)) to QmoA
[65, 66]. The pyruvate produced by lactate oxidation is fur-
ther oxidized by Por, and the released electrons are carried/
transferred by a flavodoxin, which is a likely candidate for a
catabolic electron carrier as suggested by its high abundance
in our proteome analysis (Table S5). The electrons from the
low-potential flavodoxin could either be transferred to
menaquinone, or confurcated to QmoABC together with the
electrons from the high-potential (disulfide bond) DsrC.
QmoABC then reduces menaquinone (Fig. 5), and the elec-
trons are subsequently transferred from QmoABC to the APS
reductase (ApsBA) which is, together with three other
enzyme complexes (Sat, DsrABD, and DsrMKJOP),
responsible for the sulfate reduction cascade [67].

Electron transport from QmoABC to RdhA via mena-
quinol needs to overcome an energy barrier because elec-
tron transport from menaquinol (E0’=−75 mV) to the
RDase (E0’ (CoII/CoI) ≈ −360 mV) is thermodynamically
unfavorable [10]. However, the protein(s) and process(es)
involved to overcome this energy barrier is not clear. One

possibility is reverse electron transport as shown for
D. vulgaris Hildenborough and D. alaskensis G20 that
transfer electrons derived from lactate oxidation through
menaquinol to a periplasmic type I cytochrome c3 (TpIc3,
E0’=−325 to −170 mV) during syntrophic growth [65].
The energy required for this reverse electron transport is
generated by the proton motive force (pmf) mediated by the
Qrc complex [68]. Strain DBB might use a similar strategy
to overcome the energy barrier to transfer electrons from
menaquinol to the periplasmic RdhA1 (Fig. 5). Qrc was
detected in the proteome of DBB cells grown under both LS
and LSD conditions (Table S5), whereas the TpIc3 was not
identified in the Desulfoluna genomes. Instead of TpIc3,
strain DBB could use RdhC1, a homolog to PceC of
Dehalobacter restrictus that was proposed to mediate
electron transfer from menaquinol to PceA via its
exocytoplasmic-facing flavin mononucleotide (FMN) co-
factor [16]. Similar to D. restrictus, the RdhC1 of strain
DBB contains a conserved FMN binding motif (in parti-
cular the fully conserved threonine residue) and two CX3CP
motifs predicted to have a role in electron transfer [16] (Fig.
S11). In addition, five transmembrane helices of RdhC1 in
strain DBB are also conserved (Fig. S12), indicating a
similar function of RdhC1 in electron transfer from mena-
quinones to RdhA1 via FMN co-factor (Fig. 5). However,
since RdhC was not detected in our proteome analysis likely
due to tight interactions with the membrane with its five
transmembrane helixes, further biochemical studies are
necessary to verify the proposed role of RdhC1 in
Desulfoluna OHR.

The pmf derived from sulfate reduction might be used for
reverse electron transport during OHR, which may explain
accelerated OHR with concurrent sulfate reduction (Fig.
S2). Further studies such as construction of Desulfoluna
mutant strains lacking qrc genes are necessary to verify the
function of Qrc in energy metabolism of Desulfoluna.

Potential oxygen defense in Desulfoluna strains

Sulfate reducers, which have been assumed to be strictly
anaerobic bacteria, not only survive oxygen exposure but
can also utilize it as an electron acceptor [69, 70]. However,
the response of organohalide-respiring sulfate reducers to
oxygen exposure is not known. Most of the described
OHRB are strict anaerobes isolated from anoxic and usually
organic matter-rich subsurface environments [17]. In con-
trast, strain DBB was isolated from marine intertidal sedi-
ment mainly composed of shore sand (Fig. 1a), where
regular exposure to oxic seawater or air can be envisaged.
The genomes of the Desulfoluna strains studied here harbor
genes encoding enzymes for oxygen reduction and reactive
oxygen species (ROS) detoxification (Table S8). Particu-
larly, the presence of a cytochrome c oxidase encoding gene
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is intriguing and may indicate the potential for oxygen
respiration. Accordingly, in the presence of 2% oxygen in
the headspace of DBB cultures, the redox indicator resa-
zurin in the medium turned from pink to colorless within
two hours, indicating consumption/reduction of oxygen by
strain DBB. Growth of strain DBB on lactate and sulfate
was retarded in the presence of 2% oxygen (Fig. S13C).
However, in both the presence (Fig. S13C) and absence of
sulfate (Fig. S13D), slower but complete debromination of
2,6-DBP to phenol was achieved with 2% oxygen in the
headspace. Neither growth nor 2,6-DBP debromination was
observed with an initial oxygen concentration of 5% in the
headspace (Fig. S13E, F). Such resistance of marine OHRB
to oxygen may enable them to occupy niches close to
halogenating organisms/enzymes that nearly all use oxygen
or peroxides as reactants [71]. For instance, the marine
sponge A. aerophoba from which D. spongiiphila AA1T

was isolated [20] harbors bacteria with a variety of FADH2-
dependent halogenases [72], and produces a variety of
brominated secondary metabolites [54].

Conclusions

Widespread environmental contamination with organoha-
logen compounds and their harmful impacts to human and
environmental health has been the driver of chasing OHRB
since the 1970s. In addition, the natural environment is an
ample and ancient source of organohalogens, and accumu-
lating evidence shows widespread occurrence of putative
rdhA in marine environments [6, 24, 73–75]. The previous
isolation and description of strain AA1T from a marine
sponge, the isolation of strain DBB from intertidal sediment
samples, and verification of the OHR potential of strain
MSL71T in this study indicate niche specialization of the
members of the genus Desulfoluna as chemoorganotrophic
facultative OHRB in marine environments. As such,
de novo corrinoid biosynthesis, resistance to sulfate,
sulfide and oxygen, versatility in using electron donors,
respiration of brominated but not chlorinated aromatic
compounds, and the capacity for concurrent sulfate and
organohalogen respiration confer an advantage to Desulfo-
luna strains in marine environments rich in sulfate and
organobromines.
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